TDDE66/TDDD55 Lecture 1.
Compiler Construction Introduction

Adrian Pop and Martin Sjélund

Department of Computer and Information Science
Linkdping University

2025-11-03

LINKOPING
II.“ UNIVERSITY

Introduction, Translators

> Compiler
Progrqm ina Translator Program in another
representation language representation language

v

Error messages
» High-level language — machine language or assembly language (Pascal, Ada,
Fortran, Java, ..)
» Three phases of execution:

"Compile-time”
1. Source program — object program (compiling)

2. Linking, loading — absolute program
"Run-time”"

3. Input — output
II “LINKDD\NG
[} UNIVERSITY

2/24

Interpreters

High-level language — intermediate code — which is interpreted directly, not

translated, such as:

» BASIC, LISP, APL

» command languages such as

UNIX-shell Source

> query languages for databases program

» Early versions of JavaScript
interpreters

LINKOPING
UNIVERSITY

Input

v

Interpreter

Result

3/24

Error
messages

4/24

Assembler

Symbolic machine code — machine code, for example:

MOVE R1,SUM — 01..101

LINKOPING
II.“ UNIVERSITY

5/24

Simulator, Emulator

Machine code is interpreted — machine code
Examples:

> Simulate a processor on an existing processor
» Running gemu on an amd64 laptop to run ARM Linux to test things
» Running old games on modern hardware

Generally, an emulator will try to mimic the behavior of the foreign architecture as best
it can. A simulator will try to model the entire state of the foreign processor.

LINKOPING
II.“ UNIVERSITY

6/24

Preprocessor/Macro
Extended (“sugared”) high-level language — high-level language

Listing 1: "IF-THEN-ELSE in FORTRAN"

IF A < B THEN
Z=A

ELSE
Z=B

Listing 2: "FORTRAN after preprocessing”
IF (A.LT.B) THEN GOTO 99
Z=B
GOTO 100
99 Z=A
100 CONTINUE

Listing 3: "File inclusion in C"
MU o c1ude <unistd.h>

7/24

Natural Language — Translators

For example Chinese — English
Very difficult problem, especially to include context:
> Example 1: Visiting relatives can be hard work

To go and visit relatives ..
Relatives who are visiting ...

> Example 2: | saw a man with a telescope

LINKOPING
II.“ UNIVERSITY

8/24

Why High-Level Languages?

» Understandability (readability)
> Naturalness (languages for different applications, DSL)
» Portability (machine-independent)
> Efficient to use (development time) due to
separation of data and instructions
typing

data structures
blocks

program-flow primitives (if, switch, for, while, do-until, exceptions, goto)
subroutines

LINKOPING
II.“ UNIVERSITY

9/24

The Structure of the Compiler

Source Analysis Intermediate Synthesis Object
program ' ' program ' ' program

Logical organization
» Analysis (“front-end”):
Pull apart the text string (the program) to internal structures, reveal the structure
and meaning of the source program.
» Synthesis (“back-end"):
Construct an object program using information from the analysis.

LINKOPING
II.“ UNIVERSITY

10/24

The Phases of the Compiler

Source program

Sequence of chars:
'IF sum=5 THEN..."

ical
lysis

lysis

Parse theg, dekivation tree

A

Semantic
Table management Vanalysns a}\d Error management
intermediate

code generation

Internalform /intermediate code

Co
optimization

nal form, intermediate code

generation

Object program
LINKOPING
UNIVERSITY

11/24

Compiler Passes and Phases

> Pass:
Physical organization (phase to phase) dependent on language and compromises.
Available memory space, efficiency (time taken), forward references, portability- and
modularity- requirements determine the number of passes.

» The number of passes: (one-pass, multi-pass)
The number of times the program is written into a file (or is read from a file).
Several phases can be gathered together in one pass.

LINKOPING
II.“ UNIVERSITY

12/24

Lexical Analysis (Scanner)

> Input:
Sequence of characters
» Qutput:
Tokens (basic symbols, groups of successive characters which belong together
logically).
1. In the source text isolate and classify the basic elements that form the language:
Tokens Example
Identifiers Sum, A, id2
Constants 556, 1.5e-5
Strings "Provide a number”
Keywords, reserved words while, if
Operators * [4+ —
Others :

2. Construct tables (symbol table, constant table, string table etc.).

LINKOPING
II.“ UNIVERSITY

13/24

Scanner Lookahead for Tricky Tokens

Listing 4: FORTRAN
' A loop
DO 10 I=1,15
! An assignment DO10I = 1.15
DO 10 I=1.15
! Blanks have no meaning in FORTRAN.

Listing 5: Pascal
VAR i: 15..25;
(¥ 15 is an integer *)
(* 15. is a real =)
(x 156.. an integer and .. *)

LINKOPING
II." UNIVERSITY

Scanner Return Values

Regular expressions are used to describe tokens, which the scanner returns values in
the form: <type, value>

Listing 6: Example: IF sum < 15 THEN z:

5, 0>
7, 14 >
symbol
9, 1>
1, 15>
2, 0>
7,9 >
symbol
3, 0>
1,153 >

ANNNN NN

VANA

LINKOPING
UNIVERSITY

5 =
7
ta
9
1
2
7
ta
3
1

Hc-H

(=T

IF, 0 = lacks value

code for identifier, 14 = entry to
le

relational operator, 1 = "<’

code for constant, 15 = value
THEN, 0 = lacks value

code for identifier, 9 = entry to
le

":='", 0 = lacks value

code for constant, 153 = value

Table: Symbol Table

Index | Symbol | Data
9 z
14 sum

14/24

15/24

Syntax Analysis (parsing) 1 — Checking
> Input: Sequence of tokens + symbol table
> Output: Parse tree, error messages

» Function: (1) Determine whether the input sequence forms a structure which is
legal according to the definition of the language.

Listing 7: OK
lIFl IXI =1 |1| ITHENI IXI |:=| |1l

Listing 8: Not OK
'IFF' 'X' '=' '1' 'THEN' 'X' ':=' '1'
which produces the sequence of tokens:
<7, 23 >

<7, 16 > {Two identifiers in a row is wrong}

<9, 0>
TR T

16/24

Syntax Analysis (parsing) 2 — Build Trees

Function: (2) Group tokens into syntactic units and construct parse trees which exhibit
the structure. Stop on first error or continue.

Figure: Example: A / B * C

<exp> This represents A / (B * C) i.e.
right-associative (is this

desirable?)
The alternative would be: (A / B)

* C — not the same!
The syntax of a language is

described using a context-free
l / l \ grammar.

<id> <id> " <id>
houuA B C

IVERSITY

<exp> / <exp>

17/24

Semantic Analysis and Intermediate Code Generation 1 — More Checking

P Input: Parse tree + symbol table
» Qutput: Intermediate code + symbol table temp.variables, information on their

type ..

» Function:
Semantic analysis checks items which a grammar can not describe, e.g.

type compatibility a ;=i * 1.5
correct number and type of parameters in calls to procedures as specified in the
procedure declaration.

LINKOPING
II.“ UNIVERSITY

18 /24
Semantic Analysis and Intermediate Code Generation 2 - Generate
Intermediate Code

Example: A+ B * C

Figure: Abstract syntax tree
Listing 9: Reverse Polish notation
ABC *x +

+
Listing 10: Three-address code A *
Tl := B *x C
T2 / \
B C

= A+ T1

II.“ LINKOPING

UNIVERSITY

19/24

Semantic Analysis and Intermediate Code Generation 3 - Intermediate
Code

» The intermediate form is used because Figure; Abstract syntax tree
it is: +
Simpler than the high-level language
(fewer and simpler operations).
Not profiled for a given machine / \
(portability).
Suitable for optimization. A *

» Syntax-directed translation schemes

are used to attach semantic routines / \
(rules) to syntactic constructions.

B C

LINKOPING
II.“ UNIVERSITY

20/24

Code Optimization (CO) - more appropriately: “Code Improvement”

> Input: Internal form Before constant folding After constant folding
» Output: Internal form (hopefully e °
improved)

» Machine-independent code ° ‘ ° °

optimization:
In some way make the machine code

faster or more compact by ° °

transforming the internal form.

LINKOPING
II.“ UNIVERSITY

21/24

Code Generation

» Input: Internal form

> Output: Machine code/assembly code Listing 11: Z := A 4+ B * C is translated to

> Function: assembly code
1. Register allocation and machine code
generation (or assembly code). MOVE R1, B
2. Instruction scheduling (specially IMUL R1, C
important for RISC). ADD R1, A
3. Machine-dependent code MOVEM R1, Z

optimization (so-called “peephole
optimization").

LINKOPING
II.“ UNIVERSITY

22/24

Compiler evolution in the last 20 years - |

> Language diversity - more flexible compilers

> Better optimization techniques - loop optimizations, automatic vectorization and
JIT

> Parallel and Multicore Support - compiler adaptation was needed - automatic
parallelization and parallel languages

> Just-in-Time Compilation: JIT compilers for dynamic languages

> Better Intermediate Representation - to enable more optimization and better code
generation

> Better Compiler Frameworks - LLVM, GCC, rust, C#, Go, TS, WebAssembly

LINKOPING
II.“ UNIVERSITY

23/24

Compiler evolution in the last 20 years - |l

> Language-Independent Tools - for various compiler phases parsing, type checking,
code generation - greater flexibility and IDE improvements (LSP, etc)

> Better Error Reporting - much easier to fix errors

» Improved Security - stack checks (canaries), address sanitizer, control-flow
integrity checks. Different computation paradigms for safety (rust).

» Compiler Verification via formal methods - advancements, can be used on non-toy
examples to guarantee compiler correctness for safety critical systems.

> Support new architectures - mobile, loT, edge, cloud, GPUs, TPUs, FPGAs, etc.
ML & Al for compiler construction to automate CO and CG

v

> Al to generate a compiler for your DSL automatically (might work)

LINKOPING
II.“ UNIVERSITY

www.liu.se

LINKOPING
II.“ UNIVERSITY

