
1 / 24

TDDE66/TDDD55 Lecture 1:
Compiler Construction Introduction

Adrian Pop and Martin Sjölund

Department of Computer and Information Science
Linköping University

2025-11-03

2 / 24

Introduction, Translators
I Compiler

Program in a
representation language

Translator
Program in another

representation language

Error messages

I High-level language → machine language or assembly language (Pascal, Ada,
Fortran, Java, …)

I Three phases of execution:
”Compile-time”
1. Source program → object program (compiling)
2. Linking, loading → absolute program

”Run-time”
3. Input → output

3 / 24

Interpreters

High-level language → intermediate code – which is interpreted directly, not
translated, such as:

I BASIC, LISP, APL
I command languages such as

UNIX-shell
I query languages for databases
I Early versions of JavaScript

interpreters

Source
program

Interpreter
Error

messages

Input

Result

4 / 24

Assembler

Symbolic machine code → machine code, for example:

MOVE R1,SUM → 01..101

5 / 24

Simulator, Emulator

Machine code is interpreted → machine code
Examples:
I Simulate a processor on an existing processor
I Running qemu on an amd64 laptop to run ARM Linux to test things
I Running old games on modern hardware

Generally, an emulator will try to mimic the behavior of the foreign architecture as best
it can. A simulator will try to model the entire state of the foreign processor.

6 / 24

Preprocessor/Macro
Extended (“sugared”) high-level language → high-level language

Listing 1: ”IF-THEN-ELSE in FORTRAN”
IF A < B THEN

Z=A
ELSE

Z=B

Listing 2: ”FORTRAN after preprocessing”
IF (A.LT.B) THEN GOTO 99
Z=B
GOTO 100

99 Z=A
100 CONTINUE

Listing 3: ”File inclusion in C”
#include <unistd.h>

7 / 24

Natural Language – Translators

For example Chinese → English
Very difficult problem, especially to include context:
I Example 1: Visiting relatives can be hard work

I To go and visit relatives …
I Relatives who are visiting …

I Example 2: I saw a man with a telescope

8 / 24

Why High-Level Languages?

I Understandability (readability)
I Naturalness (languages for different applications, DSL)
I Portability (machine-independent)
I Efficient to use (development time) due to

I separation of data and instructions
I typing
I data structures
I blocks
I program-flow primitives (if, switch, for, while, do-until, exceptions, goto)
I subroutines

9 / 24

The Structure of the Compiler

Source
program

Analysis
Intermediate
program

Synthesis
Object
program

Logical organization
I Analysis (“front-end”):

Pull apart the text string (the program) to internal structures, reveal the structure
and meaning of the source program.

I Synthesis (“back-end”):
Construct an object program using information from the analysis.

10 / 24

The Phases of the Compiler
Source program

Lexical
analysis

 Sequence of chars:
 'IF sum=5 THEN...'

Syntactic
analysis

 Sequence of tokens:
 'IF' 'sum' '=' '5'

Error management

Semantic
analysis and
intermediate

code generation

 Parse tree, derivation tree

Code
optimization

 Internal form, intermediate code

Code
generation

 Internal form, intermediate code

Object program

Table management

11 / 24

Compiler Passes and Phases

I Pass:
I Physical organization (phase to phase) dependent on language and compromises.
I Available memory space, efficiency (time taken), forward references, portability- and

modularity- requirements determine the number of passes.
I The number of passes: (one-pass, multi-pass)

I The number of times the program is written into a file (or is read from a file).
I Several phases can be gathered together in one pass.

12 / 24

Lexical Analysis (Scanner)
I Input:

I Sequence of characters
I Output:

I Tokens (basic symbols, groups of successive characters which belong together
logically).

1. In the source text isolate and classify the basic elements that form the language:
Tokens Example
Identifiers Sum, A, id2
Constants 556, 1.5e-5
Strings ”Provide a number”
Keywords, reserved words while, if
Operators ∗ / + −
Others . :

2. Construct tables (symbol table, constant table, string table etc.).

13 / 24

Scanner Lookahead for Tricky Tokens

Listing 4: FORTRAN
! A loop

DO 10 I=1,15
! An assignment DO10I = 1.15

DO 10 I=1.15
! Blanks have no meaning in FORTRAN.

Listing 5: Pascal
VAR i: 15..25;
(* 15 is an integer *)
(* 15. is a real *)
(* 15.. an integer and .. *)

14 / 24

Scanner Return Values

Regular expressions are used to describe tokens, which the scanner returns values in
the form: <type, value>

Listing 6: Example: IF sum < 15 THEN z :
< 5 , 0 > 5 = IF , 0 = lack s va lue
< 7 , 14 > 7 = code f o r i d e n t i f i e r , 14 = entry to

symbol t ab l e
< 9 , 1 > 9 = r e l a t i o n a l operator , 1 = ’<’
< 1 , 15> 1 = code f o r constant , 15 = va lue
< 2 , 0 > 2 = THEN, 0 = lack s va lue
< 7 , 9 > 7 = code f o r i d e n t i f i e r , 9 = entry to

symbol t ab l e
< 3 , 0 > 3 = ’:= ’ , 0 = lack s va lue
< 1 ,153 > 1 = code f o r constant , 153 = va lue

Table: Symbol Table

Index Symbol Data
...
9 z …
...
14 sum …

15 / 24

Syntax Analysis (parsing) 1 – Checking
I Input: Sequence of tokens + symbol table
I Output: Parse tree, error messages
I Function: (1) Determine whether the input sequence forms a structure which is

legal according to the definition of the language.

Listing 7: OK
'IF' 'X' '=' '1' 'THEN' 'X' ':=' '1'

Listing 8: Not OK
'IFF' 'X' '=' '1' 'THEN' 'X' ':=' '1'

which produces the sequence of tokens:

< 7, 23 >
< 7, 16 > {Two identifiers in a row is wrong}
< 9, 0 >

16 / 24

Syntax Analysis (parsing) 2 – Build Trees
Function: (2) Group tokens into syntactic units and construct parse trees which exhibit
the structure. Stop on first error or continue.

Figure: Example: A / B * C

<exp>

<exp> <exp>/

<id>
A

<id>
B

<id>
C

*

This represents A / (B * C) i.e.
right-associative (is this
desirable?)
The alternative would be: (A / B)
* C – not the same!
The syntax of a language is
described using a context-free
grammar.

17 / 24

Semantic Analysis and Intermediate Code Generation 1 – More Checking

I Input: Parse tree + symbol table
I Output: Intermediate code + symbol table temp.variables, information on their

type …
I Function:

Semantic analysis checks items which a grammar can not describe, e.g.
I type compatibility a := i * 1.5
I correct number and type of parameters in calls to procedures as specified in the

procedure declaration.

18 / 24

Semantic Analysis and Intermediate Code Generation 2 - Generate
Intermediate Code

Example: A + B * C

Listing 9: Reverse Polish notation
A B C * +

Listing 10: Three-address code
T1 := B * C
T2 := A + T1

Figure: Abstract syntax tree
+

A *

B C

19 / 24

Semantic Analysis and Intermediate Code Generation 3 - Intermediate
Code

I The intermediate form is used because
it is:
I Simpler than the high-level language

(fewer and simpler operations).
I Not profiled for a given machine

(portability).
I Suitable for optimization.

I Syntax-directed translation schemes
are used to attach semantic routines
(rules) to syntactic constructions.

Figure: Abstract syntax tree
+

A *

B C

20 / 24

Code Optimization (CO) - more appropriately: “Code Improvement”

I Input: Internal form
I Output: Internal form (hopefully

improved)
I Machine-independent code

optimization:
I In some way make the machine code

faster or more compact by
transforming the internal form.

Before constant folding After constant folding

a a

2

:=

+

3

:=

5

21 / 24

Code Generation

I Input: Internal form
I Output: Machine code/assembly code
I Function:

1. Register allocation and machine code
generation (or assembly code).

2. Instruction scheduling (specially
important for RISC).

3. Machine-dependent code
optimization (so-called “peephole
optimization”).

Listing 11: Z := A + B * C is translated to
assembly code
MOVE R1, B
IMUL R1, C
ADD R1, A
MOVEM R1, Z

22 / 24

Compiler evolution in the last 20 years - I

I Language diversity - more flexible compilers
I Better optimization techniques - loop optimizations, automatic vectorization and

JIT
I Parallel and Multicore Support - compiler adaptation was needed - automatic

parallelization and parallel languages
I Just-in-Time Compilation: JIT compilers for dynamic languages
I Better Intermediate Representation - to enable more optimization and better code

generation
I Better Compiler Frameworks - LLVM, GCC, rust, C#, Go, TS, WebAssembly

23 / 24

Compiler evolution in the last 20 years - II

I Language-Independent Tools - for various compiler phases parsing, type checking,
code generation - greater flexibility and IDE improvements (LSP, etc)

I Better Error Reporting - much easier to fix errors
I Improved Security - stack checks (canaries), address sanitizer, control-flow

integrity checks. Different computation paradigms for safety (rust).
I Compiler Verification via formal methods - advancements, can be used on non-toy

examples to guarantee compiler correctness for safety critical systems.
I Support new architectures - mobile, IoT, edge, cloud, GPUs, TPUs, FPGAs, etc.
I ML & AI for compiler construction to automate CO and CG
I AI to generate a compiler for your DSL automatically (might work)

24 / 24

www.liu.se

