TDDD55 Compilers and Interpreters

TDDEG66 Compiler Construction !Olglg
Compiler Frameworks

and
Compiler Generators

A (non-exhaustive) survey

with a focus on open-source
frameworks

IDA, Linkdpings universitet, 2024

Overview Il'"

d Part | — Syntax-Based Generators
d Part Il — Semantics-Based Generators
a Part lll — Primarily Back-End Frameworks and Generators

d Part IV — More Frameworks

TDDD55/TDDEG66, IDA, LiU, 2024 14.2

TDDD55 Compilers and Interpreters

TDDEG66 Compiler Construction II.“

LINKOPINGS UNIVERSITET

Part |

Syntax-Based Generators

IDA, Linkdpings universitet, 2024

Grammar analysis tool (l)

state 1

A->A.b

start -> A .

state 3

state 0

A->a. A
A->a.Bb

start -> . A

A->.aA
A->. Ab
A->.aBb
A->.g

TDDDS5/TDDEG66, IDA, LiU, 2024

A->.aA
A->.Ab

™ A-> . aBb

A->.g
B->.aB
B->.Ba
B->.bAa
B->.d

f

Y

LINKOPINGS UNIVERSITET

b
B
state 4 b | state 12
A->aB.b A>aBb.
B->B.a
b a
tate 10 b 74
sta state 13
5 A->aB.b a B->Ba.
B->aB. ——™
B->B.a
a
/"\‘ B tate 6 state 9
state 7 b A->Ab.
S B->b.Aa A state 11 | —
A->a.Bb A->.aA ™ A->A.b a state 14
B->a.B b A-> . Ab B->bA.a
/A-:-.aBb B->bAa.
A->.aA A->
A-> . Ab 9
A->.aBb g
A->.0 9
B->.aB d
B->.Ba
B->.bAa
B.> d P state 2
A->q.
B->d. g

state 5

A->aA.
A->A.b

14.4

nonterminal first set follow set

A ag
B abd

https://smlweb.cpsc.ucalgary.ca/start.html

Grammar analysis tool (ll) Il'“

LR(0) Table SLR(1) Table
[T s T & | =« [v [e Jafs] LIL_s Jaf o [» Jsfa]s]
o] n = u 2 B (e []s3 H s2fsL | |
‘acc ”acc Hacc Hacc/sQ Hacc H:”:| ‘acc ‘D| ”59 |D|:”:|
‘r(A — g) ”r(A — g) Hr(A —g) Hr(A — g) Hr(A —g) H:”:l ‘r(A) ‘Dh(A —8g Hr(A —8 |D|:”:|
3] s 7 56 2 =] [[s8s7 [s6 2[5 Jls4 |
4] n SE 512 u 1[4 [13 [s12 LT
[5ia—aa) [a—an) ra—aa) [ra—aaysd a—an) [[] [5[ra—an) | a—an) [wa—aays | | | |
5] n 3 u 2] (e []s3 | [s2fst] |
7] = &7 6 = 55 [0 (7] [s8s7 [s6 [s2]ls5 Jls10
BE—0 [B-d [Bod [Boa |G- | | | & [fa—a -9 []
[9]ca—ab) [a—ab) ra—ab) [ra—ab) Ja—ab [[] Pa—ab) | fa—ab |wa—ab) [| | |
[10:B—aB) [xB—aB) |(B—aB)si3[iB—aBys2iB—aB) | || || [19] [[rB—=aBysi3frd —aBysi2] [[]
[| [s14 [s9 |] | 14 Is9 L]
1ZA—aBb)A—aBb|A—aBb) |(A—aBb) |A—aBb)| || | [12[a—aBb)[[xa—aBb) [wa—aBb) [[[]
13[:B—Ba) [{B—Ba) [(B—Ba |B—Ba |B—Ba | | | 13 [f[=Ba [d—=Ba [| |
4B —bAa)iB—bAaB—bAa) |(B—bAa fB—bra| | | [14 [fB—=bAa) [iB—baa) | [| |
The grammar is not LR(0) because The grammar is not SLR(1) because

= shift/reduce conflict in state 1.
= shift/reduce conflict in state 5.
= shift/reduce conflict in state 10.

= shift/reduce conflict in state 5.
= shift/reduce conflict in state 10.

TDDD55/TDDEG66, IDA, LiU, 2024

https://smlweb.cpsc.ucalgary.ca/start.html

Syntax-Based Generators Il'"

d Lex and Flex — generate lexical analyzers.

= Clones and/or open-source alternatives exist for many programming
languages. Wikipedia has a reasonable overview.

d Yacc and Bison — generate parsers
= Can be used for syntax-directed translation

Usually syntax-directed translation is not used (if the compilation is not
completely driven by the parser, it is something else)

Does not generate semantic analysis, intermediate code, optimization,
or code generation

= YACC/Bison produces parsers that are bad at error management
d Very many alternatives exist, with the grammar specification either
using an API in the programming language, EBNF, or something

else. Many parser generators (such as ANTLR) allow the user to
adapt the error handling routines. Some also have IDE’s that make

debugging your grammar easier.
d

TDDD55/TDDEG66, IDA, LiU, 2024 14.6

https://en.wikipedia.org/wiki/Comparison_of_parser_generators

EBNF Evaluator

EBNF Evaluator

github project

EBNF Grammar

LINKOPINGS UNIVERSITET

Test Input

program ::= 'PROGRAM', white_space, identifier, white_space,

'BEGIN', white_space,

{ assignment, ";", white_space },

"END. '
identifier ::= alphabetic_character, { alphabetic_character | digit }
number ::= ["-"], digit, { digit }
string ::= "'" , { all_characters },
assignment ::= identifier , ":="
alphabetic_character 1i= A"

"

=", number | identifier | string)
| gt "CL Dt MEM | E | "GN
npo " met)L M| N

npo |
5 |

"

X:D u:—r-\

|
o

man

| | I
| | | ngn | e |y
|y n e | oy | e
N | ngn | g [ngn | uge | wgn

digit ::= "0" | o ngn e
white_space ::= (' *
all_characters ::= (#'[A-Za-z][A-Za-z0-9_+ !]'* | #' '¥)*

v LI

PROGRAM DEMO1
BEGIN
A:=3;
B:=45;
H:=-100023;

C:=A;

D123:=B34A

BABOON :=GIRAFFE;
TEXT:="Hello world!";

Test Input

PROGRAM DEMO1
BEGIN
A:=3;
B:=45;
H:=-100023;
C:=A;
D123:=B34A;
BABOON :=GIRAFFE;
TEXT:="Hello world!';
END.

Test Output

The test input is valid.

—— il e mmw) tmrs u mmre) == 1=r.1

END.

Test Output

Parse error at line 7 , column 13 :

D123:=B34A

A

Expected one of:

A C<=EX<NORNWEEU QN W0W-

https://mdkrajnak.github.io/ebnftest/

ANTLR example

LINKOPINGS UNIVERSITET

Lexer Parser | Sample v] @ Input | sample.expr v @
1 parser grammar ExprParser; 1 f(x,y) {
2 options { tokenVocab=ExprlLexer; } 2 a = 3+foo;
3 3 x and y;
4 program 4}
> : stat EOF
6 | def EOF
/ ;
8
39 stat: ID '=' expr ;'
e | expr ';'
“ ; Start rule @

ey
w N

def : ID '(' ID (',' ID)* ')' '{' stat* '}' ;

[
~

15 expr: ID

16 | INT

7 | func

18 | "not' expr

19 | expr 'and' expr
20 | expr 'or' expr
21 ;

N
N

expr)*)" ;

N
w

func : ID "(" expr (',

TDDD55/TDDEG66, IDA, LiU, 2024

14.8

m Show profiler

Parser console

2:9 token recognition error at: '+
2:10 extraneous input 'foo' expecting ';'

Tree Hierarchy

program:2

N

def:1 <EOF>

e

f(x , vy) { stat:1 stat:2 }

T~ /N

a = expr2 foo ; expr5 ;

| T

3 expr:1 and expr:1

X y

http://lab.antlr.org/
https://www.antlr.org/tools.html

TDDD55 Compilers and Interpreters

TDDEG66 Compiler Construction II.“

LINKOPINGS UNIVERSITET

Part Il

Semantics-Based Generators

IDA, Linkdpings universitet, 2024

RML — Compiler Generation from NS Il-"

LINKOPINGS UNIVERSITET

A Compiler Generation System and Specification Language from Natural
Semantics/Structured Operational Semantics

J Goals

= Efficient code — comparable to hand-written compilers
= Simplicity — simple to learn and use

= Compatibility with “typical natural semantics/operational semantics” and with
Standard ML

 Properties
= Deterministic
= Separation of input and output arguments
= Statically strongly typed
= Polymorphic type inference
= Efficient compilation of pattern-matching
d
= developed around 1999 and used in OpenModelica until 2014-10-25

TDDD55/TDDEG66, IDA, LiU, 2024 14.10

https://www.ida.liu.se/labs/pelab/rml/

Generating an Interpreter Il'“

Generating an Interpreter Implemented in C, using rml2C

Formalism Generator Interpreter Program
tool phase representation
J """""" Text
Regular
= Lex
expressions ——— " Scanner

............ Token sequence

BNF Yace
ey
grammar Parser
J ------------ Abstract syntax
Natural D
rmi2c et o
semantics ——————* Interpreter /
in RML Evaluator
(Interpretive
semantics)

TDDD55/TDDEG66, IDA, LiU, 2024 14.11

Generating a Compiler Il'“

Generating a Compiler Implemented in C, using rmi2C

Formalism Generator Compiler Program
tool phase representation
| """"""" Text
Regular Lex
expressions Scanner
J Token sequence
BNF .
grammar __ Yace | Parser
J -------- ----- Abstract syntax
Natural 12 Se mantics:
semantics ~— _— IMUzC Type checking
in RML Int. form gen.
J ------------- Intermediate form
Optl.leE!‘ Optimix -
specification —————— Optimizer
(or rml2c)

| ------------- Intermediate form

Instruction set . i
description _ BEG | Machine code
generator

------------- Machine code
TDDD55/TDDE66, IDA, LiU, 2024 14.12

https://www.hei.biz/beg/

RML Syntax v

LINKOPINGS UNIVERSITET

d Goal: Eliminate plethora of special symbols usually found in
Natural Semantics/Operational Semantics specifications

0 Software engineering viewpoint: identifiers are more readable
in large specifications

3 A Natural/Operational semantics rule
H1 |- T1 : R1 . . Hn |— Tn : Rn

if <cond>
H|- T :R

3 A typical RML rule

rule NameX (H1 , Tl) = > R1 &
NameY (Hn , Tn) = > Rn &
< cond >
RelationName (H , T) = > R

TDDD55/TDDEG66, IDA, LiU, 2024 14.13

Example: The Exp1 Language Definition Il'u

a Typical expressions PL USop
12+57*3
-5 * (1 O - 4) INTT:onst MULop

12
INTlconst INTlconst

a Abstract syntax (defined in RML)
datatype Exp

S 3

Abstract Syntax Tree of
12 4+ 5*3

= INTconst of int
PLUSop of Exp * Exp
SUBop of Exp * EXxp

|
|
| MULop of Exp * Exp
| DIVop of Exp * Exp
|

NEGop of Exp

TDDD55/TDDEG66, IDA, LiU, 2024 14.14

Example: The Exp1 Evaluator v

(* file expl.rml *) (* Evaluation semantics of Expl *)

lati 1: E => int =
(* Abstract syntax of the language Expl *) retation eva =P H

axiom eval (INTconst(ival)) => ival (* eval of an integer node ¥*)
module expl: (* is the integer itself *)
datatype Exp = INTconst of int
(* Evaluation of an addition node PLUSop is v3, if v3 is the result of
| PLUSoO of Exp * EX
P p* P * adding the evaluated results of its children el and e2
| SUBop of Exp Exp * Subtraction, multiplication, division operators have similar specs.
| MULop of Exp * Exp *)
| DIVop of Exp * Exp
| NEGop of Exp rule eval(el) => vl & eval(e2) => v2 & int add(vl,v2) => v3

relation eval: Exp => int
end

rule eval(el) => vl & eval(e2) => v2 & int sub(vl,v2) => v3

d Evaluation of an addition
node PLUSop is v3, if v3 is |
the result of adding the e st Ty f ey e e

evaluated results of its eval (MULop(el,e2)) => v3
Chlldren e1 and e2 rule eval(el) => vl & eval(e2) =>v2 & int div(vl,v2) => v3

O Subtraction, multiplication, eval(DIVop(el,e2)) > v3
division operators have
similar specifications. rule eval(e) => vl & int_neg(vl) =5 v2

end (* eval *)

TDDD55/TDDEG66, IDA, LiU, 2024 14.15

Lookup in Environments Il'“

relation lookup : (Env , Ident) = > Value =

(* lookup returns the value associated with an identifier.
If no association 1s present, lookup will fail.
Identifier 1d i1s found in the first pair of the list,

and value 1s returned. *)

rule id = 1d?2

lookup ((id2, wvalue) :: , 1d) = > wvalue

(* id is not found in the first pair of the 1list, and lookup will
recursively search the rest of the list. If found, value 1is
returned.*)

rule not id = 1d2 & lookup(rest, id) = > wvalue

lookup ((1d2,) :: rest, 1id) = > value
end

(* NOTE : Searching linked lists 1s slow, no fancy HT in RML *)

TDDD55/TDDEG66, IDA, LiU, 2024 14.16

Translational Semantics of the PAM language

Abstract Syntax to Machine Code

O PAM example program

LOAD

STO
while x <> 99 do ADD

ans := (x+1)-(y/2); SUB
MULT

read x, V;

write ans ; -

read x, Vy GET

PUT
end

JN
Jp
JNZ
JPZ
JNP
LAB
HALT

TDDD55/TDDEG66, IDA, LiU, 2024 14.17

LINKOPINGS UNIVERSITET

O Simple Machine Instruction set

Load accumulator

Store

Add

Subtract
Multiply

Divide

Input a value

Output a wvalue

Jump
Jump
Jump
Jump
Jump
Jump
Label

on
on
on
on
on

(

negative

positive

negative or zero
positive or zero
negative or positive

no operation)

Halt execution

PAM Example Translation

O PAM example program

read x, V;

while x <> 99 do

ans := (x+1)-(y/2);

write ans

read x, V

end

TDDD55/TDDEG66, IDA, LiU, 2024

14.18

LINKOPINGS UNIVERSITET

O Translated machine code

assembly text
GET X STO
GET % LOAD

L1 LAB SUB
LOAD x STO
SUB 99 PUT
iyA L2 GET
LOAD x GET
ADD 1 J
STO T1 L2 LAB
LOAD vy HALT
DIV 2

T2
T1
T2
ans
ans

L1

3 Low level representation tree form

MGET(I(x)
MGET(I(y)
MLABEL(L(1)
MLOAD(I (x)

MB(MSUB,N(99)

MJ(MJZ, L(2)

MLOAD(I (x)
MB (MADD, N (1)
MSTO(T(1)
MLOAD(1 (y)

MB(MDIV,N(2)

— o e — e e~

MSTO (T(2))
MLOAD(T(1))
MB(MSUB, T(2))
MSTO (| (ans))
MPUT (| (ans))
MGET (I (x))
MGET (I (y))
MIMP (L(1))
MLABEL(L(2))
MHALT

Some Applications of RML

LINKOPINGS UNIVERSITET

ad Small functional language with call-by-name semantics (mini-

Freja, a subset of Haskell)

3 Almost full Pascal with some C features (Petrol)

d Mini-ML including type inference

3 Specification of full Java 1.2

a Specification of Modelica 2.0

primes Typol RML Typol/RML
3 13s 0.0026s 5000

4 /2s 0.0037s 19459

5 1130s 0.0063s 179365

Mini-Freja Interpreter performance compared to Centaur/Typol

TDDD55/TDDEG66, IDA, LiU, 2024

14.19

Some Attribute-Grammar Based Tools Il-"

a JastAdd — A meta-compilation system

= Supports Reference Attribute Grammars (RAGSs)
= Modelica tools — Modelon Impact (former JModelica.org)
= Java compiler — ExtendJ

O Ordered Attribute Grammars

- Uwe Kastens, Anthony M. Sloane. Generating Software from
Specifications 2007

= ©Jones and Bartlett Publishers Inc.

TDDD55/TDDEG66, IDA, LiU, 2024 14.20

https://jastadd.org/
http://www.jbpub.com/

TDDD55 Compilers and Interpreters

TDDEG66 Compiler Construction II.“

LINKOPINGS UNIVERSITET

Part Il

Primarily Back-End Frameworks and Generators

IDA, Linkdpings universitet, 2024

LCC (Little C Compiler) Il'“

Not really a generator, but uses IBURG

d Dragon-book style C compiler implementation in C

d Very small (20K Loc), well documented, tested, widely used
3 Open source:

O Textbook: A retargetable C compiler [Fraser, Hanson 1995]

e

contains complete source code Coilinnat .

-

e

A RETARGETABLE [N
‘ e"'f‘ : -.-i. : 01
B 0N
- I. l| I‘I r I|| I

3 Fast, one-pass compiler

TDDD55/TDDEG66, IDA, LiU, 2024 14.22

http://www.cs.princeton.edu/software/lcc

LLC (Little C Compiler) hv

a C frontend (hand-crafted scanner and recursive descent parser)
with own C preprocessor

d Low-level IR

= Basic-block graph containing DAGs of quadruples
= No AST

a Interface to IBURG code generator-generator

O Example code generators for MIPS, SPARC, Alpha, x86 processors
d Tree pattern matching + dynamic programming

O Few optimizations

= |local common subexpression elimination
= constant folding

O Good choice for source-to-target compiling if a quick prototype is
needed

TDDD55/TDDEG66, IDA, LiU, 2024 14.23

GCC - not a generator, but widely used v

LINKOPINGS UNIVERSITET

a0 Gnu Compiler Collection (earlier: Gnu C Compiler)

3 Compilers for C, C++, Fortran, Java, Objective-C, Ada, and more
= sometimes with own extensions, e.g. Gnu-C

A Open-source, developed since 1985
3 Quite large (GCC 6.2.0 tarball is 835 MB)

a 3 IR formats (all language independent)
= GENERIC: tree representation for whole function (also statements)

= GIMPLE (simple version of GENERIC for optimizations) based on trees
but expressions in quadruple form. High-level, low-level and SSA-low-
level form.

- RTL (Register Transfer Language, low-level, Lisp-like) (the traditional
GCC-IR) only word-sized data types; stack explicit; statement scope

O Many optimizations

TDDD55/TDDEG66, IDA, LiU, 2024 14.24

https://gcc.gnu.org/

GCC - not a generator, but widely used Il'"

a Currently at version 14.2

O Since version 4.x (2004) has strong support for retargetable code
generation

= Machine description in .md file
= Reservation tables for instruction scheduler generation

O Many target architectures

= Note: GCC is not a cross-compiling compiler and does not include a
linker. It compiles code for a set of languages, but only targets a single
target platform. If you want to cross-compile code, you need to compile
a linker and GCC targeting this platform (you have one GCC and linker
toolchain installed for each target platform).

O Good choice if one has the time to get into the framework (and what
you want is a compiler, not a development environment).

O Note: a new version numbering where 5.2 is really 4.10.2 and 6.0 is
really 4.11.0 (in the old version numbering scheme).

TDDD55/TDDEG66, IDA, LiU, 2024 14.25

LLVM - The LLVM Compiler Infrastructure Project

Official LLVM dragon logotype. Inspired by the
course book. Dragons, like LLVM, are powerful.

LLVM != “Low-Level Virtual Machine”

TDDD55/TDDEG66, IDA, LiU, 2024 14.26

https://llvm.org/

LINKOPINGS UNIVERSITET

LLVM - The LLVM Compiler Infrastructure Project

a “Low-level virtual machine”, IR. LLVM is a backend framework.

O Mainly accessed through an APl and is suitable for integration in an
IDE (such as Apple’s XCode).

A Also comes with command-line tools, which can manipulate its IR
(LLVM bitcode), including optimizing bitcode to produce an
optimized bitcode file or generating an executable from bitcode.

d It includes:

= Front-ends for C/C++/ObjC/OpenMP (clang), can use GCC as a
frontend (dragonegg),

= A debugger (11db). ;/aLLVM

= A C++ standard library. V"QFNEHETPHLIJCLTUEHE
= An experimental linker (114d).
O Third parties add more frontends, for example the Julia language.

TDDD55/TDDEG66, IDA, LiU, 2024 14.27

)

=l O MPILER
= rting 1. U
LINKOPINGS UNIVERSITET

LLVM - The LLVM Compiler Infrastructure Project

ad Compiles to several target platforms (see 11c¢ --version)

= LLVM is a cross-compiling compiler.

= You only need one copy of LLVM installed to generate code for
all supported platforms.

= You probably still need a linker for the target installed (11d is
limited).

= You will also need platform-specific headers for the compiler
frontend and platform-specific libraries to link against.

3 Open source (BSD-license), originally developed at Univ. of
lllinois at Urbana Champaign.

3 Note: Microsoft’s Visual Studio can use clang as a front-end
but uses their own backend and optimizations instead of
LLVM.

TDDD55/TDDEG66, IDA, LiU, 2024 14.28

Open64 /| ORC Open Research Compiler Framework Il’u

O Based on SGI Pro-64 Compiler for MIPS processor, written in C++,
went open source in 2000. Discontinued in 2011. Forked by Nvidia
for optimizing CUDA code.

O Several tracks of development (Open64, ORC, ...)

a For Intel Itanium (IA-64) and x86 (IA-32) processors. Also
retargeted to x86-64, Ceva DSP, Tensilica, XScale, ARM, ...
“simple to retarget” (?)

d Languages: C, C++, Fortran95 (uses GCC as frontend), OpenMP
and UPC (for parallel programming)

a Industrial strength, with contributions from Intel, Pathscale, ...
3 Open source:

a 6-layer IR:
- WHIRL (VH, H, M, L, VL) — 5 levels of abstraction
» All levels semantically equivalent
» Each level is a lower-level subset of the higher form
= and target-specific very low-level CGIR

TDDD55/TDDEG66, IDA, LiU, 2024 14.29

https://github.com/open64-compiler/open64

ORC: Flow of IR v

C, C++ F95
1 1 fré)gt(-:ends
(GCC)
VHO . Very High WHIRL
standalone inliner AST
() Lower aggregates

l\ Un-nest calls

High WHIRL Lower arrays

: Lower complex numbers
l Lower HL control flow
Lower bit-fields

PREOPT
LNO (Loop nest optimizer)

IPA (interprocedural analysisl)

WOPT (global optimizer, Mid WHIRL

uses internally an SSA IR) Lower intrinsic ops to calls
RVI1 (register variable All data mapped to segments
identification) Lower loads/stores to final form

RVI2 Expose code sequences for
constants, addresses
Loiw WHIRL Expose #(gp) addr. for globals

CG
Very Low WHIRL
l code generation, including
CG scheduling, profiling support,
CGIR predication, SW speculation

TDDD55/TDDEG66, IDA, LiU, 2024 14.30

Open64 /| ORC Open Research Compiler Il-"

d Multi-level IR
= Translation by lowering

- (@ Analysis / Optimization engines can work on the most
appropriate level of abstraction

- (@) Clean separation of compiler phases
- (& Framework gets larger and slower

ad Many optimizations, many third-party contributed components

TDDD55/TDDEG66, IDA, LiU, 2024 14.31

CoSy — commercial compiler framework II'“

O A commercial compiler framework primarily focused on backends
O CoSy is a registered trademark of ACE Associated Computer Experts bv

https://www.ace.nl

TDDD55/TDDEG66, IDA, LiU, 2024 14.32

https://www.ace.nl/

CoSy - features Il'"

d For the C family of languages, aimed at the embedded market

d Single IR, control flow based

= |IR is generated from a distributed description: every ‘engine’ can
extend the IR with data structures

d More modular than any other compiler framework

O Extensible and flexible

= Fixed point, arbitrary primitive data types, multiple memories,
processor specific extensions

d Generated code generator

= Supports VLIW, non-interlocked architectures, predicated
execution, software pipelining, hardware loops, ...

TDDD55/TDDEG66, IDA, LiU, 2024 14.33

Traditional Compiler Structure Il'"

3 Traditional compiler model: sequential process

ext tokens tree|gemant.l IR . 1R Jcode . COd,e
Lexer *—-‘ Parser HAnalysis Optimizer generator

a Improvement: Pipelining (by files/modules, classes, functions)

Coordination

Symbol table
data fli)w —

Parser Semant. Optimizer Code code
. Analysis - P generator

Intermediate representation (IR)
More modern compiler model with shared symbol table and IR

ext
Lexer

Data fetch/store

TDDD55/TDDEG66, IDA, LiU, 2024 14.34

A CoSy Compiler with Repository Architecture Il'u

“Engines” :
(compiler tasks, Semantic Transformation
phases) analysis
Parser
Optimizer

Lexer

Codegen

“Blackboard architecture”

TDDD55/TDDEG66, IDA, LiU, 2024 14.35

CoSy - Engine Il'"

3 Modular compiler building block
a Performs a well-defined task
d Focus on algorithms, not compiler configuration

O Parameters are handles on the underlying common IR
repository

O Execution may be in a separate process or as subroutine call
= the engine writer does not know!

d View of an engine class: the part of the common IR repository
that it can access (scope set by access rights: read, write,
create)

d Examples: Analyzers, Lowerers, Optimizers, Translators,
Support

TDDD55/TDDEG66, IDA, LiU, 2024 14.36

CoSy — Composite Engines Il'"

3 Built from simple engines or from other composite engines by
combining engines in interaction schemes

= Loop, Pipeline, Fork, Parallel, Speculative,
d Described in EDL (Engine Description Language)
d View defined by the joint effect of constituent engines
a A compiler is nothing more than a large composite engine

ENGINE CLASS compiler (IN u : mirUNIT) {
PIPELINE
frontend (u)
optimizer (u)
backend (u)

}

TDDD55/TDDEG66, IDA, LiU, 2024 14.37

A CoSy Compiler Il'“

Optirlnizer

Parser Logical view

\

A
\\Generated Factory

>
NG
‘ / 4 Generated
access layer

Optiﬂﬂzer

Logical view

K

TDDD55/TDDEG66, IDA, LiU, 2024 14.38

Composite Engines in CoSy

Component classes (engine class)
Component instances (engines)
Basic components are implemented in C

O 0 0 O

Interaction schemes (cf. skeletons) form
complex connectors

= SEQUENTIAL
= PIPELINE
= DATAPARALLEL
= SPECULATIVE
O EDL can embed automatically
= Single-call-components into pipes
= p<> means a stream of p-items

= EDL can map their protocols to each
other (p vs p<>)

TDDD55/TDDEG66, IDA, LiU, 2024 14.39

LINKOPINGS UNIVERSITET

ENGINE CLASS optimizer (procedure p)
{
ControlFlowAnalyser cfa;
CommonSubExprEliminator cse;
LoopVariableSimplifier 1lvs;
PIPELINE
ctfa (p);
cse ((p);
lvs (p)>

ENGINE CLASS compiler (file f)
{

Token token;

Module m;

PIPELINE

// lexer takes file, delivers token stream
lexer (IN f, OUT token <>);

// Parser delivers a module

parser (IN token <>, OUT m) ;

sema (m);

decompose (m, p <>) ;

// here comes a stream of procedures
// from the module

optimizer (p <>) ;

backend (p <>) ;

Evaluation of CoSy Il'"

d The outer call layers of the compiler are generated from view
description specifications

= Adapter, coordination, communication, encapsulation
= Sequential and parallel implementation can be exchanged

= There is also a non-commercial prototype [Martin Alt: On
Parallel Compilation. PhD thesis, 1997, Univ. Saarbricken]

O Access layer to the repository must be efficient (solved by
generation of macros)

O Because of views, a CoSy-compiler is very easily extensible
= That's why it was expensive
= Reconfiguration of a compiler within an hour

TDDD55/TDDEG66, IDA, LiU, 2024 14.40

TDDD55 Compilers and Interpreters

TDDEG66 Compiler Construction II.“

LINKOPINGS UNIVERSITET

Part IV

More Frameworks

IDA, Linkdpings universitet, 2024

More Frameworks ... Il'"

a Cetus
= C/C++ source-to-source compiler written in Java.

= Open source

d Tools and generators
= TXL source-to-source transformation system
= ANTLR frontend generator

= Xtext open-source software framework for developing
programming languages and DSLs

» generates not only a parser, but also a class model for the abstract
syntax tree, as well as providing a fully featured, customizable
Eclipse-based IDE.

TDDD55/TDDEG66, IDA, LiU, 2024 14.42

http://cobweb.ecn.purdue.edu/ParaMount/Cetus/

More Frameworks ... h.v

LINKOPINGS UNIVERSITET

O Some influential frameworks of the 1990s
= SUIF Stanford university intermediate format,
= Trimaran (for instruction-level parallel processors)
= Polaris (Fortran) UIUC
- Jikes RVM (Java) IBM
= Soot (Java)
= GMD Toolbox / Cocolab Cocktail™ compiler generation tool suite
= and many others ...

a0 And many more for the embedded domain ...

TDDD55/TDDEG66, IDA, LiU, 2024 14.43

https://suif.stanford.edu/
http://www.trimaran.org/

Continue the journey? Il'"

II Now this is not the end.
It is not even the beginning of the end. ’ ’
But it is, perhaps, the end of the beginning.
W. Churchill

d Do you like compiler technology? Learn more?
3 Advanced Compiler Construction 9 hp (PhD-level)
d Thesis project (exjobb) at PELAB, 30/15/16 hp

d For more software engineering:

- TDDE41 Software Architectures, 6 hp (VT), replaces
component-based software

- TDDEA45 Software Design and Construction, 6 hp (HT), replaces
Design Patterns

- TDDEA46 Software Quality, 6 hp (VT)

TDDD55/TDDEG66, IDA, LiU, 2024 14.44

TDDD55 Compilers and Interpreters

TDDEG66 Compiler Construction II.“
LINKOPINGS UNIVERSITET

Bootstrapping of a Compiler

Optional Material

IDA, Linkdpings universitet, 2024

How to Implement a Compiler Il'"

d Implement your compiler in an existing language (easy).
3 Writing your compiler in the language it is trying to compile
itself (bootstrapping):

- @ Another compiler already exists, with binaries for your build
architecture.

- (® Another compiler already exists, but no binaries for your
build architecture (only 32-bit; your system is 64-bit; cross-
compiling + bootstrapping).

- (& No other compiler exists.

TDDD55/TDDEG66, IDA, LiU, 2024 14.46

Example: Origins of C

O Started as the language B, a simple
dialect of BCPL.

O The B compiler was implemented in

TMG, a language for writing a compiler,

itself written in PDP-7 assembler.

O The B compiler was then rewritten in B
itself and compiled using the TMG
version of the B compiler.

O The B compiler was then tweaked into

“New B”, and eventually became the C

language and compiler.

TDDD55/TDDEG66, IDA, LiU, 2024 14.47

LINKOPINGS UNIVERSITET

SECOND EDITION

I q

PROGRAMMING
LANGUAGE

BRIAN W KERNIGHAN

DENNIS M.RITCHIE

PRENTICE HALL SOFTWARE SERIES

Bootstrapping Language x: Alternatives Il'"

Notation: *C2 , a compiler C written in the language x which compiles the
source language k into the object language o.

d Implement a small, stupid compiler for x_subset in another language v,

. _ k ~native,unoptimized
producing native executables. This compileris A ="C, ¢ oo).

O Write a compiler in x_subset that can compile x_subset into C-code.

Bootstrap your compiler using A;. Then we get a compiler A, =

x_subsetCC—code
xX_subset-

O Keep a tarball of translated C-code that produces an x_subset compiler.

Compile this old, basic version of the compiler (A; =
x_subset Cnative,unop timized

c generated by A,).

L

Write an interpreter for x_subset . Feed it your compiler as input, ... (A;)

Or keep a tarball of bytecode for x that you can interpret. (A5 =
x_subsetCnative,unop timized)
bytecode

a Interpret x code with a human in the loop, being fed your compiler as input.
(Ae)

L

TDDD55/TDDEG66, IDA, LiU, 2024 14.48

Bootstrapping Language x: Step 2 Il'"

B= X Cnative,unoptimized)

O Compile a (subset) version of your compiler (x_subset

using this other compiler (A,).

= This version might be incomplete (optimization modules disabled, etc.,
that A, does not support).

0 Compile a full version of your compiler (C = *C2%tve) using (B =
anative,unoptimized)
Xx_subset :

0 Compile an optimized, full version of your compiler (D = *C}at'v¢) ysing (C
= Xcnpative) targeting (possibly cross-compiling) your host platform.

TDDD55/TDDEG66, IDA, LiU, 2024 14.49

Rationale Il'“

3 It is a proof that your language is powerful enough to do
something useful.

3 Why should | use your programming language if you yourself
use C?

3 Only need to learn one language to be a compiler developer.

a Improving the performance for the language also improves
the performance of the compiler.

TDDD55/TDDEG66, IDA, LiU, 2024 14.50

OpenModelica Bootstrapping History (1) Il-"

O Implementation of a Modelica compiler using rml2c

a Design of an early MetaModelica language version as an extended
subset of Modelica, spring 2005.

a Implementation of a MetaModelica Compiler (MMC) which
translates MetaModelica into RML intermediate form, spring-fall
2005.

O Automatically translating the whole OpenModelica compiler, 60 000
lines, from RML to MetaModelica.

a In parallel, developing MDT (Modelica Development Tooling),
including debugger for MMC, 2005-2000.

O Switching to using this MetaModelica 1.0, the MMC compiler, and
MDT for the OpenModelica compiler development, at that time 3-4
full-time developers. Fall 2006.

O Preliminary implementation of pattern-matching and exception
handling in the OpenModelica compiler, to enable future
bootstrapping. Spring-fall 2008.

TDDD55/TDDEG66, IDA, LiU, 2024 14.51

OpenModelica Bootstrapping History (2) Il-"

A Continuation of the work on better support for pattern-matching
compilation, support for lists, tuples, records (uniontypes), etc. in
OpenModelica. Spring-fall 2009.

a Implementation of higher-order functions (used in MetaModelica),
also in OpenModelica. Fall 2009, spring 2010.

O The bootstrapped compiler supporting most of MetaModelica 2.0,
which includes standard Modelica. Fall 2010, spring 2011.

O Adding garbage collection. Fall 2012.

O Improving the build system, parallel builds. Reaching full testsuite
coverage, good performance, and running the tests nightly. 2013.

3 Removing support for MMC.

a Further adding, enhancing, and redesigning MetaModelica
language features, based on usage experience, the Modelica
design effort, and inspiration from functional languages and
:canguages. Refactoring parts of the compiler to use the enhanced
eatures.

TDDD55/TDDEG66, IDA, LiU, 2024 14.52

OpenModelica Bootstrapping Il'"

O Start with a tarball of source-code (only code necessary for
bootstrapping)

O This source-code was at one time generated by OMC compiled with
RML/MMC.

ad At some point, OMC was able to generate its own tarball.

3 Then support for RML/MMC was dropped and new language
features added to OMC (that RML/MMC did not support).

O At a later time, these new language features were used in the
compiler itself (and a new tarball was generated).

a Parts of the compiler that are not used during bootstrapping can
use new language features before a new tarball is generated.

a ...

TDDD55/TDDEG66, IDA, LiU, 2024 14.53

https://github.com/OpenModelica/OMBootstrapping

OpenModelica Cross-Compiling (ARM host, x86 I
build) I'u

O Start with a tarball of source-code:

O Bootstrap the x86 version of OpenModelica, save this somewhere.
Make clean.

d ./configure -with-omc=path/to/x86/omc

O Cross-compile the ARM version of OpenModelica using the x86
version of OMC to produce code.

O Note: OMC generates C-code, so you need a cross-compiler tool-
chain installed.

a For gcc, a similar approach is used, but you then use the regular
gcc to compile a version of gcc that runs on x86 but produces ARM
executables (including assemblers and linkers).

a clang (LLVM) is able to produce assembly for multiple targets using
the same compiler (but it does not integrate assemblers, linkers, or
C++ run-times for these targets, so you usually need to install a gcc
cross-compilation tool-chain anyway).

TDDD55/TDDEG66, IDA, LiU, 2024 14.54

https://github.com/OpenModelica/OMBootstrapping

Thank you!

d Any questions?

d This Week

- TDDEG66 & TDDD55
» Last Seminar: Exam preparation

TDDD55/TDDEG66, IDA, LiU, 2024 14.55

	Compiler Frameworks �and �Compiler Generators
	Overview
	Part I
	Grammar analysis tool (I)
	Grammar analysis tool (II)
	Syntax-Based Generators
	EBNF Evaluator
	ANTLR example
	Part II
	RML – Compiler Generation from NS
	Generating an Interpreter
	Generating a Compiler
	RML Syntax
	Example: The Exp1 Language Definition
	Example: The Exp1 Evaluator
	Lookup in Environments
	Translational Semantics of the PAM language �Abstract Syntax to Machine Code
	PAM Example Translation
	Some Applications of RML
	Some Attribute-Grammar Based Tools
	Part III
	LCC (Little C Compiler)
	LLC (Little C Compiler)
	GCC – not a generator, but widely used
	GCC – not a generator, but widely used
	LLVM - The LLVM Compiler Infrastructure Project
	LLVM - The LLVM Compiler Infrastructure Project
	LLVM - The LLVM Compiler Infrastructure Project
	Open64 / ORC Open Research Compiler Framework
	ORC: Flow of IR
	Open64 / ORC Open Research Compiler
	CoSy – commercial compiler framework
	CoSy - features
	Traditional Compiler Structure
	A CoSy Compiler with Repository Architecture
	CoSy – Engine
	CoSy – Composite Engines
	A CoSy Compiler
	Composite Engines in CoSy
	Evaluation of CoSy
	Part IV
	More Frameworks …
	More Frameworks …
	Continue the journey?
	Bootstrapping of a Compiler
	How to Implement a Compiler
	Example: Origins of C
	Bootstrapping Language x: Alternatives
	Bootstrapping Language x: Step 2
	Rationale
	OpenModelica Bootstrapping History (1)
	OpenModelica Bootstrapping History (2)
	OpenModelica Bootstrapping
	OpenModelica Cross-Compiling (ARM host, x86 build)
	Thank you!

