
TDDD55 Compilers and Interpreters

TDDE66 Compiler Construction

IDA, Linköpings universitet, 2024

Compiler Frameworks
and

Compiler Generators

A (non-exhaustive) survey
with a focus on open-source

frameworks

14.2TDDD55/TDDE66, IDA, LiU, 2024

Overview

 Part I – Syntax-Based Generators

 Part II – Semantics-Based Generators

 Part III – Primarily Back-End Frameworks and Generators

 Part IV – More Frameworks

TDDD55 Compilers and Interpreters

TDDE66 Compiler Construction

IDA, Linköpings universitet, 2024

Part I

Syntax-Based Generators

14.4TDDD55/TDDE66, IDA, LiU, 2024

Grammar analysis tool (I)
https://smlweb.cpsc.ucalgary.ca/start.html

https://smlweb.cpsc.ucalgary.ca/start.html

14.5TDDD55/TDDE66, IDA, LiU, 2024

Grammar analysis tool (II)

The grammar is not LR(0) because
 shift/reduce conflict in state 1.
 shift/reduce conflict in state 5.
 shift/reduce conflict in state 10.

The grammar is not SLR(1) because
 shift/reduce conflict in state 5.
 shift/reduce conflict in state 10.

https://smlweb.cpsc.ucalgary.ca/start.html

https://smlweb.cpsc.ucalgary.ca/start.html

14.6TDDD55/TDDE66, IDA, LiU, 2024

Syntax-Based Generators
 Lex and Flex – generate lexical analyzers.

 Clones and/or open-source alternatives exist for many programming
languages. Wikipedia has a reasonable overview.

 Yacc and Bison – generate parsers
 Can be used for syntax-directed translation
 Usually syntax-directed translation is not used (if the compilation is not

completely driven by the parser, it is something else)
 Does not generate semantic analysis, intermediate code, optimization,

or code generation
 YACC/Bison produces parsers that are bad at error management

 Very many alternatives exist, with the grammar specification either
using an API in the programming language, EBNF, or something
else. Many parser generators (such as ANTLR) allow the user to
adapt the error handling routines. Some also have IDE’s that make
debugging your grammar easier.

 https://en.wikipedia.org/wiki/Comparison_of_parser_generators

https://en.wikipedia.org/wiki/Comparison_of_parser_generators

14.7TDDD55/TDDE66, IDA, LiU, 2024

EBNF Evaluator
https://mdkrajnak.github.io/ebnftest/

https://mdkrajnak.github.io/ebnftest/

14.8TDDD55/TDDE66, IDA, LiU, 2024

ANTLR example http://lab.antlr.org/
https://www.antlr.org/tools.html

http://lab.antlr.org/
https://www.antlr.org/tools.html

TDDD55 Compilers and Interpreters

TDDE66 Compiler Construction

IDA, Linköpings universitet, 2024

Part II

Semantics-Based Generators

14.10TDDD55/TDDE66, IDA, LiU, 2024

RML – Compiler Generation from NS
A Compiler Generation System and Specification Language from Natural
Semantics/Structured Operational Semantics

 Goals
 Efficient code – comparable to hand-written compilers

 Simplicity – simple to learn and use

 Compatibility with “typical natural semantics/operational semantics” and with
Standard ML

 Properties
 Deterministic

 Separation of input and output arguments

 Statically strongly typed

 Polymorphic type inference

 Efficient compilation of pattern-matching

 https://www.ida.liu.se/labs/pelab/rml/
 developed around 1999 and used in OpenModelica until 2014-10-25

https://www.ida.liu.se/labs/pelab/rml/

14.11TDDD55/TDDE66, IDA, LiU, 2024

Generating an Interpreter
Generating an Interpreter Implemented in C, using rml2C

14.12TDDD55/TDDE66, IDA, LiU, 2024

Generating a Compiler
Generating a Compiler Implemented in C, using rml2C

https://www.hei.biz/beg/

https://www.hei.biz/beg/

14.13TDDD55/TDDE66, IDA, LiU, 2024

RML Syntax

 Goal: Eliminate plethora of special symbols usually found in
Natural Semantics/Operational Semantics specifications

 Software engineering viewpoint: identifiers are more readable
in large specifications

 A Natural/Operational semantics rule

 A typical RML rule
rule NameX (H1 , T1) = > R1 &

. . .

NameY (Hn , Tn) = > Rn &

< cond >

RelationName (H , T) = > R

14.14TDDD55/TDDE66, IDA, LiU, 2024

Example: The Exp1 Language Definition

 Typical expressions
12 + 5 * 3
-5 * (10 - 4)

 Abstract syntax (defined in RML)
datatype Exp

= INTconst of int

| PLUSop of Exp * Exp

| SUBop of Exp * Exp

| MULop of Exp * Exp

| DIVop of Exp * Exp

| NEGop of Exp

Abstract Syntax Tree of
12 + 5*3

14.15TDDD55/TDDE66, IDA, LiU, 2024

Example: The Exp1 Evaluator
(* file exp1.rml *)

(* Abstract syntax of the language Exp1 *)

module exp1:
 datatype Exp = INTconst of int
 | PLUSop of Exp * Exp
 | SUBop of Exp * Exp
 | MULop of Exp * Exp
 | DIVop of Exp * Exp
 | NEGop of Exp
 relation eval: Exp => int
end

 Evaluation of an addition
node PLUSop is v3, if v3 is
the result of adding the
evaluated results of its
children e1 and e2.

 Subtraction, multiplication,
division operators have
similar specifications.

(* Evaluation semantics of Exp1 *)

relation eval: Exp => int =

 axiom eval(INTconst(ival)) => ival (* eval of an integer node *)
 (* is the integer itself *)

 (* Evaluation of an addition node PLUSop is v3, if v3 is the result of
 * adding the evaluated results of its children e1 and e2
 * Subtraction, multiplication, division operators have similar specs.
 *)

 rule eval(e1) => v1 & eval(e2) => v2 & int_add(v1,v2) => v3
 --
 eval(PLUSop(e1,e2)) => v3

 rule eval(e1) => v1 & eval(e2) => v2 & int_sub(v1,v2) => v3
 --
 eval(SUBop(e1,e2)) => v3

 rule eval(e1) => v1 & eval(e2) => v2 & int_mul(v1,v2) => v3
 --
 eval(MULop(e1,e2)) => v3

 rule eval(e1) => v1 & eval(e2) => v2 & int_div(v1,v2) => v3
 --
 eval(DIVop(e1,e2)) => v3

 rule eval(e) => v1 & int_neg(v1) => v2

 eval(NEGop(e)) => v2

end (* eval *)

14.16TDDD55/TDDE66, IDA, LiU, 2024

Lookup in Environments
relation lookup : (Env , Ident) = > Value =

(* lookup returns the value associated with an identifier.
If no association is present, lookup will fail.
Identifier id is found in the first pair of the list,
and value is returned. *)

rule id = id2

lookup((id2, value) :: _, id) = > value

(* id is not found in the first pair of the list, and lookup will
recursively search the rest of the list. If found, value is
returned.*)

rule not id = id2 & lookup(rest, id) = > value

lookup((id2, _) :: rest, id) = > value

end

(* NOTE : Searching linked lists is slow, no fancy HT in RML *)

14.17TDDD55/TDDE66, IDA, LiU, 2024

Translational Semantics of the PAM language
Abstract Syntax to Machine Code

 PAM example program

read x, y;

while x <> 99 do

ans := (x+1)-(y/2);

write ans ;

read x, y

end

 Simple Machine Instruction set

LOAD Load accumulator

STO Store

ADD Add

SUB Subtract

MULT Multiply

DIV Divide

GET Input a value

PUT Output a value

J Jump

JN Jump on negative

JP Jump on positive

JNZ Jump on negative or zero

JPZ Jump on positive or zero

JNP Jump on negative or positive

LAB Label (no operation)

HALT Halt execution

14.18TDDD55/TDDE66, IDA, LiU, 2024

PAM Example Translation

 PAM example program

read x, y;

while x <> 99 do

ans := (x+1)-(y/2);

write ans ;

read x, y

end

 Translated machine code
assembly text

 Low level representation tree form

14.19TDDD55/TDDE66, IDA, LiU, 2024

Some Applications of RML
 Small functional language with call-by-name semantics (mini-

Freja, a subset of Haskell)
 Almost full Pascal with some C features (Petrol)
 Mini-ML including type inference
 Specification of full Java 1.2
 Specification of Modelica 2.0

Mini-Freja Interpreter performance compared to Centaur/Typol

14.20TDDD55/TDDE66, IDA, LiU, 2024

Some Attribute-Grammar Based Tools

 JastAdd – A meta-compilation system
 https://jastadd.org
 Supports Reference Attribute Grammars (RAGs)
 Modelica tools – Modelon Impact (former JModelica.org)
 Java compiler – ExtendJ

 Ordered Attribute Grammars
 Uwe Kastens, Anthony M. Sloane. Generating Software from

Specifications 2007
 ©Jones and Bartlett Publishers Inc. www.jbpub.com

https://jastadd.org/
http://www.jbpub.com/

TDDD55 Compilers and Interpreters

TDDE66 Compiler Construction

IDA, Linköpings universitet, 2024

Part III

Primarily Back-End Frameworks and Generators

14.22TDDD55/TDDE66, IDA, LiU, 2024

LCC (Little C Compiler)
Not really a generator, but uses IBURG
 Dragon-book style C compiler implementation in C
 Very small (20K Loc), well documented, tested, widely used
 Open source: http://www.cs.princeton.edu/software/lcc
 Textbook: A retargetable C compiler [Fraser, Hanson 1995]

contains complete source code
 Fast, one-pass compiler

http://www.cs.princeton.edu/software/lcc

14.23TDDD55/TDDE66, IDA, LiU, 2024

LLC (Little C Compiler)
 C frontend (hand-crafted scanner and recursive descent parser)

with own C preprocessor
 Low-level IR

 Basic-block graph containing DAGs of quadruples
 No AST

 Interface to IBURG code generator-generator
 Example code generators for MIPS, SPARC, Alpha, x86 processors
 Tree pattern matching + dynamic programming
 Few optimizations

 local common subexpression elimination
 constant folding

 Good choice for source-to-target compiling if a quick prototype is
needed

14.24TDDD55/TDDE66, IDA, LiU, 2024

 Gnu Compiler Collection (earlier: Gnu C Compiler)
https://gcc.gnu.org/

 Compilers for C, C++, Fortran, Java, Objective-C, Ada, and more
 sometimes with own extensions, e.g. Gnu-C

 Open-source, developed since 1985
 Quite large (GCC 6.2.0 tarball is 835 MB)
 3 IR formats (all language independent)

 GENERIC: tree representation for whole function (also statements)
 GIMPLE (simple version of GENERIC for optimizations) based on trees

but expressions in quadruple form. High-level, low-level and SSA-low-
level form.

 RTL (Register Transfer Language, low-level, Lisp-like) (the traditional
GCC-IR) only word-sized data types; stack explicit; statement scope

 Many optimizations

GCC – not a generator, but widely used

https://gcc.gnu.org/

14.25TDDD55/TDDE66, IDA, LiU, 2024

GCC – not a generator, but widely used
 Currently at version 14.2
 Since version 4.x (2004) has strong support for retargetable code

generation
 Machine description in .md file
 Reservation tables for instruction scheduler generation

 Many target architectures
 Note: GCC is not a cross-compiling compiler and does not include a

linker. It compiles code for a set of languages, but only targets a single
target platform. If you want to cross-compile code, you need to compile
a linker and GCC targeting this platform (you have one GCC and linker
toolchain installed for each target platform).

 Good choice if one has the time to get into the framework (and what
you want is a compiler, not a development environment).

 Note: a new version numbering where 5.2 is really 4.10.2 and 6.0 is
really 4.11.0 (in the old version numbering scheme).

14.26TDDD55/TDDE66, IDA, LiU, 2024

LLVM - The LLVM Compiler Infrastructure Project

Official LLVM dragon logotype. Inspired by the
course book. Dragons, like LLVM, are powerful.

https://llvm.org/

LLVM != “Low-Level Virtual Machine”

https://llvm.org/

14.27TDDD55/TDDE66, IDA, LiU, 2024

LLVM - The LLVM Compiler Infrastructure Project

 “Low-level virtual machine”, IR. LLVM is a backend framework.
 Mainly accessed through an API and is suitable for integration in an

IDE (such as Apple’s XCode).
 Also comes with command-line tools, which can manipulate its IR

(LLVM bitcode), including optimizing bitcode to produce an
optimized bitcode file or generating an executable from bitcode.

 It includes:
 Front-ends for C/C++/ObjC/OpenMP (clang), can use GCC as a

frontend (dragonegg),
 A debugger (lldb).
 A C++ standard library.
 An experimental linker (lld).

 Third parties add more frontends, for example the Julia language.

14.28TDDD55/TDDE66, IDA, LiU, 2024

LLVM - The LLVM Compiler Infrastructure Project

 Compiles to several target platforms (see llc --version)
 LLVM is a cross-compiling compiler.
 You only need one copy of LLVM installed to generate code for

all supported platforms.
 You probably still need a linker for the target installed (lld is

limited).
 You will also need platform-specific headers for the compiler

frontend and platform-specific libraries to link against.

 Open source (BSD-license), originally developed at Univ. of
Illinois at Urbana Champaign.

 Note: Microsoft’s Visual Studio can use clang as a front-end
but uses their own backend and optimizations instead of
LLVM.

14.29TDDD55/TDDE66, IDA, LiU, 2024

Open64 / ORC Open Research Compiler Framework

 Based on SGI Pro-64 Compiler for MIPS processor, written in C++,
went open source in 2000. Discontinued in 2011. Forked by Nvidia
for optimizing CUDA code.

 Several tracks of development (Open64, ORC, ...)
 For Intel Itanium (IA-64) and x86 (IA-32) processors. Also

retargeted to x86-64, Ceva DSP, Tensilica, XScale, ARM, ...
“simple to retarget” (?)

 Languages: C, C++, Fortran95 (uses GCC as frontend), OpenMP
and UPC (for parallel programming)

 Industrial strength, with contributions from Intel, Pathscale, ...
 Open source: https://github.com/open64-compiler/open64
 6-layer IR:

 WHIRL (VH, H, M, L, VL) – 5 levels of abstraction
All levels semantically equivalent
Each level is a lower-level subset of the higher form

 and target-specific very low-level CGIR

https://github.com/open64-compiler/open64

14.30TDDD55/TDDE66, IDA, LiU, 2024

ORC: Flow of IR

14.31TDDD55/TDDE66, IDA, LiU, 2024

Open64 / ORC Open Research Compiler

 Multi-level IR
 Translation by lowering
 Analysis / Optimization engines can work on the most

appropriate level of abstraction
 Clean separation of compiler phases
 Framework gets larger and slower

 Many optimizations, many third-party contributed components

14.32TDDD55/TDDE66, IDA, LiU, 2024

CoSy – commercial compiler framework
 A commercial compiler framework primarily focused on backends
 CoSy is a registered trademark of ACE Associated Computer Experts bv

https://www.ace.nl

https://www.ace.nl/

14.33TDDD55/TDDE66, IDA, LiU, 2024

CoSy - features
 For the C family of languages, aimed at the embedded market
 Single IR, control flow based

 IR is generated from a distributed description: every ‘engine’ can
extend the IR with data structures

 More modular than any other compiler framework
 Extensible and flexible

 Fixed point, arbitrary primitive data types, multiple memories,
processor specific extensions

 Generated code generator
 Supports VLIW, non-interlocked architectures, predicated

execution, software pipelining, hardware loops, …

14.34TDDD55/TDDE66, IDA, LiU, 2024

Traditional Compiler Structure
 Traditional compiler model: sequential process

 Improvement: Pipelining (by files/modules, classes, functions)

More modern compiler model with shared symbol table and IR

14.35TDDD55/TDDE66, IDA, LiU, 2024

A CoSy Compiler with Repository Architecture

14.36TDDD55/TDDE66, IDA, LiU, 2024

CoSy – Engine
 Modular compiler building block
 Performs a well-defined task
 Focus on algorithms, not compiler configuration
 Parameters are handles on the underlying common IR

repository
 Execution may be in a separate process or as subroutine call

 the engine writer does not know!

 View of an engine class: the part of the common IR repository
that it can access (scope set by access rights: read, write,
create)

 Examples: Analyzers, Lowerers, Optimizers, Translators,
Support

14.37TDDD55/TDDE66, IDA, LiU, 2024

CoSy – Composite Engines
 Built from simple engines or from other composite engines by

combining engines in interaction schemes
 Loop, Pipeline, Fork, Parallel, Speculative, ….

 Described in EDL (Engine Description Language)
 View defined by the joint effect of constituent engines
 A compiler is nothing more than a large composite engine
ENGINE CLASS compiler (IN u : mirUNIT) {
 PIPELINE
 frontend (u)
 optimizer (u)
 backend (u)

}

14.38TDDD55/TDDE66, IDA, LiU, 2024

A CoSy Compiler

14.39TDDD55/TDDE66, IDA, LiU, 2024

Composite Engines in CoSy
 Component classes (engine class)
 Component instances (engines)
 Basic components are implemented in C
 Interaction schemes (cf. skeletons) form

complex connectors
 SEQUENTIAL
 PIPELINE
 DATAPARALLEL
 SPECULATIVE

 EDL can embed automatically
 Single-call-components into pipes
 p<> means a stream of p-items
 EDL can map their protocols to each

other (p vs p<>)

ENGINE CLASS optimizer (procedure p)
{
ControlFlowAnalyser cfa;
CommonSubExprEliminator cse;
LoopVariableSimplifier lvs;
PIPELINE
cfa (p);
cse (p);
lvs (p);

}

ENGINE CLASS compiler (file f)
{
. . .
Token token;
Module m;
PIPELINE
// lexer takes file, delivers token stream
lexer (IN f, OUT token <>);
// Parser delivers a module
parser (IN token <>, OUT m) ;
sema (m);
decompose (m, p <>) ;
// here comes a stream of procedures
// from the module
optimizer (p <>) ;
backend (p <>) ;
}

14.40TDDD55/TDDE66, IDA, LiU, 2024

Evaluation of CoSy
 The outer call layers of the compiler are generated from view

description specifications
 Adapter, coordination, communication, encapsulation
 Sequential and parallel implementation can be exchanged
 There is also a non-commercial prototype [Martin Alt: On

Parallel Compilation. PhD thesis, 1997, Univ. Saarbrücken]

 Access layer to the repository must be efficient (solved by
generation of macros)

 Because of views, a CoSy-compiler is very easily extensible
 That’s why it was expensive
 Reconfiguration of a compiler within an hour

TDDD55 Compilers and Interpreters

TDDE66 Compiler Construction

IDA, Linköpings universitet, 2024

Part IV

More Frameworks

14.42TDDD55/TDDE66, IDA, LiU, 2024

More Frameworks …
 Cetus

 http://cobweb.ecn.purdue.edu/ParaMount/Cetus/
 C/C++ source-to-source compiler written in Java.
 Open source

 Tools and generators
 TXL source-to-source transformation system
 ANTLR frontend generator
 Xtext open-source software framework for developing

programming languages and DSLs
generates not only a parser, but also a class model for the abstract

syntax tree, as well as providing a fully featured, customizable
Eclipse-based IDE.

http://cobweb.ecn.purdue.edu/ParaMount/Cetus/

14.43TDDD55/TDDE66, IDA, LiU, 2024

More Frameworks …

 Some influential frameworks of the 1990s
 SUIF Stanford university intermediate format, https://suif.stanford.edu
 Trimaran (for instruction-level parallel processors) www.trimaran.org
 Polaris (Fortran) UIUC
 Jikes RVM (Java) IBM
 Soot (Java)
 GMD Toolbox / Cocolab Cocktail compiler generation tool suite
 and many others ...

 And many more for the embedded domain ...

https://suif.stanford.edu/
http://www.trimaran.org/

14.44TDDD55/TDDE66, IDA, LiU, 2024

Continue the journey?

 Do you like compiler technology? Learn more?
 Advanced Compiler Construction 9 hp (PhD-level)
 Thesis project (exjobb) at PELAB, 30/15/16 hp
 For more software engineering:

 TDDE41 Software Architectures, 6 hp (VT), replaces
component-based software

 TDDE45 Software Design and Construction, 6 hp (HT), replaces
Design Patterns

 TDDE46 Software Quality, 6 hp (VT)

TDDD55 Compilers and Interpreters

TDDE66 Compiler Construction

IDA, Linköpings universitet, 2024

Bootstrapping of a Compiler

Optional Material

14.46TDDD55/TDDE66, IDA, LiU, 2024

How to Implement a Compiler

 Implement your compiler in an existing language (easy).
 Writing your compiler in the language it is trying to compile

itself (bootstrapping):
 Another compiler already exists, with binaries for your build

architecture.
 Another compiler already exists, but no binaries for your

build architecture (only 32-bit; your system is 64-bit; cross-
compiling + bootstrapping).

 No other compiler exists.

14.47TDDD55/TDDE66, IDA, LiU, 2024

Example: Origins of C
 Started as the language B, a simple

dialect of BCPL.
 The B compiler was implemented in

TMG, a language for writing a compiler,
itself written in PDP-7 assembler.

 The B compiler was then rewritten in B
itself and compiled using the TMG
version of the B compiler.

 The B compiler was then tweaked into
“New B”, and eventually became the C
language and compiler.

14.48TDDD55/TDDE66, IDA, LiU, 2024

Bootstrapping Language x: Alternatives
Notation: 𝑘𝑘𝐶𝐶𝑥𝑥𝑜𝑜 , a compiler C written in the language x which compiles the
source language k into the object language o.
 Implement a small, stupid compiler for x_subset in another language y,

producing native executables. This compiler is A1 =
𝑘𝑘𝐶𝐶𝑥𝑥_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑛𝑛𝑛𝑛𝑠𝑠𝑛𝑛𝑛𝑛𝑠𝑠,𝑠𝑠𝑛𝑛𝑜𝑜𝑢𝑢𝑠𝑠𝑛𝑛𝑢𝑢𝑛𝑛𝑢𝑢𝑠𝑠𝑢𝑢).
 Write a compiler in x_subset that can compile x_subset into C-code.

Bootstrap your compiler using A1. Then we get a compiler A2 =
𝑥𝑥_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝐶𝐶𝑥𝑥_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝐶𝐶−𝑐𝑐𝑜𝑜𝑢𝑢𝑠𝑠 .
 Keep a tarball of translated C-code that produces an x_subset compiler.

Compile this old, basic version of the compiler (A3 =
𝑥𝑥_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝐶𝐶𝐶𝐶

𝑛𝑛𝑛𝑛𝑠𝑠𝑛𝑛𝑛𝑛𝑠𝑠,𝑠𝑠𝑛𝑛𝑜𝑜𝑢𝑢𝑠𝑠𝑛𝑛𝑢𝑢𝑛𝑛𝑢𝑢𝑠𝑠𝑢𝑢 generated by A2).
 Write an interpreter for x_subset . Feed it your compiler as input, ... (A4)
 Or keep a tarball of bytecode for x that you can interpret. (A5 =

𝑥𝑥_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝐶𝐶𝑠𝑠𝑦𝑦𝑠𝑠𝑠𝑠𝑐𝑐𝑜𝑜𝑢𝑢𝑠𝑠
𝑛𝑛𝑛𝑛𝑠𝑠𝑛𝑛𝑛𝑛𝑠𝑠,𝑠𝑠𝑛𝑛𝑜𝑜𝑢𝑢𝑠𝑠𝑛𝑛𝑢𝑢𝑛𝑛𝑢𝑢𝑠𝑠𝑢𝑢)

 Interpret x code with a human in the loop, being fed your compiler as input.
(A6)

14.49TDDD55/TDDE66, IDA, LiU, 2024

Bootstrapping Language x: Step 2

 Compile a (subset) version of your compiler (B = 𝑥𝑥𝐶𝐶𝑥𝑥_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑛𝑛𝑛𝑛𝑠𝑠𝑛𝑛𝑛𝑛𝑠𝑠,𝑠𝑠𝑛𝑛𝑜𝑜𝑢𝑢𝑠𝑠𝑛𝑛𝑢𝑢𝑛𝑛𝑢𝑢𝑠𝑠𝑢𝑢)

using this other compiler (An).
 This version might be incomplete (optimization modules disabled, etc.,

that An does not support).
 Compile a full version of your compiler (C = 𝑥𝑥𝐶𝐶𝑥𝑥𝑛𝑛𝑛𝑛𝑠𝑠𝑛𝑛𝑛𝑛𝑠𝑠), using (B =

𝑥𝑥𝐶𝐶𝑥𝑥_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑛𝑛𝑛𝑛𝑠𝑠𝑛𝑛𝑛𝑛𝑠𝑠,𝑠𝑠𝑛𝑛𝑜𝑜𝑢𝑢𝑠𝑠𝑛𝑛𝑢𝑢𝑛𝑛𝑢𝑢𝑠𝑠𝑢𝑢).

 Compile an optimized, full version of your compiler (D = 𝑥𝑥𝐶𝐶𝑥𝑥𝑛𝑛𝑛𝑛𝑠𝑠𝑛𝑛𝑛𝑛𝑠𝑠) using (C
= 𝑥𝑥𝐶𝐶𝑥𝑥𝑛𝑛𝑛𝑛𝑠𝑠𝑛𝑛𝑛𝑛𝑠𝑠), targeting (possibly cross-compiling) your host platform.

14.50TDDD55/TDDE66, IDA, LiU, 2024

Rationale

 It is a proof that your language is powerful enough to do
something useful.

 Why should I use your programming language if you yourself
use C?

 Only need to learn one language to be a compiler developer.
 Improving the performance for the language also improves

the performance of the compiler.

14.51TDDD55/TDDE66, IDA, LiU, 2024

OpenModelica Bootstrapping History (1)
 Implementation of a Modelica compiler using rml2c
 Design of an early MetaModelica language version as an extended

subset of Modelica, spring 2005.
 Implementation of a MetaModelica Compiler (MMC) which

translates MetaModelica into RML intermediate form, spring-fall
2005.

 Automatically translating the whole OpenModelica compiler, 60 000
lines, from RML to MetaModelica.

 In parallel, developing MDT (Modelica Development Tooling),
including debugger for MMC, 2005-2006.

 Switching to using this MetaModelica 1.0, the MMC compiler, and
MDT for the OpenModelica compiler development, at that time 3-4
full-time developers. Fall 2006.

 Preliminary implementation of pattern-matching and exception
handling in the OpenModelica compiler, to enable future
bootstrapping. Spring-fall 2008.

14.52TDDD55/TDDE66, IDA, LiU, 2024

OpenModelica Bootstrapping History (2)
 Continuation of the work on better support for pattern-matching

compilation, support for lists, tuples, records (uniontypes), etc. in
OpenModelica. Spring-fall 2009.

 Implementation of higher-order functions (used in MetaModelica),
also in OpenModelica. Fall 2009, spring 2010.

 The bootstrapped compiler supporting most of MetaModelica 2.0,
which includes standard Modelica. Fall 2010, spring 2011.

 Adding garbage collection. Fall 2012.
 Improving the build system, parallel builds. Reaching full testsuite

coverage, good performance, and running the tests nightly. 2013.
 Removing support for MMC.
 Further adding, enhancing, and redesigning MetaModelica

language features, based on usage experience, the Modelica
design effort, and inspiration from functional languages and
languages. Refactoring parts of the compiler to use the enhanced
features.

14.53TDDD55/TDDE66, IDA, LiU, 2024

OpenModelica Bootstrapping
 Start with a tarball of source-code (only code necessary for

bootstrapping)
 https://github.com/OpenModelica/OMBootstrapping

 This source-code was at one time generated by OMC compiled with
RML/MMC.

 At some point, OMC was able to generate its own tarball.
 Then support for RML/MMC was dropped and new language

features added to OMC (that RML/MMC did not support).
 At a later time, these new language features were used in the

compiler itself (and a new tarball was generated).
 Parts of the compiler that are not used during bootstrapping can

use new language features before a new tarball is generated.
 …

https://github.com/OpenModelica/OMBootstrapping

14.54TDDD55/TDDE66, IDA, LiU, 2024

OpenModelica Cross-Compiling (ARM host, x86
build)

 Start with a tarball of source-code:
https://github.com/OpenModelica/OMBootstrapping

 Bootstrap the x86 version of OpenModelica, save this somewhere.
Make clean.

 ./configure –with-omc=path/to/x86/omc
 Cross-compile the ARM version of OpenModelica using the x86

version of OMC to produce code.
 Note: OMC generates C-code, so you need a cross-compiler tool-

chain installed.
 For gcc, a similar approach is used, but you then use the regular

gcc to compile a version of gcc that runs on x86 but produces ARM
executables (including assemblers and linkers).

 clang (LLVM) is able to produce assembly for multiple targets using
the same compiler (but it does not integrate assemblers, linkers, or
C++ run-times for these targets, so you usually need to install a gcc
cross-compilation tool-chain anyway).

https://github.com/OpenModelica/OMBootstrapping

14.55TDDD55/TDDE66, IDA, LiU, 2024

Thank you!
 Any questions?
 This Week

 TDDE66 & TDDD55
Last Seminar: Exam preparation

	Compiler Frameworks �and �Compiler Generators
	Overview
	Part I
	Grammar analysis tool (I)
	Grammar analysis tool (II)
	Syntax-Based Generators
	EBNF Evaluator
	ANTLR example
	Part II
	RML – Compiler Generation from NS
	Generating an Interpreter
	Generating a Compiler
	RML Syntax
	Example: The Exp1 Language Definition
	Example: The Exp1 Evaluator
	Lookup in Environments
	Translational Semantics of the PAM language �Abstract Syntax to Machine Code
	PAM Example Translation
	Some Applications of RML
	Some Attribute-Grammar Based Tools
	Part III
	LCC (Little C Compiler)
	LLC (Little C Compiler)
	GCC – not a generator, but widely used
	GCC – not a generator, but widely used
	LLVM - The LLVM Compiler Infrastructure Project
	LLVM - The LLVM Compiler Infrastructure Project
	LLVM - The LLVM Compiler Infrastructure Project
	Open64 / ORC Open Research Compiler Framework
	ORC: Flow of IR
	Open64 / ORC Open Research Compiler
	CoSy – commercial compiler framework
	CoSy - features
	Traditional Compiler Structure
	A CoSy Compiler with Repository Architecture
	CoSy – Engine
	CoSy – Composite Engines
	A CoSy Compiler
	Composite Engines in CoSy
	Evaluation of CoSy
	Part IV
	More Frameworks …
	More Frameworks …
	Continue the journey?
	Bootstrapping of a Compiler
	How to Implement a Compiler
	Example: Origins of C
	Bootstrapping Language x: Alternatives
	Bootstrapping Language x: Step 2
	Rationale
	OpenModelica Bootstrapping History (1)
	OpenModelica Bootstrapping History (2)
	OpenModelica Bootstrapping
	OpenModelica Cross-Compiling (ARM host, x86 build)
	Thank you!

