TDDD55 Compilers and Interpreters

TDDE66 Compiler Construction II.“

LINKOPINGS UNIVERSITET

Memory Management
and
Run-Time Systems

IDA, Linkdpings universitet, 2024

Run-Time Systems Support Program Execution ||.||

a0 Memory management of a program during execution.
This includes allocation and de-allocation of memory cells.

o Address calculation for variable references.

d For references to non-local data, finding the right object taking
scope into consideration.

3 Recursion, which means that several instances of the same
procedure are active (activations of a procedure) at the same
time during execution.

ad Dynamic language constructs, such as dynamic arrays,
pointer structures, etc.

3 Different sorts of parameter transfer

Two different memory management strategies: static and dynamic
memory management, determined by the language to be executed.

TDDD55/TDDEG66, IDA, LiU, 2024 9.2

Static Memory Management ll.ll

3 All data and its size must be known
during compilation, i.e. the memory
space needed during execution is R A

known at compile-time.
Program
ad The underlying language has no v
recursion. Fixed | oy A
d Data is referenced to by absolute Data
addresses. Area
\/ v

d Static memory management needs no
run-time support, because everything
about memory management can be
decided during compilation.

ad An example of such a language is
FORTRANY77, whereas FORTRAN90
has recursion.

TDDD55/TDDEG66, IDA, LiU, 2024 9.3

Dynamic Memory Management (1) Il'"

d Data size is not known at compiler time (e.g. dynamic arrays,
pointer structures)

d There is recursion

O Examples of such languages are: Pascal, C, Algol, Java, ...
Basically most of the general-purpose programming languages

TDDD55/TDDEG66, IDA, LiU, 2024 9.4

Dynamic Memory Management (2)

Run-Time Support II'"

Run-Time support is needed for languages with dynamic
memory management:

d The call chain must be stored somewhere and references to
non-local variables must be dealt with.

d Variables cannot be referenced by absolute addresses, but by
<blockno, offset>.

3 All data belonging to a block (procedure) is gathered together
in an activation record (stack frame).

3 At a procedure call memory is allocated on the stack and
each call involves constructing an activation record.

TDDD55/TDDEG66, IDA, LiU, 2024 9.5

A Stack Frame with Frame and Stack Pointers 11eU

Previous
stack
frame

fp (old sp)

Current
stack
frame

!

Decreasing Stack
memory grows
addresses downwards

'

Variable A

Offset of variable A
v from fp

sp

TDDD55/TDDEG66, IDA, LiU, 2024

9.6

fp — frame pointer
sp — stack pointer

Some Concepts (Rep.) h.v

LINKOPINGS UNIVERSITET

O Activation

o Each call (execution) of a procedure is known as activation of the
procedure.

O Life span of an activation

o The life span of an activation of a procedure p lasts from the
execution’s first statement to the last statement in p’s procedure body.

O Recursive procedure

o A procedure is recursive if it can be activated again during the life span
of the previous activation.

 Activation tree

o An activation tree shows how procedures are activated and terminated
during an execution of a program.

o Note that a program can have different activation trees in different
executions.

d Call chain
o All current activations (ordered by activation time)
o - a path in the activation tree
o - a sequence of procedure frames on the run-time stack

TDDD55/TDDEG66, IDA, LiU, 2024 9.7

Example of Activation Tree (Rep.) TR,

LINKOPINGS UNIVERSITET

program p; Two different activation trees for the program:
procedure q;
Activation tree when x=0

end (* q ¥);

p
procedure r; / i
read q
q;
end (*r*);
begin (* p *) Activation tree when x#0
read(x); 0
ifx=0
then q; / i
elser;
end (* P *); read i
q

TDDD55/TDDEG66, IDA, LiU, 2024 9.8

Formal and Actual Parameters (Rep.) ||.||

d Arguments declared in the head of a procedure declaration
are its formal parameters and arguments in the procedure
call are its actual parameters.

a In the example below:
i is a formal parameter
k Is an actual parameter

procedure A(1: 1nteger);
begin (* A *)

A(k);
end (* A *);

TDDD55/TDDEG66, IDA, LiU, 2024 9.9

Activation Record ||.|I

All information which is needed for an activation of a procedure is put in a
record which is called an activation record. The activation record remains on
the stack during the life span of the procedure.

An activation record contains:
procedure p1

var A: (* ... 7)

d Local and temporary data procedure p2

3 Return address (* reference to A ™)
end (* p2 ¥)
d Parameters end (* p1*)

d Pointers to previous activation records (dynamic link,
control link)

3 Static link (access link) or display for finding the correct
references to non-local data (e.g. in enclosing scopes)

d Dynamically allocated data (dope vectors)
d Space for a return value (where needed)
d Space for saving the contents of registers

TDDD55/TDDEG66, IDA, LiU, 2024 9.10

Typical Memory Organization Il U
(Pascal/Java-like language) .
0 Static data
o The memory requirement for Object code Global

data

data objects must be known Static data | «—

at compile time and the

address to these objects is Stack arows Stack Activation
not changed during SO ac records
execution, so the addresses v
can be hard-coded in the
object code. Free
Space
3 Stack
o Space for activation records 4 Dynamic
[] data

is allocated for each new Heap -
activation of procedures. ~ Meapdrows || [

upwards
V\
- Heap Memory
o Allocation when necessary. fragmentation

TDDD55/TDDEG66, IDA, LiU, 2024 9.11

How are non-local variables referenced? ||.||

LINKOPINGS UNIVERSITET

a Static link (access link)
d Display

Example:
program prog; (* Block BO,predefined vars)
var a, b, c: integer; (¥ Block Bl, Globals *)
procedure pl;

var b, c: real; (* Block B2 *)
procedure p2;
var c: real; (* Block B3 *)
begin
c :=b + a; (* B3.c := B2.b + Bl.a *)
end (* p2 *);
begin In the procedures the variables are referenced using
p2; <blockno, offset>:
end (* pl); B3.c := B2.b + Bl.a
begin

pl; or by using relative blocknumber:

end (* prog ¥*). 0O.c :=1.b + 2.a

(0: current block, 1: nearest surrounding block, etc.)

TDDD55/TDDEG66, IDA, LiU, 2024 9.12

Non-local references through Static Link ||.||

A The static link is a pointer to
the most recent activation
record for the textually
surrounding block

Static Link

O Example. Use relative block
number for statement inside

procedure p2: P
O.c :=1.b + 2.a

For variable a follow the —
static link 2 steps.

3 This method is practical and
uses little space. With deeply
nested procedures it will be -«
slow.

main

TDDD55/TDDEG66, IDA, LiU, 2024 9.13

Non-local references through Display ||.||

a Display is a table with
pointers (addresses) to
surrounding procedures’
activation records.

Display i

d The display can be
stored in the activation
records. p1

3 Display is faster than Display ¢
static link for deep
nesting but requires
more space.

main
a Display can be slightly
slower than static link for <

very shallow nesting.

TDDD55/TDDEG66, IDA, LiU, 2024 9.14

Dynamic Link, i.e., Control Link h.v

LINKOPINGS UNIVERSITET

O Dynamic link specifies the call chain
O Not the same as static link if there is a recursive call chain, e.g.

program foo; The stack at 2nd call for p1:

| procedure pl; Textual 1

| | procedure p2 environment| P

! old fp

| procedure p3;

| begin (* p3*

i J 1 (p3%) (On return from p1 3

i P’ we continue inside p3) B P <

i . end (* p3 *) ; old fp

o beg:Ln (* p2 *) 02

i - p3; rs

o c e old fp

i . end (* p2 *) :

ibegin (* pl *) Ly P <

. P2’ old fp

| -

' end (* pl) ., main
begin (* main ¥*) e <+

pl; Static link Dynamic link

end (* main *) - Call chain

TDDD55/TDDEG66, IDA, LiU, 2024 9.15

Heap Allocation (Rep.) ||.|I

LINKOPINGS UNIVERSITET

O In some languages data can dynamically be built during execution and its
size is not known (e.g. strings of variable length, lists, tree structures, etc).

O Manual memory management

o De-allocation is not performed automatically as in stack allocation. Hard
work, can lead to bugs.

o Pascal: new(p) (*allocation®) dispose(p) (* deallocation™)
C:. p=malloc() (*allocation™) free(p) (* deallocation™)
O Automatic memory management, with garbage collection (e.g. Lisp, Java)

o De-allocation is automatic. Resource-consuming but avoids bugs.

After memory compaction:

Free list O
OO \ released free
T O memory
o
used
memory
fragmentation

TDDD55/TDDEG66, IDA, LiU, 2024 9.16

Heap Allocation (Rep.) hv

d Java, Standard ML, RML

Survivor Space

A
p
eden S0 S1 Tenured Permanent
\ v A v A v J
Young Generation Old Generation Permanent Generation

TDDD55/TDDEG66, IDA, LiU, 2024 9.17

Data Storage and Referencing ||.|I

O Where is data stored and how is it referenced?

o (Semi-static) Static data can be allocated directly
(consecutive in the activation record, data area).

o Data is referenced by <blockno, offset>.
blockno is specified as nesting depth.

d Simple variables (boolean, integer, real ...)

o These have a fixed size and are put directly into the
activation record, or in registers.

0 Static arrays

o Fixed number of elements, i.e. size is known at compile
time.
Example: A: array[l..100] of integer;

o Stored directly in the activation record.

TDDD55/TDDEG66, IDA, LiU, 2024 9.18

Dynamically Allocated Arrays h.v

LINKOPINGS UNIVERSITET

a The size is unknown at compile time:
o Example: B: array[l..max] of integer;

o max not known at compile time.

d Dope vector (data descriptor) is used for dynamically
allocated arrays. Dope vectors are stored in the activation
record.

Lower limit Upper limit

Start address — ¢

Either above
the stack + offset
or in the heap

Dope vector:

TDDD55/TDDEG66, IDA, LiU, 2024 9.19

Dynamic Arrays and
Block Structures in ALGOL (1)

PROCEDURE A (X,Y),; INTEGER X, Y;

Ll: BEGIN REAL Z;

(block b1)

ARRAY B[X:Y];

L3: coe
END;

L2: BEGIN REAL D,E;

L4: BEGIN ARRAY A[l:X];

L6:

END ;

L5: BEGIN REAL E;

R

L7: END;

L8: END;

parameters

?/:'

A STACKTOP

DISPLAY

before L1

LINKOPINGS UNIVERSITET

Z,B dope v.

bl STACKTOP

parameters

TDDD55/TDDEG66, IDA, LiU, 2024

9.20

A STACKTOP

DISPLAY

before L2

LINKOPINGS UNIVERSITET

Dynamic Arrays and
Block Structures in

ALGOL (2)
PROCEDURE A (X,Y); INTEGER X, Y;
L1: BEGIN REAL Z; (block b1)
m ARRAY B[X:Y];
array B .| array B 4
> L2 :BEGIN REAL D,E; W
L3: oo
D, E END;
b2 STACKTOP
Z,B dope v. Z,B dope v. L4 :BEGIN ARRAY A[1l:X]; &
bl STACKTOP bl STACKTOP L5:BEGIN REAL E; @&
parameters parameters L6: oo
— A STACKTOP A STACKTOP END ;
DISPIAY DISPLAY L7: END:
L2,L4,L8 L3 L8: END:

TDDD55/TDDEG66, IDA, LiU, 2024

9.21

Dynamic Arrays and II'"
Block Structures in
ALGOL (3)

PROCEDURE A (X,Y); INTEGER X,Y;

L1l: BEGIN REAL Z; (block B1:) A
- » ARRAY B[X:Y],
A
array array & |, L2 :BEGIN REAL D,E;)
array B array B
> > L3: eoeo
E
b4 STACKTOP END;
A dope vV. A dope v.
b3 STACKTOP b3 STACKTOP L4 BEGIN ARRAY A[l:X]; P
bl STACKTOP [— bl STACKTOP [—
L6: eoeo
parameters parameters
A STACKTOP A STACKTOP END ;
DISPLAY DISPLAY L7: END;
L5, L7 L6 1.8: END;

TDDD55/TDDEG66, IDA, LiU, 2024 9.22

Parameter Passing (1) (Rep.)

Call by Reference II‘"

d There are different ways of passing parameters in
different programming languages. Here are four of the
most common methods:

3 1. Call by reference (Call by location)

o The address to the actual parameter, /-value, is passed
to the called routine’s AR

o The actual parameter’s value can be changed.
o Causes aliasing.

o The actual parameter must have an |-value.

d Example: Pascal’'s VAR parameters, reference
parameters in C++. In Fortran, this is the only kind of
parameter.

TDDD55/TDDEG66, IDA, LiU, 2024 9.23

Parameter Passing (2) (Rep.) Il U
Call by Value et

a 2. Call by value
o The value of the actual parameter is passed
o The actual parameter cannot change value

d Example: Pascal’'s non-VAR parameters,
found in most languages (e.g. C, C++, Java)

TDDD55/TDDEG66, IDA, LiU, 2024 9.24

Parameter Passing (3) (Rep.) Il U
Call by value-result (hybrid) it

3 3. Call by value-result (hybrid)

o The value of the actual parameter is calculated by
the calling procedure and is copied to AR for the
called procedure.

o The actual parameter’s value is not affected during
execution of the called procedure.

o At return the value of the formal parameter is copied
to the actual parameter, if the actual parameter has
an l-value (e.qg. is a variable).

d Found in Ada.

TDDD55/TDDEG66, IDA, LiU, 2024 9.25

Parameter Passing (4) (Rep.)
Call by Name

LINKOPINGS UNIVERSITET

3 4. Call by name
o Similar to macro definitions
o No values calculated or passed

o The whole expression of the parameter is passed as a
procedure without parameters, a thunk.

o Calculating the expression is performed by evaluating the
thunk each time there is a reference to the parameter.

o Some unpleasant effects, but also general/powerful.

d Found in Algol, Mathematica, Lazy functional languages

TDDD55/TDDEG66, IDA, LiU, 2024 9.26

Example of Using the Four Parameter Il U
Passing Methods: (Rep.) v o

procedure swap(x, y : integer);

var temp : integer; i:=1;

begin a[i] := 10; (* a: array[l..5]
temp := x; of integer *)
X =Y, print(i, af[i]);
y := temp; swap(i, al[il]):

end (* swap *); print(i, al[l]);

Results from the 4 parameter passing methods
Printouts from the print statements in the above example

Call by Call by Call by Call by
reference value value-result name
print 1 10 1 10 1 10 1 10
swap 10 1 1 10 10 1 Error!

TDDD55/TDDEG66, IDA, LiU, 2024 9.27

Reason for the Error in the
Call-by-name Example

LINKOPINGS UNIVERSITET

The following happens:

x = text('1i’);

y = text('a[i]’);

temp := i; (*=>temp:=17%)

i := a[i]; (*=>1i:=10 since a[i] =10)

a[i] := temp; (*=>2a[10]:=1=> index out of bounds *)

Note: This error does not occur in lazy functional languages
using call-by-name since side-effects are not allowed.

TDDD55/TDDEG66, IDA, LiU, 2024 9.28

Static Memory Management Il U
E.g. Fortran77 and (partly) CUDA/C on NVIDIA ==®%%
a No procedure nesting, i.e., no block structure.
o = References to variables locally or globally.
o = No displays or static links needed.
3 No recursion (= stack not needed).
3 All data are static (= heap not needed).

3 All memory is allocated statically
o = variables are referenced by absolute address.

o The data area (i.e. the activation record) is often placed with
the code

o Inefficient for allocating space for objects which are perhaps
used only a short time during execution.

o But execution is efficient in that all addresses are placed and
ready in the object code

o Problematic for parallel code

TDDD55/TDDEG66, IDA, LiU, 2024 9.29

Static Memory Allocation and |I.ll
Procedure Call/Return for Fortran77

SUBROUTINE SUB (J) 3 At procedure call

I =1 1. Put the addresses (or values) of the
J = I+3*J actual parameters in the data area.
END 2. Save register contents.

3. Put return address in the data area.
Return address 4. Execute the routine.
: 5. References to variables locally or
globally.

J 6. No displays or static links needed.
Temp

0 On return:

Code for SUB 1. Reset the registers.

2. Jump back.

TDDD55/TDDEG66, IDA, LiU, 2024 9.30

Memory management in Il U
Algol, Pascal, C, C++, Java s e

d Language Properties:
o Nested procedures/blocks (PASCAL, ALGOL)
o Dynamically allocated arrays (ALGOL, C99, C++, ...)
o Recursion
o Heap allocation (PASCAL, C, C++, Java, ...)

d Problems:

o References to non-local variables
(solved by display or static link)

o Call-by-name (ALGOL, Lazy Functional Languages)
o Dynamic arrays (dope vector)
o Procedures as parameters — function pointers

TDDD55/TDDEG66, IDA, LiU, 2024 9.31

Events when Procedure P Calls Q

At call:

d P already has an AR (activation
record) on the stack

ad P's responsibility:
o Allocate space for Q's AR.

o Evaluate actual parameters
and put them in Q's AR.

o Save return address and
dynamic links (i.e. top_sp) in
new (Q's) AR.

o Update (increment) top_sp.
0 Q's responsibility:

o Save register contents and
other status info.

o Initialise own local data and
start to execute.

TDDD55/TDDEG66, IDA, LiU, 2024

9.32

LINKOPINGS UNIVERSITET

At return:
a Q's responsibility

o Save return value in own AR
(NB! P can access the return
value after the jump).

o Reset the dynamic link and
register contents, ...

o Q finishes with return to P's
code.
O P's Responsibility

o P collects the return value
from Q, despite update of
top_sp.

At Calls

Stack and Heap

Stack

grows
downwards

v

f

Heap

grows
upwards

TDDD55/TDDEG66, IDA, LiU, 2024

oldfp —»
A

AR for caller

old top_sp q

new fp = >

old top_sp

AR for callee,
i.e. called proc

v

new top_sp —

return value

actual parameters

dynamic link (old fp)

return address

static link

saved regs (if necessary)

local variables

temporary variables

dynamic objects/arrays (if nec)

return value

actual parameters

dynamic link (old fp)

return address

static link

A

> <«

callers

responsibility

saved regs (if necessary)

local variables

temporary variables

dynamic objects/arrays (if nec)

9.33

callee's

responsibility

LINKOPINGS UNIVERSITET

\4

stack grows
downwards

Procedure Call/Return in Il U
[J
Algol, Pascal, C, ...

At call: At return:
1. Space for activation record 1. Reset dynamic link.
Is allocated on the stack. 2. Reset the registers
2. Display / static link is set. 3. Reset display / static link
3. Move the actual 4. Jump back.
parameters. '

4. Save implicit parameters
(e.g. registers).

5. Save return address.
6. Set dynamic link.
7. Execute the routine.

TDDD55/TDDEG66, IDA, LiU, 2024 9.34

Thank you! Il'"

d any questions?

3 If you want to know more, you can have a look on how Rust
manages memory:

O

O next week:
o L10 — Intermediate Code Optimization
o L11 — Code Generation

TDDD55/TDDEG66, IDA, LiU, 2024 9.35

https://google.github.io/comprehensive-rust/memory-management.html
https://google.github.io/comprehensive-rust/memory-management.html

	Memory Management �and �Run-Time Systems
	Run-Time Systems Support Program Execution
	Static Memory Management �
	Dynamic Memory Management (1)
	Dynamic Memory Management (2)�Run-Time Support
	A Stack Frame with Frame and Stack Pointers
	Some Concepts (Rep.)
	Example of Activation Tree (Rep.)
	Formal and Actual Parameters (Rep.)
	Activation Record
	Typical Memory Organization�(Pascal/Java-like language)
	How are non-local variables referenced?
	Non-local references through Static Link
	Non-local references through Display
	Dynamic Link, i.e., Control Link
	Heap Allocation (Rep.)
	Heap Allocation (Rep.)
	Data Storage and Referencing
	Dynamically Allocated Arrays
	Dynamic Arrays and �Block Structures in ALGOL (1)
	Dynamic Arrays and �Block Structures in�ALGOL (2)
	Dynamic Arrays and �Block Structures in�ALGOL (3)
	Parameter Passing (1) (Rep.)�Call by Reference
	Parameter Passing (2) (Rep.)�Call by Value
	Parameter Passing (3) (Rep.)�Call by value-result (hybrid)
	Parameter Passing (4) (Rep.)�Call by Name
	Example of Using the Four Parameter�Passing Methods: (Rep.)
	Reason for the Error in the�Call-by-name Example
	Static Memory Management�E.g. Fortran77 and (partly) CUDA/C on NVIDIA
	Static Memory Allocation and�Procedure Call/Return for Fortran77
	Memory management in �Algol, Pascal, C, C++, Java
	Events when Procedure P Calls Q
	At Calls �Stack and Heap
	Procedure Call/Return in �Algol, Pascal, C, ...
	Thank you!

