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Need to Automatically Construct
LR Parse Tables: Action and GOTO Table

Construct parse tables from the 
grammar as follows:

 First build a GOTOgraph (an NFA) 
to recognize viable prefixes

 Make it deterministic (DFA)
 Then fill in Action and Goto tables

ACTION table:

state |-- ,     a    b

0 X   X   S4 S5
1 A  S2 *     *
2 X   X   S4  S5
3 R1 R1   *     *
4 R3 R3   *     *
5 R4 R4   *     * 
6 R2 R2   *     *GOTO table:

state L     E

0             1     6
1             *      *
2             *      3
3             *      *
4             *      *
5             *      *
6             *      *

Example Grammar G 

1. <L    → L , E
2.           |  E
3. E → a
4.      |  b
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Classes of LR Parsers/Grammars
 LR(0) – Too weak (no lookahead)
 SLR(1) –  Simple LR, 1 token lookahead
 LALR(1) –  Most common, 1 token lookahead
 LR(1) – 1 token lookahead – big tables
 LR(k) –  k tokens lookahead – Even bigger tables

Differences between LR parsers:
 Table size varies widely.
 Errors not discovered as quickly by some variants.
 Different limitations in the language definitions, grammars.
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An NFA Recognizing Viable Prefixes
A.k.a. the ”characteristic finite automaton” for a grammar G
 States:  LR(0) items  (= context-free items) of extended 

Grammar (definition, see next page)
 Input stream:  The grammar symbols on the stack 
 Start state:  [S’ → −|.S ]        Final state:  [S’ → −|S.]
 Transitions:

o ”move dot across symbol” if symbol found next on stack:  
A → α.Bγ to     A → αB.γ
A → α.bγ to     A → αb.γ

o ε-transitions to LR(0)-items for nonterminal productions 
from items where the dot precedes that nonterminal:

A → α.Bγ to     B →.β

118a
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Handle,  Viable Prefix
 Consider a rightmost derivation   S =>*

rm βXu =>rm βαu
for a context-free grammar G.

 α is called a handle of the right sentential form βαu, 
associated with the rule X  =>rm α

 Each prefix of βα is called a viable prefix of G.

Example:    Grammar G with productions   {  S -> aSb  |  c  }
 Right sentential forms:  e.g.  c,  acb,  aSb, aaaaaSbbbbb, .....
 For c:       Handle: c       Viable prefixes:  ε, c
 For acb: Handle: c                                  ε, a, ac
 For aSb:   Handle: aSb                             ε, a, aS, aSb
 For aaSbb: Handle: aSb                            ε, a, aa, aaS, aaSb
 ...
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Right Derivation and Viable Prefixes
Input: a, b, a
Right derivation (handles are underlined, and blue)
<list> =>rm <list> , <element>

=>rm  <list> , a
=>rm  <list> , <element> , a
=>rm  <list> , b , a
=>rm  <element> , b, a
=>rm   a , b, a

Some Viable prefixes of the sentential form: <list> , b, a
are
{ ε;  <list> ;  <list>,  ;   <list>, b  ;    <list>, b ,  ;   <list>, b , a    }
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Definition of LR(0) Item
 An LR(0) item of a rule P is a rule with a dot ’’•’’somewhere in 

the right side.
Example:
 All LR(0) items of the production

1.  <list> → <list> , <element>
are

<list> → • <list> , <element>
<list> → <list> • , <element>
<list> → <list> , • <element>
<list> → <list> , <element> •

 Intuitively an item is interpreted as how much of the rule we have found 
and how much remains.

 Items are put together in sets which become the LR analyser’s state.
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Informal Construction of GOTO-Graph  
(NFA/DFA)

We want to construct a DFA 
which recognises all viable
prefixes of G(<SYS>):

Augmented Grammar G(<sys>)
0. <SYS> → <list>  |−
1. <list>    → <list> , <element>
2.               |  <element>
3. <element> → a
4.                     |  b

GOTO-graph
(A GOTO-graph is not the 
same as a GOTO-table but 
corresponds to an ACTION + 
GOTO-table. 
The graph discovers viable 
prefixes.)

<list> =>rm <list> , <element>
=>rm  <list> , a
=>rm  <list> , <element> , a
=>rm  <list> , b , a
=>rm  <element> , b, a
=>rm   a , b, a

Example. Find viable prefixes in a
rightmost derivation below, 

used for informal construction
of  a goto graph



7.9TDDD55/TDDE66, IDA, LiU, 2024

We want to construct a DFA 
which recognises all viable
prefixes of G(<SYS>):

Augmented Grammar G(<sys>)
0. <SYS> → <list>  |−
1. <list>    → <list> , <element>
2.               |  <element>
3. <element> → a
4.                     |  b

GOTO-graph
(A GOTO-graph is not the 
same as a GOTO-table but 
corresponds to an ACTION + 
GOTO-table. 
The graph discovers viable 
prefixes.)

0 3
start <list>

21

6

4

5

<element>

a

b

a

b

, <element>

<SYS> → <list> | <list> → <list> , <element>

<element> → a

<element> → b

<list> → <element>

Example righmost derivation
<list>  =>rm
         <list> , <element>
=>rm  <list> , a
=>rm  <list> , <element> , a
=>rm  <list> , b , a
=>rm  <element> , b, a
=>rm   a , b, a

Informal Construction of GOTO-Graph  
(NFA/DFA)
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Constructing Sets of LR(0) Items
<SYS> → • <list> |-- Kernel (Basis)

<list> → • <list> , <element>
<list> → • <element>
<element> → • a
<element> → • b

Additional 
Closure
(of kernel 
items)

<SYS> → <list> • |--
<list> → <list> • , <element>

Kernel (Basis)

(empty closure as ’’•’’ 
precedes terminals |-- and , )

Additional 
Closure

<list> → <list> , • <element> Kernel (Basis)

<element> → • a
<element> → • b

Additional 
Closure

Set I0

Set I1

Set I2

Set I3,  etc.

Augmented Grammar
G(<sys>)

0. <SYS>→ <list>  |−
1. <list>   → <list , <element>
2.               |  <element>
3. <element> → a
4.                     |  b
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GOTO Graph with States as 
Sets of LR(0) Items

I0 
S  → • L |
L  → •L , E  
L  → •E  
E  → •a  
E  → •b

I1
S  → L • 

I2 
L → L , • E  
E  → • a  
E  → • b

I4 
E  → a • 

I5 
E  → b • 

I6
L  → E •

start
L ,

E

a

b

a

bb

I3|−
L  → L • , E  

,
Based on the 
canonical collection 
of LR(0) items draw
the GOTO graph.

The GOTO graph discovers 
those prefixes of right
sentential forms which have 
(at most) one handle
furthest to the right in the 
prefix.

Example Grammar 
1. L  → L , E
2. L  → E
3. E →  a
4. E →  b
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Fill in Action Table from GOTO Graph

i j

a

Ii Ij 

i shift j

a

1. If there is an item
<A> → α • a β ∈ Ii
and
GOTOgraph(Ii , a) = Ij

Fill in shift j for row i and
column for symbol a.

Nonterminals

State number

2. If there is a complete item
 (i.e., ends in a dot ’’•’’):
<A> → α• ∈ Ii
Fill in reduce x where
x is the production number for
x: <A> → α

3. If we have
<SYS> → <S> • |--
accept the symbol |--

4. Otherwise error.

Ii : state i (line i, itemset i)

Filled in Action table

state |-- ,     a    b

0 X   X   S4 S5
1 A  S2 *     *
2 X   X   S4  S5
3 R1 R1   *     *
4 R3 R3   *     *
5 R4 R4   *     * 
6 R2 R2   *     *

ACTION table:
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Table Differences LR(0), SLR(1), LALR(1)

In which column(s) should reduce x be written?

LR(0) fills in for all input.

SLR(1) fills in for all input in FOLLOW(<A>).

LALR(1) fills in for all those that can follow a certain instance of <A>, 

see later
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Filling in the GOTO Table

i     j

<A>

<A> → α • ∈ Ii
If the GOTOgraph(Ii , <A>) = Ij
fill in GOTOtable[ i, <A>] = j

Nonterminals

State number

i j

<A>

Ii Ij 

Filled in GOTO 
table:

state L     E

0             1     6
1             *      *
2             *      3
3             *      *
4             *      *
5             *      *
6             *      *

GOTO table:

Example Grammar 
1. L  → L , E
2. L  → E
3. E →  a
4. E →  b
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Computing the LR(0) Item Closure
(Detailed Algorithm)
For a set I of LR(0) items compute Closure(I) (union of Kernel and Closure):
1. Closure(I)  :=   I  (start with the kernel)
2. If   ∃ [A→α.Bβ]  in Closure(I)

and  ∃ production  B → γ
then  add  [B →.γ]  to Closure(I)     (if not already there)

3. Repeat Step 2 until no more items can be added to Closure(I).

Remarks:
 For s=[A → α.Bγ], Closure(s) contains all NFA states reachable 

from s via ε-transitions, i.e., starting from which any substring derivable 
from Bβ could be recognized.   A.k.a. ε-closure(s).

 Then apply the well-known subset construction 
to transform Closure-NFA -> DFA. 

 DFA states will be sets unioning closures of NFA states
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Representing Sets of Items
Implementation in Parser Generator
 Any item  [A → α.β] can be represented by 2 integers:

o production number
o position of the dot within the RHS of that production

 The resulting sets often contain ”closure” items (where the dot 
is at the beginning of the RHS).
o Can easily be reconstructed (on demand) 

from other (”kernel”) items
Kernel items:  start state [S’ → −|.S],  plus all items 

where the dot is not at the left end.
o Store only kernel items explicitly, to save space

118c
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GOTOgraph Function and DFA States
Detailed algorithm
Given:  Set I of items,   grammar symbol X

 GOTOgr( I, X )  :=  U [A→α.Xβ] in I Closure ( { [A → αX.β] } )
o To become the state transitions in the DFA

 Now do the subset construction to obtain the DFA states:
C := Closure( { [S’ → −|.S] } )        //  C: Set of sets of NFA states

repeat
for each set of items I of C:

for each grammar symbol X
if (GOTOgr(I,X) is not empty and not in C)

add GOTOgr(I,X) to C
until no new states are added to C on a round.
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Resulting DFA
 All states correspond to some viable prefix
 Final states: contain at least one item with dot to the right

o recognized some handle  reduce may (must) follow 
 Other states: handle recognition incomplete -> shift will follow
 The DFA is also called the GOTO graph 

(not the same as the LR GOTO Table!!).

 This automaton is deterministic as a FA (i.e., selecting 
transitions considering only input symbol consumption)
but can still be nondeterministic as a pushdown automaton
(e.g., in state I1 above: to reduce or not to reduce?)

120b
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From DFA to parser tables:  ACTION
Detailed Algorithm, Summary
1. For each DFA transition  Ii  Ij reading a terminal  a in Σ

(thus, Ii contains items of kind  [X α.aβ])
o enter   S j (shift, new state Ij)   in ACTION[ i, a ]

2. For each DFA final state Ii
(containing a complete item  [X α.])
o enter   R x   

(reduce,  x = prod. rule number for X α)
in  ACTION[ i, t ] ...
 LR(0) parser:  for all t in Σ (all entries in row i)
 SLR(1) parser:  for all t in LASLR(i,[X α.]) = FOLLOW1(X)
 LALR(1) parser:  for all t in LALALR(i,[X α.])   (see later)

o Collision with an already existing S or R entry?  Conflict!!

3. For each DFA state containing  [S’ S.|--]  
o enter  A   in  ACTION[ i, |-- ]   (accept).  NB - Conflict?  (as in 2.)

ACTION table:

state |-- ,     a    b

0 X   X   S4 S5
1 A  S2 *     *
2 X   X   S4  S5
3 R1 R1   *     *
4 R3 R3   *     *
5 R4 R4   *     * 
6 R2 R2   *     *
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From DFA to parser tables:  GOTO Table
Summary
1. For each DFA transition   Ii  Ij reading nonterminal A

(i.e.,  Ii contains an item  [X  α.Aβ])
o enter   GOTO[ i , A ]  =  j

GOTO table:

state L     E

0             1     6
1             *      *
2             *      3
3             *      *
4             *      *
5             *      *
6             *      *
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TDDD55 Compilers and Interpreters

TDDE66 Compiler Construction

Conflicts and Categories
of LR Grammars and Parsers
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Conflict Examples in LR Grammars
 Shift – Reduce conflict:

o E  id + E         (shift +)
|   id               (reduce id)

 Reduce – Reduce conflict:
o E  id               (reduce id)

Pcall  id          (reduce id)

 (Shift – Accept conflict)
o S’  L               (accept)

L  L , E           (shift ,)
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Conflicts in LR Grammars
Observe conflicts in DFA (GOTO graph) kernels 

or at the latest when filling the ACTION table.

 Shift-Reduce conflict
o A DFA accepting state has an outgoing transition,

i.e. contains items [Xα.] and [Yβ.Zγ]  for some Z in NUΣ
 Reduce-Reduce conflict

o A DFA accepting state can reduce for multiple nonterminals,
i.e. contains at least 2 items [Xα.] and [Yβ.],  X != Y

 (Shift/Reduce-Accept conflict)
o A DFA accepting state containing [S’S.|--] contains 

another item [XαS.]  or  [XαS.bβ]

Only for LR(0) grammars there are no conflicts.
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Handling Conflicts in LR Grammars
(Overview):
 Use lookahead  

o if lucky, the LR(0) states + a few fixed lookahead sets are 
sufficient to eliminate all conflicts in the LR(0)-DFA 
SLR(1), LALR(1)

o otherwise, use LR(1) items  [Xα.β, a]   (a is look-ahead)   
to build new, larger NFA/DFA
expensive  (many items/states  very large tables)

o if still conflicts, may try again with k>1  even larger tables
 Rewrite the grammar (factoring / expansion) and retry...
 If nothing helps, re-design your language syntax 

o Some grammars are not LR(k) for any constant k
and cannot be made LR(k) by rewriting either
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Look-Ahead (LA) Sets
 For a LR(0) item  [X → α.β] in DFA-state Ii, define

lookahead set LA( Ii, [X → α.β] )    (a subset of Σ)

For SLR(1), LALR(1) etc., the LA sets only differ for reduce items:

 For SLR(1):
LASLR( Ii, [X → α.] ) = { a in Σ:  S’ =>* βXaγ } = FOLLOW1( X )
for all Ii with [X → α.] in Ii
o depends on nonterminal X only, not on state Ii

 For LALR(1):
LALALR( Ii, [X → α.] ) = { a in Σ:  S’ =>* βXaw  and the

LR(0)-DFA started in I0 reaches Ii after reading βα } 
o usually a subset of FOLLOW1( X ), i.e. of SLR LA set
o depends on state Ii
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Made it simple:
Is my grammar SLR(1) ?
 Construct the (LR(0)-item) characteristic NFA 

and its equivalent DFA (= GOTO graph) as above.
 Consider all conflicts in the DFA states:

o Shift-Reduce:

Consider all pairs of conflicting items  [Xα.],  [Yβ.bγ]:
If  b in FOLLOW1(X) for any of these    not SLR(1).

o Reduce-Reduce:

Consider all pairs of conflicting items  [Xα.], [Yβ.]:
If  FOLLOW1(X) intersects with FOLLOW1(Y)   not SLR(1).

o (Shift-Accept:  similar to Shift-Reduce)

[X  α.]
[Y  β.bγ]
...

...b

[X  α.]
[Y  β.]
...
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Example:  L-Values in C Language
 L-values on left hand side of assignment. 

Part of a C grammar:
1. S’ → S
2. S → L = R
3. |   R
4. L → *R
5. |   id
6. R → L 

 Avoids that R  (for R-values) appears as LHS of assignments
 But *R = ... is ok. 

 This grammar is LALR(1) but not SLR(1):
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Example  (cont.)
LR(0) parser has a shift-reduce conflict in kernel of state I2:
 I0 =  { [S’.S],  [S.L=R],  [S.R],  [L.*R],  [L.id], R.L] }
 I1 =  { [S’->S.] }
 I2 =  { [S->L.=R],  [R->L.] }
 I3 =  { [S->R.] }
 I4 =  { [L->*.R],  [R->.L], [L->.*R],  [L->.id] }
 I5 =  { [L->id.] }
 I6 =  { [S->L=.R],  [R->.L],  [L->.*R],  L->.id] }
 I7 =  { [L->*R.] }
 I8 =  { [R->L.] }
 I9 =  { [S->L=R.] }
FOLLOW1(R) = { |− , = }    SLR(1) still shift-reduce conflict in I2

as = does not disambiguate

Shift = or reduce to R?
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Example (cont.)
 I0 =  {  [S’->.S],  [S->.L=R],  [S->.R],  [L->.*R],  [L->.id], R->.L] }
 I1 =  { [S’->S.] }
 I2 =  { [S->L.=R],  [R->L.] }
 I3 =  { [S->R.] }
 I4 =  { [L->*.R],  [R->.L], [L->.*R],  [L->.id] }
 I5 =  { [L->id.] }
 I6 =  { [S->L=.R],  [R->.L],  [L->.*R],  L->.id] }
 I7 =  { [L->*R.] }
 I8 =  { [R->L.] }
 I9 =  { [S->L=R.] }
LALALR ( I2, [R->L.] ) = { |− }     LALR(1) parser is conflict-free

as computation path I0...I2 does not really allow = following R.  
= can only occur after R if ”*R” was encountered before.
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LALR(1) Parser Construction
Method 1: (simple but not practical)
1. Construct the LR(1) items  (see later).  (If there is already a conflict, stop.)
2. Look for sets of LR(1) items that have the same kernel,

and merge them.
3. Construct the ACTION table as for LR(1).

If a conflict is detected, the grammar is not LALR(1).
4. Construct the GOTOgraph function:

For each merged J = I1 U I2 U ... U Ir,
the kernels of GOTOgr(I1,X), ..., GOTOgr(Ir,X) are identical because the 
kernels of I1,...,Ir are identical.
Set GOTOgr( J, X ) := U { I:  I has the same kernel as GOTOgr(I1,X) }

Method 2: (practical, used)    (details see textbook)
1. Start from LR(0) items and construct kernels of DFA states I0, I1, ...
2. Compute lookahead sets by propagation along the GOTOgr(Ij,X) edges 

(fixed point iteration).
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Solve Conflicts by Rewriting the Grammar
 Eliminate Reduce-Reduce Conflict:

Factoring

 Eliminate Shift-Reduce Conflict:     (one token lookahead: ’(’ )
Inline-Expansion   

S  ( A )  |  ( B ) 

A  char | integer | ident

B  float | double | ident

S  ( A )  |  ( B )  |  ( C )

A  char | integer

B  float | double

C  ident

[A  ident . ]
[B  ident . ]
... factor

ident

S  ( A )  |  OptY ( B ) 

OptY  Y | ε

Y  ...
A  ...    
B  ...

[S  . ( A ) ]
[S  . OptY ( B) ]
[OptY  .Y ]
[OptY  .ε ]
[OptY  ε . ]
[Y  ... ]  ...

expand
OptY

S  ( A )  |  ( B ) 
|  Y ( B )

Y  ...
A  ...    
B  ...
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LR(k) Grammar   - Formal Definition
 Let G’ be the augmented grammar for G

(i.e., extended by new start symbol  S’ 
and production rule  S’ −> S |-- )

 G is called  a  LR(k) grammar if
o S’  rm=>*  αXw  rm=>  αβw        and
o S’  rm=>*   γYx   rm=>  αβy         and
o w[1:k] = y[1:k]
imply  that   α = γ and  X = Y and   x = y = w.

Remark:    w, x, y in Σ*        α, β, γ in (N U Σ)*        X, Y in N

i.e., considering at most k symbols after the handle,
in each rightmost derivation the handle can be localized

and the production to be applied can be determined.

p.116
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Some grammars are not LR(k) for any fixed k

 Example:         S   a B c
B   b B b

|   b
o describes language  { a b2N+1 c :  N >= 0 }

 This grammar is not LR(k) for any fixed k.

Proof: As k is fixed (constant), consider for any n > k:
o S  =>*   a bn B bn c  =>  a bn b bn c   
o S  =>*   a bn+1 B bn+1 c  =>  a bn+1 b bn+1 c
By the LR(k) definition,
o α = a bn β = b      w = bn c
o γ = a bn+1 β = b      y = bn+1 c
Although  w[1:k] = y[1:k],  we have  α != γ  grammar is not LR(k).

The handle cannot be 
localized with only limited 

lookahead size k
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No ambiguous grammar is LR(k) for any fixed k

 S   if E    then S
|    if E    then S   else S
|    other statements

...
is ambiguous – the following statement has 2 parse trees:

if E1   then if E2   then S1   else   S2

S

if E then S

elsethenif E SS

S1 S2E2

E1

S

if E then S else

thenif E

S

S

S1

S2

E2

E1
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(cont.)
 Consider situation  

(configuration of shift-reduce parser)

--|  ...  if E   then S else ... |--

 Not clear whether to
o shift  else    

(following production 2,  i.e.   if E then S is not handle),  or
o reduce handle if E then S to  S   (following production 1)

 Any fixed-size lookahead (else and beyond) does not help!

 Suggestion:  Rewrite grammar to make it unambiguous
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Rewriting the grammar...
S   MatchedS

|    OpenS
MatchedS  if E    then MatchedS   else MatchedS

|   other statements
OpenS   if E    then S

|    if E    then MatchedS   else OpenS
...

is no longer ambiguous

OpenS

if E then
S

elsethenif E Mat-SMat-S

S1 S2E2

E1

S

MatchedS

Impossible now to 
derive any sentential 
form containing an 
OpenS nonterminal 
from a MatchedS
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Some grammars are not LR(k) for any fixed k

 Grammar  with productions
S  a S a    |    ε

is unambiguous but not LR(k) for any fixed k. (Why?)

 An equivalent LR grammar for the same language is
S  a a S   |    ε
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LR(1) Items  and LR(k) Items
LR(k) parser:  Construction similar to LR(0) / SLR(1) parser, 

but plan for distinguishing between states for k>0 tokens 
lookahead already from the beginning  
o States in the LR(0) GOTO graph may be split up

 LR(1) items:
[ A->α.β , a ] for all productions A->αβ and  all a in Σ

 Can be combined for lookahead symbols with equal behavior:
[ A->α.β , a|b ] or [ A->α.β , L ]    for a subset L of Σ

 Generalized to k>1:
[ A->α.β , a1a2...ak ]

Interpretation of [ A->α.β , a ] in a state:
 If β not ε, ignore second component (as in LR(0))
 If β=ε, i.e. [ A->α. , a ],  reduce only if next input symbol = a.
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LR(1) Parser
 NFA start state is  [ S’->.S, |− ]
 Modify computation of Closure(I), GOTO(I,X) and the subset 

computation for LR(1) items 
o Details see [ASU86, p.232] or [ALSU06, p.261]

 Can have many more states than LR(0) parser
o Which may help to resolve some conflicts
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Interesting to know...
 For each LR(k) grammar with some constant k>1

there exists an equivalent* grammar G’ that is LR(1).

 For any LL(k) grammar there exists an equivalent LR(k) 
grammar  (but not vice versa!)
o e.g., language  { an bn: n>0 } U { an cn: n > 0 } 

has a LR(0) grammar 
but no LL(k) grammar for any constant k.

 Some grammars are LR(0) but not LL(k) for any k
o e.g., S  A b   

A  Aa  |  a       (left recursion, could be rewritten) 

* Two grammars are equivalent if they describe the same language.
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Thank you! Questions?

Next lecture: Semantics
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