
IDA, Linköpings universitet, 2024

TDDD55 Compilers and Interpreters

TDDE66 Compiler Construction

LR Parsing, Part 2

Constructing Parse Tables

Parse table construction

Grammar conflict handling

Categories of LR Grammars and Parsers

7.2TDDD55/TDDE66, IDA, LiU, 2024

Need to Automatically Construct
LR Parse Tables: Action and GOTO Table

Construct parse tables from the
grammar as follows:

 First build a GOTOgraph (an NFA)
to recognize viable prefixes

 Make it deterministic (DFA)
 Then fill in Action and Goto tables

ACTION table:

state |-- , a b

0 X X S4 S5
1 A S2 * *
2 X X S4 S5
3 R1 R1 * *
4 R3 R3 * *
5 R4 R4 * *
6 R2 R2 * *GOTO table:

state L E

0 1 6
1 * *
2 * 3
3 * *
4 * *
5 * *
6 * *

Example Grammar G

1. <L → L , E
2. | E
3. E → a
4. | b

7.3TDDD55/TDDE66, IDA, LiU, 2024

Classes of LR Parsers/Grammars
 LR(0) – Too weak (no lookahead)
 SLR(1) – Simple LR, 1 token lookahead
 LALR(1) – Most common, 1 token lookahead
 LR(1) – 1 token lookahead – big tables
 LR(k) – k tokens lookahead – Even bigger tables

Differences between LR parsers:
 Table size varies widely.
 Errors not discovered as quickly by some variants.
 Different limitations in the language definitions, grammars.

7.4TDDD55/TDDE66, IDA, LiU, 2024

An NFA Recognizing Viable Prefixes
A.k.a. the ”characteristic finite automaton” for a grammar G
 States: LR(0) items (= context-free items) of extended

Grammar (definition, see next page)
 Input stream: The grammar symbols on the stack
 Start state: [S’ → −|.S] Final state: [S’ → −|S.]
 Transitions:

o ”move dot across symbol” if symbol found next on stack:
A → α.Bγ to A → αB.γ
A → α.bγ to A → αb.γ

o ε-transitions to LR(0)-items for nonterminal productions
from items where the dot precedes that nonterminal:

A → α.Bγ to B →.β

118a

7.5TDDD55/TDDE66, IDA, LiU, 2024

Handle, Viable Prefix
 Consider a rightmost derivation S =>*

rm βXu =>rm βαu
for a context-free grammar G.

 α is called a handle of the right sentential form βαu,
associated with the rule X =>rm α

 Each prefix of βα is called a viable prefix of G.

Example: Grammar G with productions { S -> aSb | c }
 Right sentential forms: e.g. c, acb, aSb, aaaaaSbbbbb,
 For c: Handle: c Viable prefixes: ε, c
 For acb: Handle: c ε, a, ac
 For aSb: Handle: aSb ε, a, aS, aSb
 For aaSbb: Handle: aSb ε, a, aa, aaS, aaSb
 ...

7.6TDDD55/TDDE66, IDA, LiU, 2024

Right Derivation and Viable Prefixes
Input: a, b, a
Right derivation (handles are underlined, and blue)
<list> =>rm <list> , <element>

=>rm <list> , a
=>rm <list> , <element> , a
=>rm <list> , b , a
=>rm <element> , b, a
=>rm a , b, a

Some Viable prefixes of the sentential form: <list> , b, a
are
{ ε; <list> ; <list>, ; <list>, b ; <list>, b , ; <list>, b , a }

7.7TDDD55/TDDE66, IDA, LiU, 2024

Definition of LR(0) Item
 An LR(0) item of a rule P is a rule with a dot ’’•’’somewhere in

the right side.
Example:
 All LR(0) items of the production

1. <list> → <list> , <element>
are

<list> → • <list> , <element>
<list> → <list> • , <element>
<list> → <list> , • <element>
<list> → <list> , <element> •

 Intuitively an item is interpreted as how much of the rule we have found
and how much remains.

 Items are put together in sets which become the LR analyser’s state.

7.8TDDD55/TDDE66, IDA, LiU, 2024

Informal Construction of GOTO-Graph
(NFA/DFA)

We want to construct a DFA
which recognises all viable
prefixes of G(<SYS>):

Augmented Grammar G(<sys>)
0. <SYS> → <list> |−
1. <list> → <list> , <element>
2. | <element>
3. <element> → a
4. | b

GOTO-graph
(A GOTO-graph is not the
same as a GOTO-table but
corresponds to an ACTION +
GOTO-table.
The graph discovers viable
prefixes.)

<list> =>rm <list> , <element>
=>rm <list> , a
=>rm <list> , <element> , a
=>rm <list> , b , a
=>rm <element> , b, a
=>rm a , b, a

Example. Find viable prefixes in a
rightmost derivation below,

used for informal construction
of a goto graph

7.9TDDD55/TDDE66, IDA, LiU, 2024

We want to construct a DFA
which recognises all viable
prefixes of G(<SYS>):

Augmented Grammar G(<sys>)
0. <SYS> → <list> |−
1. <list> → <list> , <element>
2. | <element>
3. <element> → a
4. | b

GOTO-graph
(A GOTO-graph is not the
same as a GOTO-table but
corresponds to an ACTION +
GOTO-table.
The graph discovers viable
prefixes.)

0 3
start <list>

21

6

4

5

<element>

a

b

a

b

, <element>

<SYS> → <list> | <list> → <list> , <element>

<element> → a

<element> → b

<list> → <element>

Example righmost derivation
<list> =>rm
 <list> , <element>
=>rm <list> , a
=>rm <list> , <element> , a
=>rm <list> , b , a
=>rm <element> , b, a
=>rm a , b, a

Informal Construction of GOTO-Graph
(NFA/DFA)

7.10TDDD55/TDDE66, IDA, LiU, 2024

Constructing Sets of LR(0) Items
<SYS> → • <list> |-- Kernel (Basis)

<list> → • <list> , <element>
<list> → • <element>
<element> → • a
<element> → • b

Additional
Closure
(of kernel
items)

<SYS> → <list> • |--
<list> → <list> • , <element>

Kernel (Basis)

(empty closure as ’’•’’
precedes terminals |-- and ,)

Additional
Closure

<list> → <list> , • <element> Kernel (Basis)

<element> → • a
<element> → • b

Additional
Closure

Set I0

Set I1

Set I2

Set I3, etc.

Augmented Grammar
G(<sys>)

0. <SYS>→ <list> |−
1. <list> → <list , <element>
2. | <element>
3. <element> → a
4. | b

7.11TDDD55/TDDE66, IDA, LiU, 2024

GOTO Graph with States as
Sets of LR(0) Items

I0
S → • L |
L → •L , E
L → •E
E → •a
E → •b

I1
S → L •

I2
L → L , • E
E → • a
E → • b

I4
E → a •

I5
E → b •

I6
L → E •

start
L ,

E

a

b

a

bb

I3|−
L → L • , E

,
Based on the
canonical collection
of LR(0) items draw
the GOTO graph.

The GOTO graph discovers
those prefixes of right
sentential forms which have
(at most) one handle
furthest to the right in the
prefix.

Example Grammar
1. L → L , E
2. L → E
3. E → a
4. E → b

7.12TDDD55/TDDE66, IDA, LiU, 2024

Fill in Action Table from GOTO Graph

i j

a

Ii Ij

i shift j

a

1. If there is an item
<A> → α • a β ∈ Ii
and
GOTOgraph(Ii , a) = Ij

Fill in shift j for row i and
column for symbol a.

Nonterminals

State number

2. If there is a complete item
 (i.e., ends in a dot ’’•’’):
<A> → α• ∈ Ii
Fill in reduce x where
x is the production number for
x: <A> → α

3. If we have
<SYS> → <S> • |--
accept the symbol |--

4. Otherwise error.

Ii : state i (line i, itemset i)

Filled in Action table

state |-- , a b

0 X X S4 S5
1 A S2 * *
2 X X S4 S5
3 R1 R1 * *
4 R3 R3 * *
5 R4 R4 * *
6 R2 R2 * *

ACTION table:

7.13TDDD55/TDDE66, IDA, LiU, 2024

Table Differences LR(0), SLR(1), LALR(1)

In which column(s) should reduce x be written?

LR(0) fills in for all input.

SLR(1) fills in for all input in FOLLOW(<A>).

LALR(1) fills in for all those that can follow a certain instance of <A>,

see later

7.14TDDD55/TDDE66, IDA, LiU, 2024

Filling in the GOTO Table

i j

<A>

<A> → α • ∈ Ii
If the GOTOgraph(Ii , <A>) = Ij
fill in GOTOtable[i, <A>] = j

Nonterminals

State number

i j

<A>

Ii Ij

Filled in GOTO
table:

state L E

0 1 6
1 * *
2 * 3
3 * *
4 * *
5 * *
6 * *

GOTO table:

Example Grammar
1. L → L , E
2. L → E
3. E → a
4. E → b

7.15TDDD55/TDDE66, IDA, LiU, 2024

Computing the LR(0) Item Closure
(Detailed Algorithm)
For a set I of LR(0) items compute Closure(I) (union of Kernel and Closure):
1. Closure(I) := I (start with the kernel)
2. If ∃ [A→α.Bβ] in Closure(I)

and ∃ production B → γ
then add [B →.γ] to Closure(I) (if not already there)

3. Repeat Step 2 until no more items can be added to Closure(I).

Remarks:
 For s=[A → α.Bγ], Closure(s) contains all NFA states reachable

from s via ε-transitions, i.e., starting from which any substring derivable
from Bβ could be recognized. A.k.a. ε-closure(s).

 Then apply the well-known subset construction
to transform Closure-NFA -> DFA.

 DFA states will be sets unioning closures of NFA states

7.16TDDD55/TDDE66, IDA, LiU, 2024

Representing Sets of Items
Implementation in Parser Generator
 Any item [A → α.β] can be represented by 2 integers:

o production number
o position of the dot within the RHS of that production

 The resulting sets often contain ”closure” items (where the dot
is at the beginning of the RHS).
o Can easily be reconstructed (on demand)

from other (”kernel”) items
Kernel items: start state [S’ → −|.S], plus all items

where the dot is not at the left end.
o Store only kernel items explicitly, to save space

118c

7.17TDDD55/TDDE66, IDA, LiU, 2024

GOTOgraph Function and DFA States
Detailed algorithm
Given: Set I of items, grammar symbol X

 GOTOgr(I, X) := U [A→α.Xβ] in I Closure ({ [A → αX.β] })
o To become the state transitions in the DFA

 Now do the subset construction to obtain the DFA states:
C := Closure({ [S’ → −|.S] }) // C: Set of sets of NFA states

repeat
for each set of items I of C:

for each grammar symbol X
if (GOTOgr(I,X) is not empty and not in C)

add GOTOgr(I,X) to C
until no new states are added to C on a round.

7.18TDDD55/TDDE66, IDA, LiU, 2024

Resulting DFA
 All states correspond to some viable prefix
 Final states: contain at least one item with dot to the right

o recognized some handle  reduce may (must) follow
 Other states: handle recognition incomplete -> shift will follow
 The DFA is also called the GOTO graph

(not the same as the LR GOTO Table!!).

 This automaton is deterministic as a FA (i.e., selecting
transitions considering only input symbol consumption)
but can still be nondeterministic as a pushdown automaton
(e.g., in state I1 above: to reduce or not to reduce?)

120b

7.19TDDD55/TDDE66, IDA, LiU, 2024

From DFA to parser tables: ACTION
Detailed Algorithm, Summary
1. For each DFA transition Ii  Ij reading a terminal a in Σ

(thus, Ii contains items of kind [X α.aβ])
o enter S j (shift, new state Ij) in ACTION[i, a]

2. For each DFA final state Ii
(containing a complete item [X α.])
o enter R x

(reduce, x = prod. rule number for X α)
in ACTION[i, t] ...
 LR(0) parser: for all t in Σ (all entries in row i)
 SLR(1) parser: for all t in LASLR(i,[X α.]) = FOLLOW1(X)
 LALR(1) parser: for all t in LALALR(i,[X α.]) (see later)

o Collision with an already existing S or R entry? Conflict!!

3. For each DFA state containing [S’ S.|--]
o enter A in ACTION[i, |--] (accept). NB - Conflict? (as in 2.)

ACTION table:

state |-- , a b

0 X X S4 S5
1 A S2 * *
2 X X S4 S5
3 R1 R1 * *
4 R3 R3 * *
5 R4 R4 * *
6 R2 R2 * *

7.20TDDD55/TDDE66, IDA, LiU, 2024

From DFA to parser tables: GOTO Table
Summary
1. For each DFA transition Ii  Ij reading nonterminal A

(i.e., Ii contains an item [X  α.Aβ])
o enter GOTO[i , A] = j

GOTO table:

state L E

0 1 6
1 * *
2 * 3
3 * *
4 * *
5 * *
6 * *

IDA, Linköpings universitet, 2024

TDDD55 Compilers and Interpreters

TDDE66 Compiler Construction

Conflicts and Categories
of LR Grammars and Parsers

7.22TDDD55/TDDE66, IDA, LiU, 2024

Conflict Examples in LR Grammars
 Shift – Reduce conflict:

o E  id + E (shift +)
| id (reduce id)

 Reduce – Reduce conflict:
o E  id (reduce id)

Pcall  id (reduce id)

 (Shift – Accept conflict)
o S’  L (accept)

L  L , E (shift ,)

7.23TDDD55/TDDE66, IDA, LiU, 2024

Conflicts in LR Grammars
Observe conflicts in DFA (GOTO graph) kernels

or at the latest when filling the ACTION table.

 Shift-Reduce conflict
o A DFA accepting state has an outgoing transition,

i.e. contains items [Xα.] and [Yβ.Zγ] for some Z in NUΣ
 Reduce-Reduce conflict

o A DFA accepting state can reduce for multiple nonterminals,
i.e. contains at least 2 items [Xα.] and [Yβ.], X != Y

 (Shift/Reduce-Accept conflict)
o A DFA accepting state containing [S’S.|--] contains

another item [XαS.] or [XαS.bβ]

Only for LR(0) grammars there are no conflicts.

7.24TDDD55/TDDE66, IDA, LiU, 2024

Handling Conflicts in LR Grammars
(Overview):
 Use lookahead

o if lucky, the LR(0) states + a few fixed lookahead sets are
sufficient to eliminate all conflicts in the LR(0)-DFA
SLR(1), LALR(1)

o otherwise, use LR(1) items [Xα.β, a] (a is look-ahead)
to build new, larger NFA/DFA
expensive (many items/states  very large tables)

o if still conflicts, may try again with k>1  even larger tables
 Rewrite the grammar (factoring / expansion) and retry...
 If nothing helps, re-design your language syntax

o Some grammars are not LR(k) for any constant k
and cannot be made LR(k) by rewriting either

7.25TDDD55/TDDE66, IDA, LiU, 2024

Look-Ahead (LA) Sets
 For a LR(0) item [X → α.β] in DFA-state Ii, define

lookahead set LA(Ii, [X → α.β]) (a subset of Σ)

For SLR(1), LALR(1) etc., the LA sets only differ for reduce items:

 For SLR(1):
LASLR(Ii, [X → α.]) = { a in Σ: S’ =>* βXaγ } = FOLLOW1(X)
for all Ii with [X → α.] in Ii
o depends on nonterminal X only, not on state Ii

 For LALR(1):
LALALR(Ii, [X → α.]) = { a in Σ: S’ =>* βXaw and the

LR(0)-DFA started in I0 reaches Ii after reading βα }
o usually a subset of FOLLOW1(X), i.e. of SLR LA set
o depends on state Ii

7.26TDDD55/TDDE66, IDA, LiU, 2024

Made it simple:
Is my grammar SLR(1) ?
 Construct the (LR(0)-item) characteristic NFA

and its equivalent DFA (= GOTO graph) as above.
 Consider all conflicts in the DFA states:

o Shift-Reduce:

Consider all pairs of conflicting items [Xα.], [Yβ.bγ]:
If b in FOLLOW1(X) for any of these  not SLR(1).

o Reduce-Reduce:

Consider all pairs of conflicting items [Xα.], [Yβ.]:
If FOLLOW1(X) intersects with FOLLOW1(Y)  not SLR(1).

o (Shift-Accept: similar to Shift-Reduce)

[X  α.]
[Y  β.bγ]
...

...b

[X  α.]
[Y  β.]
...

7.27TDDD55/TDDE66, IDA, LiU, 2024

Example: L-Values in C Language
 L-values on left hand side of assignment.

Part of a C grammar:
1. S’ → S
2. S → L = R
3. | R
4. L → *R
5. | id
6. R → L

 Avoids that R (for R-values) appears as LHS of assignments
 But *R = ... is ok.

 This grammar is LALR(1) but not SLR(1):

7.28TDDD55/TDDE66, IDA, LiU, 2024

Example (cont.)
LR(0) parser has a shift-reduce conflict in kernel of state I2:
 I0 = { [S’.S], [S.L=R], [S.R], [L.*R], [L.id], R.L] }
 I1 = { [S’->S.] }
 I2 = { [S->L.=R], [R->L.] }
 I3 = { [S->R.] }
 I4 = { [L->*.R], [R->.L], [L->.*R], [L->.id] }
 I5 = { [L->id.] }
 I6 = { [S->L=.R], [R->.L], [L->.*R], L->.id] }
 I7 = { [L->*R.] }
 I8 = { [R->L.] }
 I9 = { [S->L=R.] }
FOLLOW1(R) = { |− , = }  SLR(1) still shift-reduce conflict in I2

as = does not disambiguate

Shift = or reduce to R?

7.29TDDD55/TDDE66, IDA, LiU, 2024

Example (cont.)
 I0 = { [S’->.S], [S->.L=R], [S->.R], [L->.*R], [L->.id], R->.L] }
 I1 = { [S’->S.] }
 I2 = { [S->L.=R], [R->L.] }
 I3 = { [S->R.] }
 I4 = { [L->*.R], [R->.L], [L->.*R], [L->.id] }
 I5 = { [L->id.] }
 I6 = { [S->L=.R], [R->.L], [L->.*R], L->.id] }
 I7 = { [L->*R.] }
 I8 = { [R->L.] }
 I9 = { [S->L=R.] }
LALALR (I2, [R->L.]) = { |− }  LALR(1) parser is conflict-free

as computation path I0...I2 does not really allow = following R.
= can only occur after R if ”*R” was encountered before.

7.30TDDD55/TDDE66, IDA, LiU, 2024

LALR(1) Parser Construction
Method 1: (simple but not practical)
1. Construct the LR(1) items (see later). (If there is already a conflict, stop.)
2. Look for sets of LR(1) items that have the same kernel,

and merge them.
3. Construct the ACTION table as for LR(1).

If a conflict is detected, the grammar is not LALR(1).
4. Construct the GOTOgraph function:

For each merged J = I1 U I2 U ... U Ir,
the kernels of GOTOgr(I1,X), ..., GOTOgr(Ir,X) are identical because the
kernels of I1,...,Ir are identical.
Set GOTOgr(J, X) := U { I: I has the same kernel as GOTOgr(I1,X) }

Method 2: (practical, used) (details see textbook)
1. Start from LR(0) items and construct kernels of DFA states I0, I1, ...
2. Compute lookahead sets by propagation along the GOTOgr(Ij,X) edges

(fixed point iteration).

7.31TDDD55/TDDE66, IDA, LiU, 2024

Solve Conflicts by Rewriting the Grammar
 Eliminate Reduce-Reduce Conflict:

Factoring

 Eliminate Shift-Reduce Conflict: (one token lookahead: ’(’)
Inline-Expansion

S  (A) | (B)

A  char | integer | ident

B  float | double | ident

S  (A) | (B) | (C)

A  char | integer

B  float | double

C  ident

[A  ident .]
[B  ident .]
... factor

ident

S  (A) | OptY (B)

OptY  Y | ε

Y  ...
A  ...
B  ...

[S  . (A)]
[S  . OptY (B)]
[OptY  .Y]
[OptY  .ε]
[OptY  ε .]
[Y  ...] ...

expand
OptY

S  (A) | (B)
| Y (B)

Y  ...
A  ...
B  ...

7.32TDDD55/TDDE66, IDA, LiU, 2024

LR(k) Grammar - Formal Definition
 Let G’ be the augmented grammar for G

(i.e., extended by new start symbol S’
and production rule S’ −> S |--)

 G is called a LR(k) grammar if
o S’ rm=>* αXw rm=> αβw and
o S’ rm=>* γYx rm=> αβy and
o w[1:k] = y[1:k]
imply that α = γ and X = Y and x = y = w.

Remark: w, x, y in Σ* α, β, γ in (N U Σ)* X, Y in N

i.e., considering at most k symbols after the handle,
in each rightmost derivation the handle can be localized

and the production to be applied can be determined.

p.116

7.33TDDD55/TDDE66, IDA, LiU, 2024

Some grammars are not LR(k) for any fixed k

 Example: S  a B c
B  b B b

| b
o describes language { a b2N+1 c : N >= 0 }

 This grammar is not LR(k) for any fixed k.

Proof: As k is fixed (constant), consider for any n > k:
o S =>* a bn B bn c => a bn b bn c
o S =>* a bn+1 B bn+1 c => a bn+1 b bn+1 c
By the LR(k) definition,
o α = a bn β = b w = bn c
o γ = a bn+1 β = b y = bn+1 c
Although w[1:k] = y[1:k], we have α != γ  grammar is not LR(k).

The handle cannot be
localized with only limited

lookahead size k

7.34TDDD55/TDDE66, IDA, LiU, 2024

No ambiguous grammar is LR(k) for any fixed k

 S  if E then S
| if E then S else S
| other statements

...
is ambiguous – the following statement has 2 parse trees:

if E1 then if E2 then S1 else S2

S

if E then S

elsethenif E SS

S1 S2E2

E1

S

if E then S else

thenif E

S

S

S1

S2

E2

E1

7.35TDDD55/TDDE66, IDA, LiU, 2024

(cont.)
 Consider situation

(configuration of shift-reduce parser)

--| ... if E then S else ... |--

 Not clear whether to
o shift else

(following production 2, i.e. if E then S is not handle), or
o reduce handle if E then S to S (following production 1)

 Any fixed-size lookahead (else and beyond) does not help!

 Suggestion: Rewrite grammar to make it unambiguous

7.36TDDD55/TDDE66, IDA, LiU, 2024

Rewriting the grammar...
S  MatchedS

| OpenS
MatchedS  if E then MatchedS else MatchedS

| other statements
OpenS  if E then S

| if E then MatchedS else OpenS
...

is no longer ambiguous

OpenS

if E then
S

elsethenif E Mat-SMat-S

S1 S2E2

E1

S

MatchedS

Impossible now to
derive any sentential
form containing an
OpenS nonterminal
from a MatchedS

7.37TDDD55/TDDE66, IDA, LiU, 2024

Some grammars are not LR(k) for any fixed k

 Grammar with productions
S  a S a | ε

is unambiguous but not LR(k) for any fixed k. (Why?)

 An equivalent LR grammar for the same language is
S  a a S | ε

7.38TDDD55/TDDE66, IDA, LiU, 2024

LR(1) Items and LR(k) Items
LR(k) parser: Construction similar to LR(0) / SLR(1) parser,

but plan for distinguishing between states for k>0 tokens
lookahead already from the beginning
o States in the LR(0) GOTO graph may be split up

 LR(1) items:
[A->α.β , a] for all productions A->αβ and all a in Σ

 Can be combined for lookahead symbols with equal behavior:
[A->α.β , a|b] or [A->α.β , L] for a subset L of Σ

 Generalized to k>1:
[A->α.β , a1a2...ak]

Interpretation of [A->α.β , a] in a state:
 If β not ε, ignore second component (as in LR(0))
 If β=ε, i.e. [A->α. , a], reduce only if next input symbol = a.

7.39TDDD55/TDDE66, IDA, LiU, 2024

LR(1) Parser
 NFA start state is [S’->.S, |−]
 Modify computation of Closure(I), GOTO(I,X) and the subset

computation for LR(1) items
o Details see [ASU86, p.232] or [ALSU06, p.261]

 Can have many more states than LR(0) parser
o Which may help to resolve some conflicts

7.40TDDD55/TDDE66, IDA, LiU, 2024

Interesting to know...
 For each LR(k) grammar with some constant k>1

there exists an equivalent* grammar G’ that is LR(1).

 For any LL(k) grammar there exists an equivalent LR(k)
grammar (but not vice versa!)
o e.g., language { an bn: n>0 } U { an cn: n > 0 }

has a LR(0) grammar
but no LL(k) grammar for any constant k.

 Some grammars are LR(0) but not LL(k) for any k
o e.g., S  A b

A  Aa | a (left recursion, could be rewritten)

* Two grammars are equivalent if they describe the same language.

7.41TDDD55/TDDE66, IDA, LiU, 2024

Thank you! Questions?

Next lecture: Semantics

	LR Parsing, Part 2�� Constructing Parse Tables
	Need to Automatically Construct�LR Parse Tables: Action and GOTO Table
	Classes of LR Parsers/Grammars
	An NFA Recognizing Viable Prefixes
	Handle, Viable Prefix
	Right Derivation and Viable Prefixes
	Definition of LR(0) Item
	 Informal Construction of GOTO-Graph (NFA/DFA)
	 Informal Construction of GOTO-Graph (NFA/DFA)
	Constructing Sets of LR(0) Items
	GOTO Graph with States as �Sets of LR(0) Items
	Fill in Action Table from GOTO Graph
	Table Differences LR(0), SLR(1), LALR(1)
	Filling in the GOTO Table
	Computing the LR(0) Item Closure�(Detailed Algorithm)
	Representing Sets of Items�Implementation in Parser Generator
	GOTOgraph Function and DFA States�Detailed algorithm
	Resulting DFA
	From DFA to parser tables: ACTION�Detailed Algorithm, Summary
	From DFA to parser tables: GOTO Table�Summary
	Conflicts and Categories� of LR Grammars and Parsers
	Conflict Examples in LR Grammars
	Conflicts in LR Grammars
	Handling Conflicts in LR Grammars
	Look-Ahead (LA) Sets
	Made it simple:�Is my grammar SLR(1) ?
	Example: L-Values in C Language
	Example (cont.)
	Example (cont.)
	LALR(1) Parser Construction
	Solve Conflicts by Rewriting the Grammar
	LR(k) Grammar - Formal Definition
	Some grammars are not LR(k) for any fixed k
	No ambiguous grammar is LR(k) for any fixed k
	(cont.)
	Rewriting the grammar...
	Some grammars are not LR(k) for any fixed k
	LR(1) Items and LR(k) Items
	LR(1) Parser
	Interesting to know...
	Slide Number 41

