
IDA, Linköpings universitet, 2024

TDDD55 Compilers and interpreters
TDDE66 Compiler Construction

Finite Automata

Extra slide material for
interested students. Not
included in the regular course.

2b.2TDDD55/TDDE66, IDA, LIU, 2024.

Why automata models?
 Automaton: Strongly limited computation model

compared to ordinary computer programs

A weak model (with many limitations) ...
 allows to do static analysis

o e.g. on termination (decidable for finite automata)
o which is not generally possible with a general computation

model
 is easy to implement in a general-purpose programming model

o e.g. scanner generation/coding, parser generation/coding
o source code generation from UML statecharts

 Generally, we are interested in the weakest machine model
(automaton model) that is still able to recognize a class of
languages.

2b.3TDDD55/TDDE66, IDA, LIU, 2024.

Transition table
δ

Finite Automaton / Finite State Machine
 Given by quintuple (Σ, S, s0 in S, subset F of S, δ)

a := b + c $

s1

read-only
head
(current pos.)

input string,
”tape”
string over
alphabet Σ

s0

s4

s3

s2

Transitions in δ are tuples
((current state, input symbol),

(new state))

Given as entries in transition table

or as edges in a transition diagram
(directed graph)

finite
control

EOF token

current state
current
state

input
symbol
read

new
state

s0 a s1

s1 b s1

...

direction of moving

Set S = { s0, s1, ..., sk }
of a finite number of states

some of them may be
accepting (final) states (F)

2b.4TDDD55/TDDE66, IDA, LIU, 2024.

Computation of a Finite Automaton
 Initial configuration:

o current state := start state s0
o read head points to first symbol of the input string

 1 computation step:
o read next input symbol, t
o look up δ for entry (current state, t, new state)

to determine new state
o current state := new state
o move read head forward to next symbol on tape
o if all symbols consumed and new state is a final state:

accept and halt
o otherwise repeat

2b.5TDDD55/TDDE66, IDA, LIU, 2024.

NFA and DFA
NFA (Nondeterministic Finite Automaton)
 ”empty moves” (reading ε) with state change are possible,

i.e. entries (si, ε, sj) may exist in δ
 ambiguous state transitions are possible,

i.e. entries (si, t, sj) and (si, t, sl) may exist in δ
NFA accepts input string if there exists a computation (i.e., a

sequence of state transitions) that leads to ”accept and halt”

DFA (Deterministic Finite Automaton)
 No ε-transitions, no ambiguous transitions (δ is a function)
 Special case of a NFA

2b.6TDDD55/TDDE66, IDA, LIU, 2024.

DFA Example
 DFA with

Alphabet Σ = { 0, 1 }
State set S = { s0, s1 }
initial state: s0
F = { s1 }
δ = { (s0, 0, s0),

(s0, 1, s1),
(s1, 0, s1),
(s1, 1, s0) }

 recognizes (accepts)
strings containing an odd
number of 1s

s0 s1

0 0

1

1

Computation for input string 10110:

s0 read 1
s1 read 0
s1 read 1
s0 read 1
s1 read 0
s1 accept

2b.7TDDD55/TDDE66, IDA, LIU, 2024.

From regular expression to code
4 Steps:
 For each regular expression r there exists a NFA that accepts

Lr [Thompson 1968 - see whiteboard]
 For each NFA there exists a DFA accepting the same

language
 For each DFA there exists a minimal DFA (min. #states) that

accepts the same language
 From a DFA, equivalent source code can be generated.

[Lecture on Scanners]

2b.8TDDD55/TDDE66, IDA, LIU, 2024.

Theorem: For each regular expression r there
exists an NFA that accepts Lr [Thompson 1968]

Proof: By induction,
following the inductive construction of regular expressions

Divide-and-conquer strategy to construct NFA(r):
0. if r is trivial (base case): construct NFA(r) directly, else:
1. decompose r into its constituent subexpressions r1, r2...
2. recursively construct NFA(r1), NFA(r2), ...
3. compose these to NFA(r) according to decomposition of r

2 base cases:
Case 1: r = ε: NFA(r) =

 with i = new start state, f = final state of NFA(r)
 NFA(r) recognizes L(ε) = { ε }.

Case 2: r = a for a in Σ: NFA(r) =

 recognizes L(a) = { a }.

i f
ε

i f
a

2b.9TDDD55/TDDE66, IDA, LIU, 2024.

(cont.)
4 recursive decomposition cases:
Case 3: r = r1 | r2: By Ind.-hyp. exist NFA(r1), NFA(r2)

 NFA(r) =

 recognizes L(r1 | r2) = L(r1) U L(r2)

Case 4: r = r1 . r2: By Ind.-hyp. exist NFA(r1), NFA(r2)

 NFA(r) =

 recognizes L(r1 . r2) = L(r1) . L(r2)

2b.10TDDD55/TDDE66, IDA, LIU, 2024.

(cont.)
Case 5: r = r1*: By ind.-hyp. exists NFA(r1)

 NFA(r) =

 recognizes L(r1*) = (L(r1))*.
 (similarly for r = r1

+)

Case 6: Parentheses: r = (r1)

 NFA(r) =

 (no modifications).

The theorem follows by induction.

	Finite Automata
	Why automata models?
	Finite Automaton / Finite State Machine
	Computation of a Finite Automaton
	NFA and DFA
	DFA Example
	From regular expression to code
	Theorem: For each regular expression r there �exists an NFA that accepts Lr [Thompson 1968]
	(cont.)
	(cont.)

