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TDDD55 Compilers and interpreters
TDDE66 Compiler Construction

Finite Automata

Extra slide material for 
interested students. Not 
included in the regular course.



2b.2TDDD55/TDDE66, IDA, LIU, 2024.

Why automata models?
 Automaton:  Strongly limited computation model

compared to ordinary computer programs

A weak model (with many limitations) ...
 allows to do static analysis

o e.g. on termination  (decidable for finite automata)
o which is not generally possible with a general computation 

model  
 is easy to implement in a general-purpose programming model

o e.g. scanner generation/coding, parser generation/coding
o source code generation from UML statecharts

 Generally, we are interested in the weakest machine model 
(automaton model) that is still able to recognize a class of 
languages.
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Transition table
δ

Finite Automaton / Finite State Machine
 Given by quintuple  ( Σ,  S,  s0 in S,  subset F of S,  δ )

a := b + c $

s1

read-only 
head
(current pos.)

input string, 
”tape” 
string over 
alphabet Σ

s0

s4

s3

s2

Transitions in δ are tuples
( (current state, input symbol),  

(new state) )

Given as entries in transition table

or as edges in a transition diagram 
(directed graph)

finite 
control

EOF token

current state
current 
state

input 
symbol 
read

new 
state

s0 a s1

s1 b s1

... ... ...

direction of moving

Set  S = { s0, s1, ..., sk }
of a finite number of states

some of them may be 
accepting (final) states (F)
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Computation of a Finite Automaton
 Initial configuration:

o current state  :=  start state  s0
o read head points to first symbol of the input string

 1 computation step:
o read next input symbol,  t
o look up δ for entry  (current state,  t, new state)

to determine new state
o current state  :=  new state
o move read head forward to next symbol on tape
o if all symbols consumed and new state is a final state:

accept and halt
o otherwise repeat
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NFA and DFA
NFA  (Nondeterministic Finite Automaton)
 ”empty moves” (reading ε)  with state change are possible,

i.e.  entries  ( si, ε, sj )  may exist in  δ
 ambiguous state transitions are possible,

i.e.  entries ( si, t, sj ) and ( si, t, sl ) may exist in  δ
NFA accepts input string if there exists a computation (i.e., a 

sequence of state transitions) that leads to ”accept and halt”

DFA  (Deterministic Finite Automaton)
 No  ε-transitions,  no ambiguous transitions  (δ is a function)
 Special case of a NFA
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DFA Example
 DFA  with

Alphabet  Σ = { 0, 1 }
State set  S = { s0, s1 }
initial state: s0
F = { s1 }
δ = { (s0, 0, s0),

(s0, 1, s1),
(s1, 0, s1),
(s1, 1, s0) }

 recognizes (accepts) 
strings containing an odd 
number of 1s

s0 s1

0 0

1

1

Computation for input string 10110:

s0 read 1
s1 read 0
s1 read 1
s0 read 1
s1 read 0
s1 accept
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From regular expression to code
4 Steps:
 For each regular expression r there exists a NFA that accepts 

Lr [Thompson 1968  - see whiteboard]
 For each NFA there exists a DFA accepting the same 

language
 For each DFA there exists a minimal DFA  (min. #states) that 

accepts the same language
 From a DFA, equivalent source code can be generated. 

[Lecture on Scanners]
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Theorem:  For each regular expression r  there 
exists an NFA that accepts Lr    [Thompson 1968]

Proof:  By induction, 
following the inductive construction of regular expressions

Divide-and-conquer strategy to construct NFA(r):
0.  if r is trivial (base case):  construct NFA(r) directly, else:
1.  decompose r into its constituent subexpressions r1, r2...
2.  recursively construct NFA(r1),  NFA(r2), ...
3.  compose these to NFA(r) according to decomposition of r

2 base cases:
Case 1:  r = ε:  NFA(r)  =

                     with i = new start state,  f = final state of NFA(r) 
                     NFA(r)  recognizes  L(ε) = { ε }.

Case 2:  r = a for a in Σ:   NFA(r) =

                     recognizes L(a) = { a }.

i f
ε

i f
a
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(cont.)
4 recursive decomposition cases:
Case 3:  r = r1 | r2:      By Ind.-hyp. exist NFA(r1), NFA(r2)

           NFA(r)  =  

           recognizes L(r1 | r2)  = L(r1) U  L(r2)

Case 4:  r = r1 . r2:     By Ind.-hyp. exist NFA(r1), NFA(r2)

           NFA(r)  = 

           recognizes  L(r1 . r2)  = L(r1) . L(r2)
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(cont.)
Case 5:   r = r1*:        By ind.-hyp. exists NFA(r1)

            NFA(r)  =

            recognizes L(r1*) = (L(r1))*.
            (similarly for r = r1

+)

Case 6:   Parentheses:   r = (r1)

                NFA(r)  =

            (no modifications).

The theorem follows by induction.
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