TDDD55 Compilers and interpreters TDDE66 Compiler Construction

Finite Automata

Extra slide material for interested students. Not included in the regular course.

Why automata models?

- Automaton: Strongly limited computation model compared to ordinary computer programs
- A weak model (with many limitations) ...
- allows to do static analysis
 - o e.g. on termination (decidable for finite automata)
 - which is not generally possible with a general computation model
- □ is easy to implement in a general-purpose programming model
 - e.g. scanner generation/coding, parser generation/coding
 - source code generation from UML statecharts
- Generally, we are interested in the *weakest* machine model (automaton model) that is still able to recognize a class of languages. TDDD55/TDDE66, IDA, LIU, 2024.

Finite Automaton / Finite State Machine

Given by quintuple (Σ , S, s₀ in S, subset F of S, δ)

Computation of a Finite Automaton

Initial configuration:

- o current state := start state s0
- read head points to first symbol of the input string

□ 1 computation step:

- read next input symbol, t
- look up δ for entry (current state, *t*, new state) to determine new state
- o current state := new state
- move read head forward to next symbol on tape
- if all symbols consumed and new state is a final state: accept and halt
- otherwise repeat

NFA and DFA

NFA (Nondeterministic Finite Automaton)

- "empty moves" (reading ε) with state change are possible,
 i.e. entries (s_i, ε, s_j) may exist in δ
- ambiguous state transitions are possible, i.e. entries (s_i, t, s_j) and (s_i, t, s_l) may exist in δ
- NFA **accepts** input string if there *exists* a computation (i.e., a sequence of state transitions) that leads to "accept and halt"

DFA (Deterministic Finite Automaton)

No ε-transitions, no ambiguous transitions (δ is a function)
 Special case of a NFA

DFA Example

□ DFA with Alphabet $\Sigma = \{0, 1\}$ State set $S = \{s_0, s_1\}$ initial state: s_0 F = $\{s_1\}$ $\delta = \{(s_0, 0, s_0), (s_0, 1, s_1), (s_1, 0, s_1), (s_1, 1, s_0)\}$

recognizes (accepts) strings containing an odd number of 1s

Computation for input string 10110:

- s_0 read 1
- s_1 read 0
- s_1 read 1
- s_0 read 1
- s_1 read 0
- s₁ accept

From regular expression to code

4 Steps:

- For each regular expression r there exists a NFA that accepts L_r [Thompson 1968 - see whiteboard]
- For each NFA there exists a DFA accepting the same language
- For each DFA there exists a minimal DFA (min. #states) that accepts the same language
- □ From a DFA, equivalent source code can be generated. [→Lecture on Scanners]

Theorem: For each regular expression r there exists an NFA that accepts L_r [Thompson 1968]

Proof: By induction, following the inductive construction of regular expressions

Divide-and-conquer strategy to construct NFA(*r*):

- 0. if *r* is trivial (base case): construct NFA(r) directly, else:
- 1. decompose *r* into its constituent subexpressions r_1 , r_2 ...
- 2. recursively construct NFA(r_1), NFA(r_2), ...
- 3. compose these to NFA(r) according to decomposition of r

4 recursive decomposition cases:

<u>Case 3</u>: $r = r_1 | r_2$: By Ind.-hyp. exist NFA(r_1), NFA(r_2)

NFA(r) =

recognizes
$$L(r_1 | r_2) = L(r_1) \cup L(r_2)$$

Case 4: $r = r_1 \cdot r_2$: By Ind.-hyp. exist NFA(r_1), NFA(r_2)
NFA(r) =

recognizes $L(r_1 \cdot r_2) = L(r_1) \cdot L(r_2)$

TDDD55/TDDE66, IDA, LIU, 2024.

(cont.)

<u>Case 5</u>: $r = r_1^*$: By ind.-hyp. exists NFA(r_1)

NFA(r) =

recognizes $L(r_1^*) = (L(r_1))^*$. (similarly for $r = r_1^+$)

<u>Case 6</u>: Parentheses: $r = (r_1)$

NFA(r) =

(no modifications).

The theorem follows by induction.

TDDD55/TDDE66, IDA, LIU, 2024.