
IDA, Linköpings universitet, 2024.

TDDD55 Compilers and interpreters

TDDE66 Compiler Construction

Formal Languages Part 1
Including Regular Expressions

2.2TDDD55/TDDE66, IDA, LIU, 2024.

Basic Concepts for
Symbols, Strings, and Languages
 Alphabet

A finite set of symbols.
 Example:

∑b = { 0,1 } binary alphabet
∑s = { A,B,C,...,Z,Å,Ä,Ö } Swedish characters
∑r = { WHILE,IF,BEGIN,... } reserved words

 String
A finite sequence of symbols from an alphabet.

 Example:
10011 from ∑b
KALLE from ∑s
WHILE DO BEGIN from ∑r

2.3TDDD55/TDDE66, IDA, LIU, 2024.

Properties of Strings in Formal Languages
String Length, Empty String

 Length of a string
o Number of symbols in the string.

 Example:
o x arbitrary string, |x| length of the string x
o |10011| = 5 according to ∑b
o |WHILE| = 5 according to ∑s
o |WHILE| = 1 according to ∑r

 Empty string
o The empty string is denoted ϵ, |ϵ| = 0

2.4TDDD55/TDDE66, IDA, LIU, 2024.

Properties of Strings in Formal Languages
Concatenation, Exponentiation
 Concatenation

o Two strings x and y are joined together x•y = xy
 Example:

o x = AB, y = CDE produce x•y = ABCDE
o |xy| = |x| + |y|
o xy ≠ yx (not commutative)

o ϵ x = x ϵ = x
 String exponentiation

o x0 = ϵ
o x1 = x
o x2 = xx
o xn = x•xn-1, n >= 1

2.5TDDD55/TDDE66, IDA, LIU, 2024.

Substrings: Prefix, Suffix

 Example:
o x = abc

 Prefix: Substring at the beginning.

o Prefix of x: abc (improper as the prefix equals x), ab, a, ϵ

 Suffix: Substring at the end.

o Suffix of x: abc (improper as the suffix equals x), bc, c, ϵ

2.6TDDD55/TDDE66, IDA, LIU, 2024.

Languages
 A Language = A finite or infinite set of strings which can be

constructed from a special alphabet.
 Alternatively: a subset of all the strings which can be

constructed from an alphabet.

o ∅ = the empty language. NB! {ϵ} ≠ ∅.

 Example: S = {0,1}
o L1 = {00,01,10,11} all strings of length 2
o L2 = {1,01,11,001,...,111, ...} all strings which finish on 1
o L3 = ∅ all strings of length 1 which finish on 01

2.7TDDD55/TDDE66, IDA, LIU, 2024.

Closure
 ∑* denotes the set of all strings which can be constructed

from the alphabet

 Closure types:
o * = closure, Kleene closure
o + = positive closure

 Example: S = {0,1}
o ∑* = {ϵ, 0,1,00,01,...,111,101,...}

o ∑+ = ∑* – {ϵ} = {0,1,00,01,...}

2.8TDDD55/TDDE66, IDA, LIU, 2024.

Operations on Languages
Concatenation
 L, M are languages.

 Concatenation operation • (or nothing) between languages
o L•M = LM = {xy|x ∈ L and y ∈ M}

o L{ϵ} = {ϵ}L = L
o L∅ = ∅L = ∅

 Example:
o L ={ab,cd} M={uv,yz}
o gives us: LM ={abuv,abyz,cduv,cdyz}

2.9TDDD55/TDDE66, IDA, LIU, 2024.

Exponents and Union of Languages
 Exponents of languages

o L0 = {ϵ}
o L1 = L
o L2 = L•L
o Ln = L•Ln-1, n >= 1

 Union of languages
o L, M are languages.
o L ∪ M = {x| x ∈ L or x ∈ M}
o Example: L = {ab,cd} , M = {uv,yz}
o gives us: L ∪ M = {ab,cd,uv,yz}

2.10TDDD55/TDDE66, IDA, LIU, 2024.

Closure of Languages
 Closure

o L* = L0 ∪ L1 ∪ ... ∪ L∞

 Positive closure
o L+ = L1 ∪ L2 ∪ ... ∪ L∞ LL* = L* – {ϵ} , if ϵ not in L

o L* = {ϵ} ∪ L+

 Example: A = {a,b}
o A* = {ϵ,a,b,aa,ab,ba,bb,...}

 = All possible sequences of a and b.

 A language over A is always a subset of A*.

2.11TDDD55/TDDE66, IDA, LIU, 2024.

Small Language Exercise

See 00-LectureExercises

2.12TDDD55/TDDE66, IDA, LIU, 2024.

Regular expressions

 Regular expressions are used to describe simple languages,
e.g. basic symbols, tokens.

o Example: identifier = letter • (letter | digit)*

 Regular expressions over an alphabet S denote a language
(regular set).

2.13TDDD55/TDDE66, IDA, LIU, 2024.

Rules for constructing regular expressions
 S is an alphabet,

o the regular expression r
describes the language Lr,

o the regular expression s
corresponds to the language
Ls, etc.

 Each symbol in the alphabet S is
a regular expression which
denotes {a}.
o * = repetition, zero or more

times.
o + = repetition, one or more

times.
o . concatenation can be left out

Regular expression r Language Lr

ϵ {ϵ}
a a ∈ S { a }
union: (s) | (t) Ls ∪ Lt
concatenation: (s).(t) Ls.Lt
repetition: (s)* Ls*
repetition: (s)+ Ls

+

Highest * +
.

Lowest |

Priorities

2.14TDDD55/TDDE66, IDA, LIU, 2024.

Regular Expression Language Examples
 Examples: S = {a,b}

o 1. r=a Lr={a}
o 2. r=a* Lr={ϵ,a,aa,aaa, ...} = {a}*
o 3. r=a|b Lr={a,b}={a} ∪ {b}

o 4. r=(a|b)* Lr={a,b}*={ϵ,a,b,aa,ab,ba,bb,aaa,aab,...}

o 5. r=(a*b*)* Lr={a,b}*={ϵ,a,b,aa,ab,ba,bb,aaa,aab,...}
o 6. r=a|ba* Lr={a,b,ba,baa,baaa,...}={a or bai | i≥0}

 NB! {anbn
 | n>=0} cannot be described with regular expressions.

o r=a*b* gives us Lr={ai bj | i,j>=0} does not work.
o r=(ab)* gives us Lr={(ab)i | i>=0}={ϵ,ab,abab, ... } does not work.

 Regular expressions cannot ’’count’’ (have no memory).

2.15TDDD55/TDDE66, IDA, LIU, 2024.

Finite state Automata and Diagrams

 (Finite automaton)
 Assume:

o regular expression RU = ba+b+ = baa ... abb ... b
o L(RU) = { banbm | n, m ≥ 1 }

 Recognizer

o A program which takes a string x and answers yes/no
depending on whether x is included in the language.

o The first step in constructing a recognizer for the language
L(RU) is to draw a state diagram (transition diagram).

2.16TDDD55/TDDE66, IDA, LIU, 2024.

State Transition Diagram
 state diagram (DFA) for banbm

0

1

9 3

2

start
b

a a

b

b

a

a, b

a

b

error state accepting state

2.17TDDD55/TDDE66, IDA, LIU, 2024.

Interpret a State Transition Diagram
 Start in the starting node 0.
 Repeat until there is no more input:

o Read input.
o Follow a suitable edge.

 When there is no more input:
o Check whether we are in a final state. In this case accept

the string.

 There is an error in the input if there is no suitable edge to
follow.
o Add one or several error nodes.

2.18TDDD55/TDDE66, IDA, LIU, 2024.

Input and State Transitions
 Example of input: baab

 Then accept when there is no
more input and state 3 is an
accepting state.

Step Current
State

Input

1
2
3
4
5

0
1
2
2
3

baab
aab
ab
b
ϵ

0

1

9 3

2

start
b

a a

b

b

a

a, b

a

b

error state accepting state

2.19TDDD55/TDDE66, IDA, LIU, 2024.

Representation of State Diagrams by
Transition Tables
 The previous graph is a DFA

(Deterministic Finite Automaton).
 It is deterministic because at each

step there is exactly one state to
go to and there is no transition
marked ‘‘ϵ’’.

 A regular expression denotes a
regular set and corresponds to an
NFA (Nondeterministic Finite
Automaton).

Transition Table
(Suitable for computer representation).

State Accept Found Next
state

a

Next
state

b
0
1
2
3
9

no
no
no
yes
no

ϵ
b

ba+

ba+b+

9
2
2
9

1
9
3
3
9

2.20TDDD55/TDDE66, IDA, LIU, 2024.

NFA and Transition Tables
Example: NFA for (b|a)* ab

0 1 2
start

a

b

a b

state diagram for (b|a)*ab

state a b Accept

0
1
2

{0,1} {0}
{2}

no
no
yes

Transition table for (b|a)*ab

It requires more calculations to simulate an NFA with a computer program,
e.g. for input ab, compared to a DFA.

2.21TDDD55/TDDE66, IDA, LIU, 2024.

Transforming NFA to DFA
 Theorem

o Any NFA can be transformed to a corresponding
DFA.

 When generating a recognizer automatically, the
following is done:
o regular expression → NFA.
o NFA → DFA.
o DFA → minimal DFA.
o DFA → corresponding program code or table.

DFA for (b|a)*ab

a

0 1 2
start

b

a b

a

b

2.22TDDD55/TDDE66, IDA, LIU, 2024.

Small Regular Expression and
Transition Diagram/Table

 Exercise

See 00-LectureExercises

	Formal Languages Part 1�Including Regular Expressions
	Basic Concepts for �Symbols, Strings, and Languages
	Properties of Strings in Formal Languages �String Length, Empty String
	Properties of Strings in Formal Languages�Concatenation, Exponentiation
	Substrings: Prefix, Suffix
	Languages
	Closure
	Operations on Languages�Concatenation
	Exponents and Union of Languages
	Closure of Languages
	Small Language Exercise
	Regular expressions
	Rules for constructing regular expressions
	Regular Expression Language Examples
	Finite state Automata and Diagrams
	State Transition Diagram
	Interpret a State Transition Diagram
	Input and State Transitions
	Representation of State Diagrams by Transition Tables
	NFA and Transition Tables
	Transforming NFA to DFA
	Small Regular Expression and�Transition Diagram/Table� Exercise

