TDDD55 Compilers and interpreters TDDE66 Compiler Construction

Formal Languages Part 1 Including Regular Expressions

IDA, Linköpings universitet, 2024.

Alphabet

A finite set of symbols.

□ Example: $\sum_{b} = \{ 0,1 \}$ $\sum_{s} = \{ A,B,C,...,Z,A,\ddot{A},\ddot{O} \}$ $\sum_{r} = \{ WHILE,IF,BEGIN,... \}$

binary alphabet Swedish characters reserved words

String

A finite sequence of symbols from an alphabet.

Example:

10011

KALLE

WHILE DO BEGIN

from
$$\sum_{b}$$

from \sum_{s}
from \sum_{r}

Properties of Strings in Formal Languages String Length, Empty String

Length of a string

• Number of symbols in the string.

Example:

- x arbitrary string, |x| length of the string x
- |10011| = 5 according to \sum_{b}
- |WHILE| = 5 according to \sum_{s}
- |WHILE| = 1 according to \sum_{r}

Empty string

• The empty string is denoted ϵ , $|\epsilon| = 0$

Properties of Strings in Formal Languages Concatenation, Exponentiation

Concatenation

• Two strings x and y are joined together $x \cdot y = xy$

- Example:
 - x = AB, y = CDE produce $x \cdot y = ABCDE$
 - |xy| = |x| + |y|
 - $xy \neq yx$ (not commutative)
 - $\circ \in x = x \in x$
- String exponentiation

•
$$x^0 = \epsilon$$

• $x^1 = x$
• $x^2 = xx$
• $x^n = x \cdot x^{n-1}$, $n \ge 1$

Example:

• x = abc

□ Prefix: Substring at the beginning.

• Prefix of x: abc (improper as the prefix equals x), ab, a, ϵ

□ Suffix: Substring at the end.

• Suffix of x: abc (improper as the suffix equals x), bc, c, ϵ

Languages

- A Language = A finite or infinite set of strings which can be constructed from a special alphabet.
- Alternatively: a subset of all the strings which can be constructed from an alphabet.

• \varnothing = the empty language. NB! { ε } $\neq \varnothing$.

□ Example: S = {0,1}

- L1 = {00,01,10,11}
 all strings of length 2
- L2 = {1,01,11,001,...,111, ...} all strings which finish on 1
- L3 = \varnothing all strings of length 1 which finish on 01

Closure

□ ∑* denotes the set of all strings which can be constructed from the alphabet

Closure types:

- * = closure, Kleene closure
- + = positive closure

Example: S = {0,1}

○
$$\sum^* = \{\epsilon, 0, 1, 00, 01, ..., 111, 101, ...\}$$

•
$$\sum^{+} = \sum^{*} - \{\epsilon\} = \{0, 1, 00, 01, ...\}$$

Operations on Languages Concatenation

L, M are languages.

Concatenation operation • (or nothing) between languages

◦ L•M = LM =
$$\{xy|x \in L \text{ and } y \in M\}$$

•
$$L{\epsilon} = {\epsilon}L = L$$

$$\circ$$
 LØ = ØL = Ø

Example:

o gives us: LM ={abuv,abyz,cduv,cdyz}

Exponents and Union of Languages

Exponents of languages

- $\circ L^0 = \{ \epsilon \}$
- L¹ = L
- $\circ L^2 = L \cdot L$
- o Lⁿ = L•Lⁿ⁻¹, n >= 1

Union of languages

- L, M are languages.
- $\circ \ L \cup M = \{x | \ x \in L \ or \ x \in M\}$
- Example: $L = \{ab,cd\}, M = \{uv,yz\}$
- gives us: $L \cup M = \{ab, cd, uv, yz\}$

Closure of Languages

Closure

 $\circ L^* = L^0 \cup L^1 \cup ... \cup L^{\infty}$

Positive closure

 $_{\circ}\ L^{+}$ = $L^{1} \cup L^{2} \cup ... \cup L^{\infty}$ $\quad LL^{*}$ = $L^{*} - \{\varepsilon\}$, if ε not in L

 $\circ \ \mathsf{L}^* = \{ \varepsilon \} \cup \mathsf{L}^+$

- **Example:** $A = \{a, b\}$
 - A* = {ε,a,b,aa,ab,ba,bb,...}
 = All possible sequences of a and b.

□ A language over A is always a subset of A*.

Small Language Exercise

See 00-LectureExercises

TDDD55/TDDE66, IDA, LIU, 2024.

- Regular expressions are used to describe simple languages, e.g. basic symbols, tokens.
 - Example: identifier = letter (letter | digit)*

Regular expressions over an alphabet S denote a language (regular set).

Rules for constructing regular expressions

- S is an alphabet,
 - the regular expression r describes the language L_r,
 - the regular expression s corresponds to the language L_s, etc.
- Each symbol in the alphabet S is a regular expression which denotes {a}.
 - * = repetition, zero or more times.
 - + = repetition, one or more times.
 - . concatenation can be left out

Regular expression r	Language L _r	
ε	{ € }	
a $a \in S$	{ a }	
union: (s) (t)	$L_{s} \cup L_{t}$	
concatenation: (s).(t)	L _s .L _t	
repetition: (s)*	L _s *	
repetition: (s) ⁺	L _s +	

Priorities

Highest	* +
	•
Lowest	

Regular Expression Language Examples

- Examples: S = {a,b}
 - o 1. r=a L_r={a}
 - 2. $r=a^*$ $L_r=\{\epsilon,a,aa,aaa, ...\} = \{a\}^*$
 - o 3. r=a|b L_r={a,b}={a} ∪ {b}
 - 4. $r=(a|b)^*$ $L_r=\{a,b\}^*=\{\epsilon,a,b,aa,ab,ba,bb,aaa,aab,...\}$
 - 5. r=(a*b*)* $L_r={a,b}*={ε,a,b,aa,ab,ba,bb,aaa,aab,...}$
 - o 6. r=a|ba* L_r={a,b,ba,baa,baaa,...}={a or baⁱ | i≥0}

NB! {aⁿbⁿ | n>=0} cannot be described with regular expressions.
 r=a*b* gives us Lr={aⁱ b^j | i,j>=0} does not work.

• $r=(ab)^*$ gives us Lr={ $(ab)^i$ | i>=0}={ ϵ ,ab,abab, ... } does not work.

Regular expressions cannot "count" (have no memory).

Finite state Automata and Diagrams

□ (*Finite automaton*)

Assume:

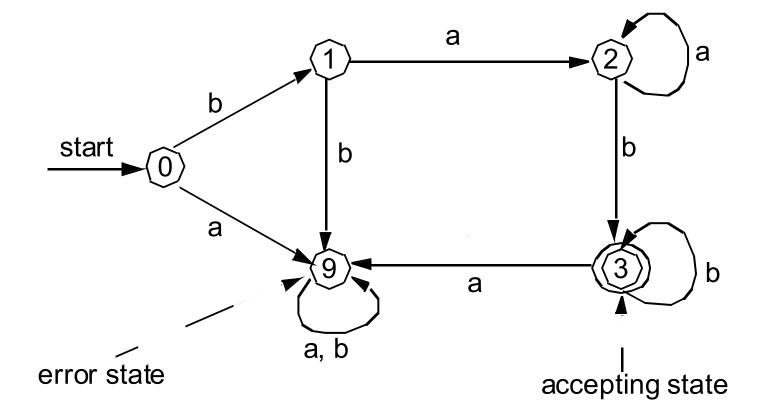
- o regular expression RU = ba⁺b⁺ = baa ... abb ... b
- L(RU) = { $ba^nb^m | n, m \ge 1$ }

Recognizer

- A program which takes a string x and answers yes/no depending on whether x is included in the language.
- The first step in constructing a recognizer for the language L(RU) is to draw a state diagram (transition diagram).

State Transition Diagram

□ state diagram (DFA) for baⁿb^m



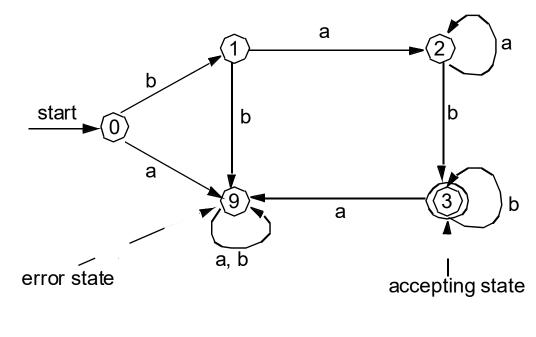
Interpret a State Transition Diagram

- □ Start in the starting node 0.
- Repeat until there is no more input:
 - Read input.
 - Follow a suitable edge.
- □ When there is no more input:
 - Check whether we are in a final state. In this case accept the string.
- There is an error in the input if there is no suitable edge to follow.
 - Add one or several error nodes.

Input and State Transitions

- Example of input: baab
- Then accept when there is no more input and state 3 is an accepting state.

Step	Current State	Input
1	0	baab
2	1	aab
3	2	ab
4	2	b
5	3	E



Representation of State Diagrams by Transition Tables

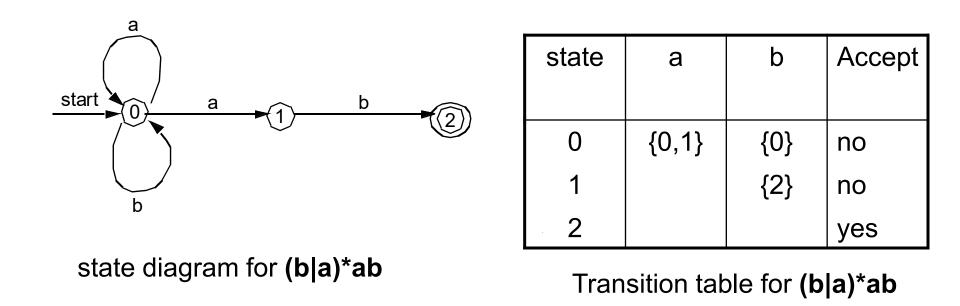
- The previous graph is a DFA (*Deterministic Finite Automaton*).
- It is deterministic because at each step there is exactly one state to go to and there is no transition marked "ε".
- A regular expression denotes a regular set and corresponds to an NFA (Nondeterministic Finite Automaton).

State	Accept	Found	Next state	Next state
			а	b
0	no	E	9	1
1	no	b	2	9
2	no	ba⁺	2	3
3	yes	ba⁺b⁺	9	3
9	no			9

Transition Table (Suitable for computer representation).

NFA and Transition Tables

Example: NFA for (b|a)* ab

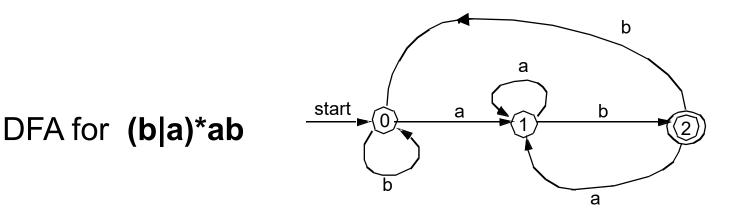


It requires more calculations to simulate an NFA with a computer program, e.g. for input **ab**, compared to a DFA.

Transforming NFA to DFA

Theorem

- Any NFA can be transformed to a corresponding DFA.
- When generating a recognizer automatically, the following is done:
 - \circ regular expression \rightarrow NFA.
 - NFA \rightarrow DFA.
 - DFA \rightarrow minimal DFA.
 - DFA \rightarrow corresponding program code or table.



Small Regular Expression and Transition Diagram/Table Exercise

See 00-LectureExercises