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TDDD55 Compilers and interpreters

TDDE66 Compiler Construction

Formal Languages Part 1
Including Regular Expressions
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Basic Concepts for 
Symbols, Strings, and Languages
 Alphabet 

A finite set of symbols.
 Example: 

∑b = { 0,1 }   binary alphabet
∑s = { A,B,C,...,Z,Å,Ä,Ö }  Swedish characters
∑r = { WHILE,IF,BEGIN,... }  reserved words 

 String 
A finite sequence of symbols from an alphabet. 

 Example: 
10011   from ∑b 
KALLE   from ∑s 
WHILE DO BEGIN from ∑r 
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Properties of Strings in Formal Languages 
String Length, Empty String

 Length of a string 
o Number of symbols in the string. 

 Example: 
o x arbitrary string, |x| length of the string x 
o |10011| = 5 according to ∑b 
o |WHILE| = 5 according to ∑s 
o |WHILE| = 1 according to ∑r 

 Empty string
o The empty string is denoted ϵ,  |ϵ| = 0
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Properties of Strings in Formal Languages
Concatenation, Exponentiation
 Concatenation

o  Two strings x and y are joined together  x•y = xy
 Example: 

o x = AB, y = CDE  produce  x•y = ABCDE 
o |xy| = |x| + |y| 
o xy ≠ yx  (not commutative) 

o ϵ x = x ϵ = x 
 String exponentiation 

o x0 = ϵ 
o x1 = x 
o x2 = xx 
o xn = x•xn-1, n >= 1
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Substrings: Prefix, Suffix

 Example: 
o x = abc 

 Prefix: Substring at the beginning. 

o Prefix of x:  abc (improper as the prefix equals x), ab, a, ϵ 

 Suffix: Substring at the end. 

o Suffix of x: abc (improper as the suffix equals x), bc, c, ϵ 
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Languages
 A Language = A finite or infinite set of strings which can be 

constructed from a special alphabet. 
 Alternatively: a subset of all the strings which can be 

constructed from an alphabet. 

o ∅ = the empty language.    NB!  {ϵ} ≠ ∅. 

 Example:  S = {0,1} 
o L1 = {00,01,10,11}      all strings of length 2
o L2 = {1,01,11,001,...,111, ...}  all strings which finish on 1
o L3 = ∅   all strings of length 1 which finish on 01 
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Closure
 ∑* denotes the set of all strings which can be constructed 

from the alphabet

 Closure types:
o * =  closure, Kleene closure
o +  =  positive closure

 Example: S = {0,1}
o ∑* = {ϵ, 0,1,00,01,...,111,101,...} 

o ∑+ = ∑* – {ϵ} = {0,1,00,01,...} 
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Operations on Languages
Concatenation
 L, M are languages.

 Concatenation operation • (or nothing) between languages
o L•M = LM = {xy|x ∈ L and  y ∈ M} 

o L{ϵ} = {ϵ}L = L 
o L∅ = ∅L = ∅ 

 Example: 
o L ={ab,cd}  M={uv,yz} 
o gives us:  LM ={abuv,abyz,cduv,cdyz} 
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Exponents and Union of Languages
 Exponents of languages 

o L0 = {ϵ} 
o L1 = L 
o L2 = L•L 
o Ln = L•Ln-1, n >= 1

 Union of languages 
o L, M are languages. 
o L ∪ M = {x| x ∈ L  or  x ∈ M} 
o Example:  L = {ab,cd} , M = {uv,yz}
o gives us:  L ∪ M = {ab,cd,uv,yz} 
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Closure of Languages
 Closure 

o L* = L0 ∪ L1 ∪ ... ∪ L∞ 

 Positive closure 
o L+ = L1 ∪ L2 ∪ ... ∪ L∞     LL* = L* – {ϵ} , if ϵ not in L

o L* = {ϵ} ∪ L+ 

 Example: A = {a,b} 
o A* = {ϵ,a,b,aa,ab,ba,bb,...} 

    = All possible sequences of a and b. 

 A language over A is always a subset of A*. 
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Small Language Exercise

See 00-LectureExercises



2.12TDDD55/TDDE66, IDA,  LIU, 2024.

Regular expressions 

 Regular expressions are used to describe simple languages, 
e.g. basic symbols, tokens. 

o Example:  identifier = letter • (letter | digit)*

 Regular expressions over an alphabet S denote a language 
(regular set). 
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Rules for constructing regular expressions 
 S is an alphabet, 

o the regular expression r 
describes the language  Lr, 

o the regular expression s 
corresponds to the language 
Ls, etc.

 Each symbol in the alphabet S is 
a regular expression which 
denotes {a}. 
o * = repetition, zero or more 

times. 
o + = repetition, one or more 

times. 
o .  concatenation can be left out

Regular expression r Language Lr

ϵ  {ϵ}
a         a ∈ S { a }
union:  (s) | (t) Ls ∪ Lt
concatenation:  (s).(t) Ls.Lt
repetition:  (s)* Ls*
repetition:  (s)+ Ls

+

Highest *   +
.

Lowest |

Priorities
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Regular Expression Language Examples
 Examples: S = {a,b} 

o 1.  r=a    Lr={a} 
o 2.  r=a*  Lr={ϵ,a,aa,aaa, ...} = {a}* 
o 3.  r=a|b Lr={a,b}={a} ∪ {b} 

o 4.  r=(a|b)*   Lr={a,b}*={ϵ,a,b,aa,ab,ba,bb,aaa,aab,...}

o 5.  r=(a*b*)*     Lr={a,b}*={ϵ,a,b,aa,ab,ba,bb,aaa,aab,...}
o 6.  r=a|ba*     Lr={a,b,ba,baa,baaa,...}={a or bai | i≥0} 

 NB! {anbn
 | n>=0} cannot be described with regular expressions. 

o r=a*b*  gives us  Lr={ai bj | i,j>=0} does not work.
o r=(ab)* gives us Lr={(ab)i | i>=0}={ϵ,ab,abab, ... } does not work.

 Regular expressions cannot ’’count’’ (have no memory).
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Finite state Automata and Diagrams

 (Finite automaton)
 Assume: 

o regular expression RU = ba+b+ = baa ... abb ... b
o L(RU) = { banbm | n, m ≥ 1 } 

 
 Recognizer 

o A program which takes a string x and answers yes/no 
depending on whether x is included in the language. 

o The first step in constructing a recognizer for the language  
L(RU) is to draw a state diagram (transition diagram). 
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State Transition Diagram
 state diagram (DFA) for banbm
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b
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a, b

a

b

error state accepting state
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Interpret a State Transition Diagram
 Start in the starting node 0. 
 Repeat until there is no more input: 

o Read input. 
o Follow a suitable edge. 

 When there is no more input: 
o Check whether we are in a final state. In this case accept 

the string. 

 There is an error in the input if there is no suitable edge to 
follow. 
o Add one or several error nodes. 
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Input and State Transitions
 Example of input:  baab

 Then accept when there is no 
more input and state 3 is an 
accepting state. 

Step Current 
State

Input

1
2
3
4
5

0
1
2
2
3

baab
aab
ab
b
ϵ

0

1

9 3

2

start
b

a a

b

b

a

a, b

a

b

error state accepting state



2.19TDDD55/TDDE66, IDA,  LIU, 2024.

Representation of State Diagrams by 
Transition Tables
 The previous graph is a DFA 

(Deterministic Finite Automaton). 
 It is deterministic because at each 

step there is exactly one state to 
go to and there is no transition 
marked ‘‘ϵ’’. 

 A regular expression denotes a 
regular set and corresponds to an 
NFA (Nondeterministic Finite 
Automaton).

Transition Table
(Suitable for computer representation). 

State Accept Found Next 
state

a

Next 
state 

b
0
1
2
3
9

no
no
no
yes
no

ϵ
b

ba+

ba+b+

9
2
2
9

1
9
3
3
9
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NFA and Transition Tables
Example:  NFA for (b|a)* ab

0 1 2
start

a

b

a b

state diagram for (b|a)*ab

state a b Accept

0
1
2

{0,1} {0}
{2}

no
no
yes

Transition table for (b|a)*ab

It requires more calculations to simulate an NFA with a computer program, 
e.g. for input ab, compared to a DFA.
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Transforming NFA to DFA
 Theorem 

o Any NFA can be transformed to a corresponding 
DFA.

 When generating a recognizer automatically, the 
following is done: 
o regular expression  →  NFA.
o NFA  →  DFA.
o DFA → minimal DFA.
o DFA → corresponding program code or table. 

DFA for  (b|a)*ab

a

0 1 2
start

b

a b

a

b
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Small Regular Expression and
Transition Diagram/Table

 Exercise

See 00-LectureExercises
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