
Linköpings universitet
IDA Department of Computer and Information Sciences
Prof. Dr. Christoph Kessler

TENTAMEN / EXAM
TDDB29 Kompilatorer och interpretatorer / Compilers and interpreters

TDDB44 Kompilatorkonstruktion / Compiler construction

18 aug 2008, 14:00–18:00, TER1

Jour: Christoph Kessler, 070-3666687, 013-282406

Hjälpmedel / Admitted material:

– Engelsk ordbok / Dictionary from English to your native language;
– Miniräknare / Pocket calculator

General instructions

� This exam has 9 assignments and 5 pages, including this one.
Read all assignments carefully and completely before you begin.

� The first assignment (on formal languages and automata theory) is ONLY for TDDB29,
while the last one (on code generation for RISC...) is ONLY for TDDB44.

� It is recommended that you use a new sheet for each assignment. Number all your sheets,
and mark each sheet on top with your name, personnummer, and the course code.

� You may answer in either English or Swedish.

� Write clearly. Unreadable text will be ignored.

� Be precise in your statements. Unprecise formulations may lead to a reduction of points.

� Motivate clearly all statements and reasoning.

� Explain calculations and solution procedures.

� The assignments are not ordered according to difficulty.

� The exam is designed for 40 points (per course). You may thus plan about 5 minutes per
point.

� Grading: U, 3, 4, 5.

For exchange students (with a P in the personnummer) ECTS marks will be applied.

The preliminary threshold for passing (grade 3) is 20 points.

1



1. Only TDDB29: (6 p.) Formal languages and automata theory

Consider the language L consisting of all strings w over the alphabet f�� �g such that w
contains �� or ��� (i.e., at least 2 zeroes in sequence, or at least 3 ones in sequence, or
both).

(a) Construct a regular expression for L. (1.5p)

(b) Construct from the regular expression an NFA recognizing L. (1.5p)

(c) Construct a DFA recognizing L, either by deriving from the NFA of question (1b),
or by constructing one directly. (2.5p)

(d) Give an example of a formal language that is not context-free. (0.5p)

2. (6p) Compiler structure

(a) What are the advantages and disadvantages of a multi-pass compiler (compared to
a one-pass compiler)? (1p)

(b) Describe what phases normally are found in a compiler, what is their purpose, how
they are connected, and what is their input and output. (3p)

(c) How does a just-in-time (JIT) compiler work? (1.5p)
Under what condition is execution with a JIT compiler faster than using an ordinary
interpreter? (0.5p)

3. (5p) Top-Down Parsing

(a) Given a grammar with nonterminals hExpri, hSimpExpri, hArrayRefi and hIndexExprsi
and the following productions:

hExpri � hSimpExpri j hArrayRefi

hSimpExpri � id

hArrayRefi � id � hIndexExprsi �

hIndexExprsi � hIndexExprsi � hSimpExpri j hSimpExpri

where hExpri is the start symbol.

What is/are the problem(s) with this grammar if it is to be used for writing a re-
cursive descent parser with a single token lookahead? Resolve the problem(s), and
write a recursive descent parser for the modified grammar. (Pseudocode is fine. Use
function scan() to read the next input token.) (4.5p)

(b) The theory for formal languages and automata says that a stack is required for being
able to parse context-free languages. We have used such a stack, for instance, in the
LL-item pushdown automaton in the lecture on top-down parsing. But where is the
corresponding stack in a recursive descent parser? (0.5p)

2



4. (6 p.) LR parsing

Given the following grammar G for strings over the alphabet fx� y� z� tg, with nontermi-
nals A, B and C, where A is the start symbol:

A ��� x B x j C

B ��� y t B j y

C ��� x C z j y

Is the grammar G in SLR(1)? Is it LR(0)? Motivate with the LR-item sets.

Construct the characteristic LR-item NFA, the corresponding GOTO graph, the ACTION
table and the GOTO table.

Show with tables and stack how the string xytyz is parsed.

5. (3 p.) Memory management

What is an activation record? What properties of a programming language lead to a need
for activation records? What does an activation record contain?

6. (5 p.) Syntax-directed translation

The REPEAT statement in a Pascal-like language could be described using this rule:

<repeatstmt> ::= REPEAT <stmt> UNTIL <expr>

The semantics of the REPEAT statement is that statement <stmt> is executed and then
repeated as long as expression <expr> evaluates to zero.

Write the semantic rules — a syntax directed translation scheme — for translating the
REPEAT statement to quadruples. Assume that the translation scheme is to be used in a
bottom-up parsing environment using a semantic stack. Use the grammar rule above as a
starting point, but maybe it has to be changed.

In order to obtain full points, you are not allowed to define and use symbolic labels, i.e.,
all jumps should have absolute quadruple addresses as their destinations. Explain all the
attributes, functions, and instructions that you introduce. State all your assumptions.

(For an otherwise correct solution that uses symbolic labels up to 3p can be given.)

3



7. (6 p.) Intermediate code generation

Given the following code segment:

x = 17;
y = 3;
while (x>y) {

x = x+1;
if (y<20)
y = 3*(x-y);

else {
y = 2*y;
x = x+2;

}
print(y);

}

(a) Translate the code segment into abstract syntax tree and quadruples. (4 p)

(b) In the quadruple representation, identify the basic blocks of the program, and draw
the basic block graph. (2p)

(If you cannot derive the quadruple representation, you may do it instead for the
source code above (1p).)

8. (3 p.) Simple code generation

Given the following basic block given in pseudo-quadruple form:

1: T1 := - e
2: T2 := a + b
3: T3 := c - d
4: T4 := T2 * T3
5: T5 := T4 * g
6: f := T1 / T5

(a) Draw the data flow graph of the basic block. Assume a register machine with load-
store architecture, i.e., arithmetic operations can only work on registers. Assume
that, initially, the variables a, b etc. read by the program are not in registers and
thus must be loaded into registers as appropriate. At the end, the value of variable
f must be stored to memory. Expose the memory accesses as nodes in the data flow
graph. (1p)

(b) Use the Labeling algorithm to compute labels for the dataflow graph nodes, and
generate code (pseudo-instructions, one per arithmetic or memory operation) for
this basic block such that the program variables and the temporaries Ti are properly
assigned to registers and the code uses a minimum number of registers. Assume that
each instruction executes in one clock cycle and that an operand register could be
reused to store the result of an instruction. How many registers do you need? (2p)

4



9. Only TDDB44: (6 p.) Code generation for RISC ...

(a) A structural hazard in a pipelined processor is a resource conflict where several
instructions compete for the same hardware resource in the same clock cycle.

i. How do superscalar processors handle structural hazards? (0.5p)

ii. Certain processor architectures leave it to the assembler-level programmer or
compiler to make sure that structural hazards do not occur. Sketch the tech-
nique (data structure, principle) that can be used in instruction scheduling to
avoid structural hazards. (1p)

(b) Given the following medium-level intermediate representation of a program frag-
ment (derived from a while loop):

1: c = 3
2: e = 1.0
3: goto 9
4: a = c / 2
5: b = a + e
6: c = a - b
7: d = e
8: e = e * 0.5
9: f = (e > 0.1)
10: if f goto 4
11: d = d / b

Identify the live ranges of program variables, and draw the live range interference
graph

(i) for the loop body in lines 4–9,

(ii) for the entire fragment.

For both (i) and (ii), assign registers to all live ranges by coloring the live range
interference graph. How many registers do you need at least, and why? (3.5p)

(c) What is the basic idea of software pipelining of loops? (1p)

Good luck!

5


