<u>Wireless TCP</u> Performance Issues

Issues, transport layer protocols

- Set up and maintain end-to-end connections
- Reliable end-to-end delivery of data
- Flow control
- Congestion control

□ UDP?

Assume TCP for the rest of these slides

TCP is a connection-oriented protocol

TCP slow-start and congestion avoidance

TCP slow-start and congestion avoidance

TCP slow-start and congestion avoidance

Detecting Packet Loss

Assumption: loss indicates congestion

Option 1: time-out

 Waiting for a time-out can be long!

Option 2: duplicate ACKs

• How many? At least 3.

Note how there is "Fast Recovery" after cutting Window in half

How do losses occur?

Congestion control assumes loss due to congestion
packets queue in router buffers
if queue is full, arriving packets dropped (Drop-Tail)

How do losses occur?

In wireless (and mobile) environment ... We find many other reasons ...

Wireless, mobility: impact on higher layer protocols

□ logically, impact *should* be minimal ...

- best effort service model remains unchanged
- TCP and UDP can (and do) run over wireless, mobile
- **...** but performance-wise:
 - packet loss/delay due to bit-errors (discarded packets, delays for link-layer retransmissions), and handoff
 - TCP interprets loss as congestion, will decrease congestion window un-necessarily
 - delay impairments for real-time traffic
 - Imited bandwidth of wireless links

Also, not all packet losses the same

What happens when a packet loss occurs?

Quiz Time...

- Consider a 14-packet Web document
- For simplicity, consider only a single packet loss

- Main observation:
 - Not all packet losses are created equal"
- Losses early in the transfer have a huge adverse impact on the transfer latency
- Losses near the end of the transfer always cost at least a retransmit timeout
- Losses in the middle may or may not hurt, depending on congestion window size at the time of the loss

Fast Retransmit and Fast Recovery

Time

At steady state, cwnd oscillates around the optimal window size

TCP always forces packet drops

Let's reason about TCP throughput

- Wired: What's the average throughout of TCP as a function of window size and RTT?
 - Ignore slow start
 - Let W be the window size when loss occurs.
- When window is W, throughput is W/RTT
- Just after loss, window drops to W/2, throughput to W/2RTT.
- Average throughout: .75 W/RTT
- \square Loss rate proportional to $1/W^2$

TCP under lots of losses

□ Throughput in terms of loss rate:

$$\frac{1.22 \cdot MSS}{RTT \sqrt{L}}$$

Wireless TCP versions or handling losses where they occur ...

Wireless TCP Performance Problems

Example trends and issues ...

Middle boxes [e2e arguments, equation]
 Customized wireless TCP solutions
 Multi-path TCP

Wireless TCP Fairness Problems

C Ci Kelly Cin Ci (C)C CP (\mathbf{x}) (i)Carey

Summary of Wireless TCP

- □ TCP is the "four-wheel drive" of TP
- "TCP" and "Wireless" don't fit together all that well
- □ Making TCP smarter about wireless helps!

TCP performance issues in Ad-hoc networks

Misinterpretation of packet loss

- E.g., packet loss/delay due to bit-errors (discarded packets, delays for link-layer retransmissions), and handoff
- Frequent path breaks
- Network partitioning and remerging
- Path length effects
- Misinterpretation of congestion window
- Asymmetric link behavior
- Uni-directional paths
- Multi-path routing
- □ The use of sliding window

More interesting problems ...

Two interesting subproblems:

- Dynamic ad hoc routing: node movement can disrupt the IP routing path at any time, disrupting TCP connection; yet another way to lose packets!!!; possible solution: Explicit Loss Notification (ELN)? Handoff? Route prediction?
- TCP flow control: the bursty nature of TCP packet transmissions can create contention for the shared wireless channel among forwarding nodes; collisions between DATA and ACKs possible solution: rate-based flow control? Burst mode? Spatial reuse of channels?