("old") Wireless network taxonomy

	single hop	multiple hops
infrastructure (e.g., APs)		
no infrastructure		

1

("old") Wireless network taxonomy

	single hop	multiple hops
infrastructure (e.g., APs)	host connects to base station (WiFi, WiMAX, cellular) which connects to larger Internet	host may have to relay through several wireless nodes to connect to larger Internet: <i>mesh net</i>
no infrastructure	no base station, no connection to larger Internet (Bluetooth, ad hoc nets)	no base station, no connection to larger Internet. May have to relay to reach other a given wireless node MANET, VANET

<u>Cellular</u> <u>networks vs</u> <u>ad-hoc</u> <u>networks</u>

Single-hop wireless links	Multi-hop wireless links
Guaranteed bandwidth	Shared radio channel
(designed for voice traffic)	(more suitable for best-effort data traffic
Centralized routing	Distributed routing
Circuit-switched	Packet-switched
(evolving toward packet switching)	(evolving toward emulation of circuit switching)
Seamless connectivity (low call	Frequent path breaks
drops during handoffs)	due to mobility
High cost and time of deployment	Quick and cost-effective deployment
Reuse of frequency spectrum	Dynamic frequency reuse
through geographical channel reuse	based on carrier sense mechanism
Easier to achieve time	Time synchronization is
synchronization	difficult and consumes bandwidth
Easier to employ bandwidth	Bandwidth reservation requires complex
reservation	medium access control protocols
Application domains include mainly	Application domains include battlefields
civilian and commercial sectors	emergency search and rescue operations
	and collaborative computing
High cost of network maintenance	Self-organization and maintenance
(backup power source, staffing, etc.)	properties are built into the network
Mobile hosts are of relatively	Mobile hosts require more intelligence
low complexity	(should have a transceiver as well as
8	routing/switching capability)
Major goals of routing and	Main aim of routing is to find paths
call admission are to maximize the	with minimum overhead and also
call acceptance ratio and minimize	quick reconfiguration of broken paths
the call drop ratio	A
Widely deployed and currently in the	Several issues are to be addressed
third generation of evolution	for successful commercial deployment
	even though widespread use exists in
	defense

Table 5.1. Differences between cellular networks and ad hoc wireless networks

Infrastructure-less

Ad Hoc Wireless Networks

3

Cellular Networks

Fixed infrastructure-based

<u>Cellular</u> <u>networks vs</u> <u>ad-hoc</u> <u>networks</u>

Table 5.1. Difference	s between	cellular	networks	and	ad	hoc	wireless	networks
-----------------------	-----------	----------	----------	-----	----	-----	----------	----------

Cellular Networks	Ad Hoc Wireless Networks					
Fixed infrastructure-based	Infrastructure-less					
Single-hop wireless links	Multi-hop wireless links					
Guaranteed bandwidth	Shared radio channel					
(designed for voice traffic)	(more suitable for best-effort data traffic)					
Centralized routing	Distributed routing					
Circuit-switched	Packet-switched					
(evolving toward packet switching)	(evolving toward emulation of circuit					
	switching)					
Seamless connectivity (low call	Frequent path breaks					
drops during handoffs)	due to mobility					
High cost and time of deployment	Quick and cost-effective Lployment					
Reuse of frequency spectrum	Dynamic frequency reve					
through geographical channel reuse	based on carrier sense mechanism					
Easier to achieve time	Time synchronization is					
synchronization	difficult are consumes bandwidth					
Easier to employ bandwidth	Bandwin'h reservation requires complex					
reservation	medium access control protocols					
Application domains include mainly	Application domains include battlefields,					
civilian and commercial sectors	emergency search and rescue operations,					
	and collaborative computing					
High cost of network maintenance	Self-organization and maintenance					
(backup power source, staffing, etc.)	properties are built into the network					
Mobile hosts are of relatively	Mobile hosts require more intelligence					
low complexity	(should have a transceiver as well as					
	routing/switching capability)					
Major goals of routing and	Main aim of routing is to find paths					
call admission are to maximize the	with minimum overhead and also					
call acceptance ratio and minimize	quick reconfiguration of broken paths					
the call drop ratio						
Widely deployed and currently in the	Several issues are to be addressed					
third generation of evolution	for successful commercial deployment					
	even though widespread use exists in					
	defense 4					

Applications of ad-hoc networks

- Military
- Emergency operations
- Collaborative and distributed computing
- Wireless mesh networks
- Wireless sensor networks
- Hybrid wireless networks

Wireless mesh networks, example

Figure 5.4. Wireless mesh network operating in a residential zone.

Wireless mesh networks, example

Figure 5.5. Wireless mesh network covering a highway.

Hybrid wireless networks, example

Figure 5.6. MCN architecture.

<u>Issues in ad-hoc wireless networks</u>

- Medium access
 scheme
- o Routing
 - Multicasting
- Transport layer protocol
- Pricing scheme
- Quality of service provisioning

- Self-organization
- Energy management
- Addressing and service discovery
- Scalability
- Deployment considerations

Issues: Routing in Ad-hoc Networks

- Mobility
- Bandwidth constraint
- Error-prone and shared channel
- Location-dependent contention
- Other resource constraints

Unicast Routing Protocols

- Many protocols have been proposed
 - Some invented specifically for MANET
 - Others adapted from previously proposed protocols for wired networks
- No single protocol works well in all environments
 - some attempts to develop adaptive protocols

The ideal protocol (p303)

- Distributed
- Localized (and scalable)
- Adaptive
- Minimal maintenance and overhead
- Loop free (and free from stale routes)
- Balance scares resources usage against performance (and/or QoS)

Routing protocol classification

- Route information mechanism
 - Proactive (table-driven)
 - Reactive (demand-driven)
 - Hybrid
- Temporal information
 - Past vs. Future information
- Routing toplogy
 - Flat vs. hierarchical
- Specific resources
 - Geography or Power

Routing protocol classification

- Route information mechanism
 - Proactive (table-driven)
 - Reactive (demand-driven)
 - Hybrid
- Temporal information
 - Past vs. Future information
- Routing toplogy
 - Flat vs. hierarchical
- Specific resources
 - Geography or Power

<u>Route update mechanism</u>

- Proactive (or table-drive) protocols
 - Determine routes independent of traffic pattern
 - Traditional link-state and distance-vector routing protocols
 - \circ Destination Sequenced Distance Vector (DSDV)
 - $_{\odot}$ Optimized Link State Routing (OLSR)
- Reactive (or demand-drive) protocols
 - Route is only determined when actually needed
 - Protocol operates on demand
 - \circ Dynamic Source Routing (DSR)
 - \circ Ad hoc On-demand Distance Vector (AODV)
 - Temporally Ordered Routing Algorithm (TORA)
- Hybrid Protocols
 - Combine these behaviors (e.g., table in limited zone, and demand drive otherwise)
 - Greedy Perimeter Stateless Routing (GPSR)
 - \circ Zone Routing Protocol (ZRP)

<u>Route update mechanism</u>

- Proactive (or table-drive) protocols
 - Determine routes independent of traffic pattern
 - Traditional link-state and distance-vector routing protocols
 - Destination Sequenced Distance Vector (DSDV)
 - $_{\odot}$ Optimized Link State Routing (OLSR)
- Reactive (or demand-drive) protocols
 - Route is only determined when actually needed
 - Protocol operates on demand
 - \circ Dynamic Source Routing (DSR)
 - \circ Ad hoc On-demand Distance Vector (AODV)
 - \circ Temporally Ordered Routing Algorithm (TORA)
- Hybrid Protocols
 - Combine these behaviors (e.g., table in limited zone, and demand drive otherwise)
 - Greedy Perimeter Stateless Routing (GPSR)
 - \circ Zone Routing Protocol (ZRP)

<u>Route update mechanism</u>

- Proactive (or table-drive) protocols
 - Determine routes independent of traffic pattern
 - Traditional link-state and distance-vector routing protocols
 - Destination Sequenced Distance Vector (DSDV)
 - $_{\odot}$ Optimized Link State Routing (OLSR)
- Reactive (or demand-drive) protocols
 - Route is only determined when actually needed
 - Protocol operates on demand
 - Dynamic Source Routing (DSR)
 - Ad hoc On-demand Distance Vector (AODV)
 - \circ Temporally Ordered Routing Algorithm (TORA)
- Hybrid Protocols
 - Combine these behaviors (e.g., table in limited zone, and demand drive otherwise)
 - Greedy Perimeter Stateless Routing (GPSR)
 - \circ Zone Routing Protocol (ZRP)

<u>Dynamic Source Routing (DSR)</u> [Johnson96]

- When node S wants to send a packet to node D, but does not know a route to D, node S initiates a route discovery
- Source node S floods Route Request (RREQ)
- Each node appends own identifier when forwarding RREQ

22

DSR: Route discovery (1)

DSR: Route discovery (2)

DSR: Route discovery (3)

DSR: Route discovery (4)

DSR: Route discovery (5)

DSR: Route discovery (6)

DSR: Route discovery (7)

Route Discovery in DSR

- Destination D on receiving the first RREQ, sends a Route Reply (RREP)
- RREP is sent on a route obtained by reversing the route appended to received RREQ
- RREP includes the route from S to D on which RREQ was received by node D

DSR: Route discovery (8)

DSR: RREP assumption

- Route reply by reversing the route (as illustrated) works only if all the links are bidirectional
- If unidirectional links are allowed, then RREP may need a reverse route discovery from D to S
- Note: IEEE 802.11 assumes that links are bidirectional (since ACKs are used)

DSR: Caching and "source routing"

- Node S on receiving RREP, caches the route included in the RREP
- When node S sends a data packet to D, the entire route is included in the packet header

• hence the name source routing

 Intermediate nodes use the source route included in a packet to determine to whom a packet should be forwarded

DSR: Data delivery

DSR: Data delivery

DSR: Route maintenance (1)

DSR: Route maintenance (2)

DSR: Optimization of route discovery: route caching

Principle: Nodes cache new routes learned by any means ...

- When node S finds route [S,E,G,J,D] to node D, node S also learns route [S,E,G] to node G
- When node H receives Route Request [S,E,F] destined for node D, node H learns route [H,F,E,S] to node S
- When node G forwards Route Reply RREP [S,E,G,J,D], node G learns route [G,J,D] to node D
- When node E forwards Data [S,E,G,J,D] it learns route [E,G,J,D] to node D
- A node may also learn a route when it overhears Data packets ...

Use of Route Caching

- Use of route cache can
 - speed up route discovery
 - reduce propagation of route requests
- However, route caching has its downside
 - stale caches can severely hamper the performance of the network

Destination Sequenced Distance Vector Algorithm (DSDV)

- 1. Based on Bellman-Ford Next Hop Routing.
- 2. Each Node Maintains **Routing Table**, in which the attributes of each destination are :
 - A. Next Hop on Path
 - B. Distance (in hops) to destination.
 - C. Sequence Number (keep current route; originating from destination)
- 3. Nodes Exchange Updates With Neighbours
 - Full Routing Updates (periodic)
 - Incremental Updates (triggered)

Background: Distance Vector (Tables)

Background: Distance Vector (Update)

Distance Vector

- DV not suited for ad-hoc networks!
 - Loops
 - Count to Infinity
- New Solution -> DSDV Protocol

DSDV (Table Entries)

Destination	Next	Metric	Seq. Nr	Install Time	Stable Data
Α	A	0	A-550	001000	Ptr_A
В	В	1	B-102	001200	Ptr_B
С	В	3	C-588	001200	Ptr_C
D	В	4	D-312	001200	Ptr_D

Sequence number originated from destination. Ensures loop freeness.

Install Time when entry was made (used to delete stale entries from table)

Stable Data Pointer to a table holding information on how stable a route is. Used to damp fluctuations in network.

<u> </u>					
ΥD.	estination	Next	Metric	Seq. Nr	1
	Α	Α	0	A-550	
0	В	В	1	B-102	
	С	В	3	C-588	
7	D	В	4	D-212	
0-					_

DSDV (Route Advertisements)

- Advertise to each neighbor own routing information
 - Destination Address
 - Metric = Number of Hops to Destination
 - Destination Sequence Number
- Rules to set sequence number information
 - On each advertisement increase own destination sequence number (use only even numbers)
 - If a node is no more reachable (timeout) increase sequence number of this node by 1 (odd sequence number) and set metric = ∞

<u> </u>					_
- YE	estination	Next	Metric	Seq. Nr	1
	Α	Α	0	A-550	
0	В	В	1	B-102	
	С	В	3	C-588	
노	D	В	4	D-212	
0-					_

DSDV (Route Selection)

Update information is compared to own routing table

Select route with higher destination sequence number (This ensure to use always newest information from destination)
 Select the route with better metric when sequence

numbers are equal.

Dest.	Next	Metric	Seq
А	А	0	A-550
В	В	1	B-100
С	В	3	C-586

Dest.	Next	Metric	Seq
Α	А	1	A-550
В	В	0	B-100
С	С	2	C-588

Dest.	Next	Metric	Seq.
Α	В	1	A-550
В	В	2	B-100
С	С	0	C-588

DSDV (Route Advertisement)

DSDV (Respond to Topology Changes)

Immediate advertisements

 Information on new Routes, broken Links, metric change is immediately propagated to neighbors.

• Full/Incremental Update:

- Full Update: Send all routing information from own table.
- Incremental Update: Send only entries that has changed. (Make it fit into one single packet)

DSDV (New Node)

DSDV (New Node)

DSDV (New Node cont.)

DSDV (New Node cont.)

DSDV (Immediate Advertisement)

- Latency of route discovery
 - 0

• Overhead of route discovery/maintenance

- Latency of route discovery
- Destination
 Next
 Metric:
 Skill, Hr
 I

 A
 A
 0
 A-550
 B
 B
 1
 B-102
 C
 B
 B
 1
 B-102
 C
 B
 B
 C
 S88
 D
 B
 D
 B
 4
 D-212
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D<

0

- Proactive protocols may have lower latency
 o Routes are maintained at all times
- Reactive protocols may have higher latency
 - $\circ~$ Route from X to Y will be found only when X attempts to send to Y
- Overhead of route discovery/maintenance

Latency of route discovery

0

Ο

0

- Proactive protocols may have lower latency
 - $\circ\,$ Routes are maintained at all times
- Reactive protocols may have higher latency
 - $\circ~$ Route from X to Y will be found only when X attempts to send to Y

Overhead of route discovery/maintenance

Proactive protocols can (but not necessarily) result in higher overhead due to continuous route updating

- Reactive protocols may have lower overhead
 - $\circ\,$ Routes are determined only if needed

Latency of route discovery

- Proactive protocols may have lower latency
 - $\circ\,$ Routes are maintained at all times

- Reactive protocols may have higher latency
 - $\circ~$ Route from X to Y will be found only when X attempts to send to Y

• Overhead of route discovery/maintenance

Proactive protocols can (but not necessarily) result in higher overhead due to continuous route updating

- Reactive protocols may have lower overhead
 o Routes are determined only if needed
- Which approach achieves a better trade-off depends on the traffic and mobility patterns

<u>GPSR: Greedy Perimeter Stateless</u> <u>Routing for Wireless Networks</u>

B. Karp, H. T. Kung

Borrowed slides from Richard Yang

Geographic Routing: Greedy Routing

- Find neighbors who are the closer to the destination
- Forward the packet to the neighbor closest to the destination

Greedy Forwarding does NOT always work

If the network is dense enough that each interior node has a neighbor closer to all destinations (or in every $2\Pi/3$ angular sector), GF will always succeed

Dealing with Void: Right-Hand Rule

Apply the right-hand rule to traverse the edges of a void

- Pick the next anticlockwise edge
- Traditionally used to get out of a maze

Right Hand Rule on Convex Subdivision

For convex subdivision, right hand rule is equivalent to traversing the face with the crossing edges removed.

Right-Hand Rule Does Not Work with Cross Edges

Remove Crossing Edge

Make a Graph Planar

- Convert a connectivity graph to planar noncrossing graph by removing "bad" edges
 - Ensure the original graph will not be disconnected
 - Two types of planar graphs:
 - Relative Neighborhood Graph (RNG)
 - o Gabriel Graph (GG)

Relative Neighborhood Graph

Gabriel Graph

An edge (u,v) exists between vertices u and v if no other vertex w is present within the circle whose diameter is uv.

 $\forall w \neq u, v, d^2(u,v) \leq [d^2(u,w) + d^2(v,w)]$

Properties of GG and RNG

RNG is a sub-graph of GG
 Because RNG removes more edges

 If the original graph is connected, RNG is also connected

Full graph

GG subset

RNG subset

- 200 nodes
- randomly placed on a 2000 x 2000 meter region
- radio range of 250 m

•Bonus: remove redundant, competing path \rightarrow less collision
Greedy Perimeter Stateless Routing (GPSR)

Maintenance

- all nodes maintain a single-hop neighbor table
- Use RNG or GG to make the graph planar

```
At source:
mode = greedy
```

```
Intermediate node:
    if (mode == greedy) {
        greedy forwarding;
        if (fail) mode = perimeter;
    }
    if (mode == perimeter) {
        if (mode == perimeter) {
            if (have left local maxima) mode = greedy;
            else (right-hand rule);
        }
```


