Throughput optimization (next) ...

- Max-flow optimization
 - Zongpeng's slides: 2-8
- Network coding
 - Butterfly example
 - Zongpeng's slides: 14-16

<u>Linnear Programming: "Hello world" ...</u>

```
maximize 2x + y

s.t.:

x \leq 2

y \leq 2

x + y \leq 3

x, y \geq 0
```

<u>Linnear Programming: "Hello world" ...</u>

```
maximize 2x + y

s.t.:

x \leq 2

y \leq 2

x + y \leq 3

x, y \geq 0
```


LP-model: Max flow

- Maximum rate we can push flows from S to T in a given capacitied flow network.
- flow-rate/link-capacity

LP-model: Max flow

Maximize

$$\chi = f(\overrightarrow{TS})$$

Subject to:

$$\begin{cases} f(\overrightarrow{uv}) \leq C(uv) & \forall \overrightarrow{uv} \neq \overrightarrow{TS} \\ \sum_{v \in N(u)} f(\overrightarrow{uv}) = \sum_{v \in N(u)} f(\overrightarrow{vu}) & \forall u \end{cases}$$
$$f(\overrightarrow{uv}) \geq 0 \qquad \forall \overrightarrow{uv}$$

Max-rate multicast with network coding

Given network coding, a multicast rate x is feasible in a directed network iff it is feasible as an independent unicast to every receiver. [Ahlswede et al. IT 2000][Koetter and Médard TON 2003]

Max-rate multicast with network coding

Maximize χ Subject to:

$$\begin{cases} \chi \leq f_{i}(\overrightarrow{T_{i}S}) & \forall i & (1) \\ f_{i}(\overrightarrow{uv}) \leq c(\overrightarrow{uv}) & \forall i, \forall \overrightarrow{uv} \neq \overrightarrow{T_{i}S} & (2) \\ \sum_{v \in N(u)} f_{i}(\overrightarrow{uv}) = \sum_{v \in N(u)} f_{i}(\overrightarrow{vu}) & \forall i, \forall u & (3) \\ c(\overrightarrow{uv}) + c(\overrightarrow{vu}) \leq C(uv) & \forall uv \neq T_{i}S & (4) \end{cases}$$

$$c(\overrightarrow{uv}), f_{i}(\overrightarrow{uv}), \chi \geq 0 \qquad \forall i, \forall \overrightarrow{uv}$$

Max-rate multicast WITHOUT network coding

Minimize $\sum_t f(t)$ Subject to: $\sum_{t:e \in t} f(t) \leq c(e) \qquad \forall e$ $f(t) \geq 0 \qquad \forall t$

- Don't be misguided by the seeming simplicity of the LP.
- It has exponentially many variables.
- We know a network instance with 16 nodes only, having ~ 50 million different trees.
- But, what else can we do? It's an NP-hard problem.

Let's start with throughput ...

Without network coding ...

□ T1 and T2 both
 get ¾ streams
 (75% of senders
 capacity)

 Optimization problem equal to "packing of Steiner trees" (NP-hard problem) With network coding ...

- □ T1 and T2 both get2/2 streams (100% of senders capacity)
- □ Improvement by 33%

Savings can also be in terms of "bandwidth"

• • •

□ ...or "time" ...

Network Coding

- □ A technique to improve:
 - 1. network throughput
 - 2. efficiency
 - 3. scalability

. . .

Information is <u>coded</u> at potentially every node

Without animation ...

Network Coding

- □ A technique to improve:
 - 1. network throughput
 - 2. efficiency
 - 3. scalability

. . .

Information is <u>coded</u> at potentially every node

Network Coding

- □ A technique to improve:
 - 1. network throughput
 - 2. efficiency
 - 3. scalability

. . .

Information is <u>coded</u> at potentially every node

