
TDTS04/TDDE35: Distributed Systems

Instructor: Niklas Carlsson

Email: niklas.carlsson@liu.se

Notes derived from “Distributed Systems:
Principles and Paradigms”, by Andrew S.

Tanenbaum and Maarten Van Steen, Pearson Int. Ed.

The slides are adapted and modified based on slides used by other
instructors, including slides used in previous years by Juha
Takkinen, as well as slides used by various colleagues from the
distributed systems and networks research community.

1

mailto:niklas.carlsson@liu.se

Goals with these four lectures

• Study concepts that build the foundations
of large-scale systems

• Learn about tradeoffs when building large-
scale systems

• Learn from case studies, example systems

• Get exposure to system building and (if
time) distributed systems research

2

Distributed systems

?
3

Distributed systems

“A collection of independent computers that
appears to its users as a single coherent system”

4

Distributed systems

• Examples include …

• Web, web search, social networks, …

• Peer-to-peer, file-sharing, …

• Cloud services, scientific computing, …

• Finance, healthcare, education,
transportation/logistics, environmental
engineering, entertainment/gaming, …

• … (many many many more) ...

“A collection of independent computers that
appears to its users as a single coherent system”

5

Distributed systems

“A collection of independent computers that
appears to its users as a single coherent system”

6

Distributed systems

“A collection of independent computers that
appears to its users as a single coherent system”

7

trading
chunks

peer

Distributed systems

“A collection of independent computers that
appears to its users as a single coherent system”

8

Distributed systems

“A collection of independent computers that
appears to its users as a single coherent system”

9

Distributed systems

“A collection of independent computers that
appears to its users as a single coherent system”

10

UE

Top of the Rack Switch
Core

Switch

Servers

Rack

Distributed systems

“A collection of independent computers that
appears to its users as a single coherent system”

Distributed systems

• Examples include …

• Web, web search, social networks, …

• Peer-to-peer, file-sharing, …

• Cloud services, scientific computing, …

• Finance, healthcare, education,
transportation/logistics, environmental
engineering, entertainment/gaming, …

• … (many many many more) ...

“A collection of independent computers that
appears to its users as a single coherent system”

12

Distributed systems

“A collection of independent computers that
appears to its users as a single coherent system”

13

◼ Networks of computers are everywhere!
◼ Mobile phone networks

◼ Corporate networks

◼ Factory networks

◼ Campus networks

◼ Home networks

◼ In-car networks

◼ On-board networks in planes and trains

◼ …

Distributed systems

• Hardware view

• Multiple independent but cooperating resources

• Software view

• Single unified system (e.g., application)

• Small vs large (full spectrum)
• E.g., Multiprocessor vs. world-wide

14

“A collection of independent computers that
appears to its users as a single coherent system”

15

Distributed systems

• Benefits?

• Problems?

16

Distributed systems

• Benefits?
• Performance

• Distribution

• Reliability

• Incremental growth

• Sharing of data/resources

• Problems?

17

Distributed systems

• Benefits?
• Performance

• Distribution

• Reliability

• Incremental growth

• Sharing of data/resources

• Problems?
• Difficulties developing software

• Network problems

• Security problems

18

19

Common Distributed Systems Design Goals

– Heterogeneity – can the system handle a large variety of types of PCs and
devices?

– Robustness – is the system resilient to host crashes and failures, and to the
network dropping messages?

– Availability – are data+services always there for clients?

– Transparency – can the system hide its internal workings from the users?

– Concurrency – can the server handle multiple clients simultaneously?

– Efficiency – is the service fast enough? Does it utilize 100% of all resources?

– Scalability – can it handle 100 million nodes without degrading service?
(nodes=clients and/or servers) How about 6 B? More?

– Security – can the system withstand hacker attacks?

– Openness – is the system extensible?

– Reliability – is the system available and fault tolerant?

Some examples …
Sharing (heterogeneity, openness, …)

• Multiple users can share + access remote resources

• Hardware, files, data, etc.

• Open standardized interface

• Often heterogeneous environment (hardware,
software, devices, underlying network
protocols, etc.)

• Middleware layer to mask heterogeneity

• Separate policies from mechanisms

21

Transparency

• Hide the distributed nature of system from users

• Several types:
• Location: Hide where a resource is located

• Migration: Resources can be moved

• Relocation: Resources can be moved while being used

• Replication: Multiple copies of same resource can exist

• Failure: Hide failures of remote resources

• …

22

Transparency in a Distributed System

Different forms of transparency in a distributed system.

(Bold mentioned on previous slide too.)

Hide whether a (software) resource is in memory or

on disk
Persistence

Hide the failure and recovery of a resourceFailure

Hide that a resource may be shared by several

competitive users
Concurrency

Hide that multiple copies of a resource existReplication

Hide that a resource may be moved to another

location while in use
Relocation

Hide that a resource may move to another locationMigration

Hide where a resource is locatedLocation

Hide differences in data representation and how a

resource is accessed
Access

DescriptionTransparency

23

Scalability

• Allow the system to become bigger
without negatively affecting performance

• Multiple dimensions:
• Size: Adding more resources and users

• Geographic: Dispersed across locations

• Administrative: Spanning multiple
administrative domains

24

Scalability

• Scalability problems appear as
performance problems

• System load, storage requirements,
communication overhead, ...

• Some common techniques:

– Divide and conquer

– Replication

– Distributed operation

– Service aggregation

– Asynchronous communication

– Multicast 25

Scalability File Distribution Example:
Client-server vs P2P

Question : How much time to distribute file from
one server to N peers?

us

u2d1 d2
u1

uN

dN

Server

Network (with
abundant bandwidth)

File, size F

us: server upload
bandwidth

ui: peer i upload
bandwidth

di: peer i download
bandwidth

26

File distribution time: Client-server

us

u2d1 d2
u1

uN

dN

Server

Network (with
abundant bandwidth)

Fserver must upload N
copies:

– NF/us time

client i takes F/di time
to download

increases linearly in N
(for large N)

= dcs = max { NF/us, F/min(di) }
i

Time to distribute F
to N clients using

client/server approach

27

File distribution time: P2P

us

u2d1 d2
u1

uN

dN

Server

Network (with
abundant bandwidth)

F
server must send one copy: F/us

time

client i takes F/di time to
download

NF bits must be downloaded
(aggregate)

fastest possible upload rate: us + Sui

dP2P = max { F/us, F/min(di) , NF/(us + Sui) }i

28

0

0.5

1

1.5

2

2.5

3

3.5

0 5 10 15 20 25 30 35

N

M
in

im
u
m

 D
is

tr
ib

u
ti
o
n
 T

im
e P2P

Client-Server

Server-client vs. P2P: example

Client upload rate = u, F/u = 1 hour, us = 10u, dmin ≥ us

29

Reliability

• Availability

• If a machines goes down, the system
should work with the reduced amount of
resources

• Replication used to ensure that data is
not lost (should be consistent)

• Fault tolerance

• The system must be able to detect faults,
mask faults (if possible), or gracefully
fail (if needed)

30

31

Distributed systems

• Remember the goals just discussed ...

– Heterogeneity, Robustness, Availability,
Transparency, Concurrency, Efficiency,
Scalability, Security, Openness, Reliability, …

Question: What complicates these goals?

32

Common Pitfalls
(bad/dangerous assumptions!)

• The network is reliable

• The network is secure

• The network is homogenous

• The topology does not change

• Latency is zero

• Bandwidth is infinite

• Transport cost is zero

• There is one administrator

33

34

Distributed system architecture

• A distributed application runs across
multiple machines

• How to organize the various pieces of
the application?

• Where is the user interface,
computation, data?

• How do different pieces interact with
each other?

35

Architectures

• Centralized: Most functionality is in a
single machine

• Distributed: Functionality is spread across
symmetrical machines

• Hybrid: Combination of the two

36

Centralized architecture

• Client-server

• Client implements the user interface

• Server has most of the functionality

• Computation, data

• E.g.: Web

37

Centralized architectures

Figure 2-3. General interaction between a client and
a server.

38

Server design issues

Server organization; e.g., How to process client requests?

– Iterative

– Concurrent

• Multithreaded

• Fork (unix)

– Stateless or stateful

Client contact; e.g., how to contact end point (port)

– Well-known (e.g., port 80 ...)

– Dynamic: daemon; superserver (unix)

39

End point, general design issues

• Figure 3-11. (a) Client-to-server binding using a
daemon.

40

End point, general design issues

Figure 3-11. (b) Client-to-server binding using a
superserver.

41

Decentralized architectures

• Vertical distribution
• Distribution along functionality

• Horizontal distribution
• E.g., Peer-to-peer distribution

42

Client-server architecture

• Application is vertically distributed

• Distribution along functionality

• Logically different component at
different place

43

Component distribution

• Could have variations on component distribution

• Different amount of functionality between
client-server

• Only UI at client

• UI+partial processing at client

• UI+processing at client, data at server

44

Server offloading

1.4

The difference between letting:

a) a server or

b) a client check forms as they are being filled 45

Physical two-tired architectures

Alternative client-server organizations (a) – (e).

1-29

46

• Two-tier model (classic)

• Three-tier (when the server, becomes a client)

• Multi-tier (cascade model)

Client-Server Architecture
(Tiered architecture)

clientclient serverserver

clientclient Server/clientServer/client serverserver

clientclient Server/clientServer/client
serverserver

Server/clientServer/client

serverserver

Multi-tiered servers

• Server may not be a single machine

• Multi-tiered architecture:

• Front-end

• Application server

• Database

48

Application layering

• The user-interface level
• The processing level
• The data level

49

Application layering

The general organization of an Internet search engine into
three different layers

1-28

50

Multi-tiered architectures

An example of a server acting as a client.

1-30

51

52

Server clusters

• Replication of functionality across machines

• Multiple front-ends, app servers, databases

• Client requests are distributed among the servers

• Load balancing

• Content-aware forwarding

53

Server clusters

Figure 3-13. The principle of TCP handoff.

54

Modern Architectures

An example of horizontal distribution of a Web service.

1-31

55

Replica selection Examples

• Round robin

• Load-based policies

• Payload-based methods (e.g., priorities)

• Energy/resource usage aware policies (e.g., costs)

• Nearby

• … and many other criteria ...

56

57

