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Outline

Design and analysis of parallel algorithms

▪ Foster’s PCAM method for the design of parallel programs

▪ Parallel cost models

▪ Parallel work, time, cost

▪ Parallel speed-up;   speed-up anomalies

▪ Amdahl’s Law

▪ Fundamental parallel algorithms:  Parallel prefix, List ranking

+ TDDD56:  Parallel Sorting Algorithms

+ TDDC78:  Parallel Linear Algebra and Linear System Solving
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Foster’s Method for Design of Parallel 

Programs  (”PCAM”)

PROBLEM

+ algorithmic

approach
PARTITIONING

COMMUNICATION

+ SYNCHRONIZATION

PARALLEL

ALGORITHM

DESIGN

AGGLOMERATION
PARALLEL

ALGORITHM

ENGINEERING

(Implementation and

adaptation for a specific 

(type of) parallel 

computer)

Elementary

Tasks

Textbook-style 

parallel algorithm

MAPPING

+ SCHEDULING

→ I. Foster, Designing and Building Parallel Programs. Addison-Wesley, 1995.
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Macrotasks



Christoph Kessler, IDA, 

Linköping University

Parallel Cost Models

A Quantitative Basis for the

Design of Parallel Algorithms
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Parallel Computation Model

= Programming Model + Cost Model
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Parallel Computation Models

Shared-Memory Models

▪ PRAM  (Parallel Random Access Machine)  [Fortune, Wyllie ’78]
including variants such as Asynchronous PRAM, QRQW PRAM

▪ Data-parallel computing

▪ Task Graphs  (Circuit model;  Delay model)

▪ Functional parallel programming

▪ …

Message-Passing Models

▪ BSP  (Bulk-Synchronous Parallel) Computing [Valiant’90]
including variants such as Multi-BSP [Valiant’08]

▪ MPI (programming model)
+ Delay-model or LogP-model (cost model) 

▪ Synchronous reactive (event-based) programming e.g. Erlang

▪ Dataflow programming

▪ …
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Cost Model
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Flashback to DALG, Lecture 1: 
The RAM (von Neumann) model for sequential computing

Basic operations (instructions):

- Arithmetic (add, mul, …) on registers

- Load

- Store

- Branch

Simplifying assumptions

for time analysis:

- All of these take 1 time unit

- Serial composition adds time costs

T(op1;op2) = T(op1)+T(op2)

op

op1

op2
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Analysis of sequential algorithms:

RAM model  (Random Access Machine)

s = d[0];

for (i=1; i<N; i++)

s = s + d[i];

 Data flow graph,
showing dependences

(precedence constraints)

between operations
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The PRAM Model – a Parallel RAM
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Remark

PRAM model is very idealized, 

extremely simplifying / abstracting from real parallel architectures:

→ Good for rapid prototyping of parallel algorithm designs:

A parallel algorithm that does not scale under the PRAM model

does not scale well anywhere else!

The PRAM cost model

has only 1 machine-specific

parameter:

the number of processors
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PRAM Variants
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Divide&Conquer Parallel Sum Algorithm 

in the PRAM / Circuit (DAG) cost model

T(1) = O(1)

Recurrence equation for 

parallel execution time:
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Recursive formulation of DC parallel sum 

algorithm in some programming model

cilk int parsum ( int *d, int from, int to )

{

int mid, sumleft, sumright;

if (from == to)  return d[from];    // base case

else {

mid = (from + to) / 2;

sumleft = spawn parsum ( d, from, mid );

sumright = parsum( d, mid+1, to );

sync;

return sumleft + sumright;

}

}

Implementation e.g. in Cilk:  (shared memory)

// The main program:

main() 

{

… 

parsum ( data, 0, n-1 );

…

}

Fork-Join execution style:

single task starts, 

tasks spawn child tasks for 

independent subtasks, and 

synchronize with them
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Recursive formulation of DC parallel 

sum algorithm in EREW-PRAM model

SPMD (single-program-multiple-data) execution style:  

code executed by all threads (PRAM procs) in parallel, 

threads distinguished by thread ID $ 
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Iterative formulation of DC parallel sum

in EREW-PRAM model
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Circuit / DAG model

▪ Independent of how the parallel computation is expressed,
the resulting (unfolded) task graph looks the same.

▪ Task graph is a directed acyclic graph (DAG)  G=(V,E)

▪ Set V of vertices:  elementary tasks   (taking time 1  resp. O(1)  each)

▪ Set E of directed edges:  dependences (partial order on tasks)  
(v1,v2) in E → v1 must be finished before v2 can start

▪ Critical path = longest path from an entry to an exit node

▪ Length of critical path is a lower bound for parallel time complexity

▪ Parallel time can be longer if number of processors is limited

→ schedule tasks to processors such that dependences are preserved -

by programmer (SPMD execution) or run-time system (fork-join execution)
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For a fixed number of processors … ?

▪ Usually, p << n

▪ Requires scheduling the work to p processors

(A) manually, at algorithm design time:

▪ Requires algorithm engineering

▪ E.g. for parallel sum:

stop the parallel divide-and-conquer
e.g. at subproblem size n/p
and switch there to sequential divide-and-conquer
(= task agglomeration)

▪ Step 0. Partition the array of n elements in p slices of n/p
elements each (= domain decomposition)

▪ Step 1. Each processor calculates a local sum for one slice, 
using the sequential sum algorithm, 
resulting in p partial sums (intermediate values)

▪ Step 2. The p processors run the parallel algorithm
to sum up the intermediate values to the global sum.
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For a fixed number of processors … ?

▪ Usually, p << n

▪ Requires scheduling the work to p processors

(B) automatically, at run time:

▪ Requires a task-based runtime system 
with dynamic scheduler

▪ Each newly created task is dispatched
at runtime to an available worker processor

run-time overhead 

▪ Dynamic load balancing ☺

Central task queue where idle workers
fetch next task to execute

Local task queues + Work stealing –
idle workers steal a task from 
some other processor

Run-time

scheduler

…

Worker threads
1:1 pinned to cores
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Delay Model
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BSP-Model



22C. Kessler, IDA, Linköping University

BSP Example:   
Global Maximum  (NB: non-optimal algorithm)
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LogP Model  → TDDC78
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LogP Model:  Example  → TDDC78
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Analysis of Parallel Algorithms
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Analysis of Parallel Algorithms

Performance metrics of parallel programs

▪ Parallel execution time

▪ Counted from the start time of the earliest task
to the finishing time of the latest task

▪ Work – the total number of performed elementary operations

▪ Cost – the product of parallel execution time and #processors

▪ Speed-up

▪ the factor by how much faster we can solve a problem with p
processors than with 1 processor, usually in range (0…p)

▪ Parallel efficiency = Speed-up / #processors, usually in (0…1)

▪ Throughput = #operations finished per second

▪ Scalability

▪ does speedup keep growing well
also when #processors grows large?

High latency,

high

bandwidth
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Analysis of Parallel Algorithms

Asymptotic Analysis

▪ Estimation based on a cost model and algorithm idea

(pseudocode operations)

▪ Discuss behavior for large problem sizes, large #processors

Empirical Analysis

▪ Implement in a concrete parallel programming language

▪ Measure time on a concrete parallel computer

▪ Vary number of processors used, as far as possible

▪ More precise

▪ More work, and fixing bad designs at this stage is expensive
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Parallel Time, Work, Cost
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Parallel work, time, cost

>
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Work-optimal and cost-optimal

→ TDDD56
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Speedup
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Speedup
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Amdahl’s Law:  Upper bound on Speedup
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Amdahl’s Law
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Proof of Amdahl’s Law
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Remarks on Amdahl’s Law
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Speedup Anomalies

W(p)
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Search Anomaly Example:  

Simple string search

Given:   Large unknown string of length n,

pattern of constant length m << n 

Search for any occurrence of the pattern in the string.

Simple sequential algorithm:  Linear search
0 n-1t

Pattern found at first occurrence at position t in the string after t time steps

or not found after n steps
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Parallel Simple string search

Given:   Large unknown shared string of length n,   

pattern of constant length m << n 

Search for any occurrence of the pattern in the string.

Simple parallel algorithm:  Contiguous partitions, linear search
0 n-1n/p-1 2n/p-

1

3n/p-

1

Case 1:  Pattern not found in the string

→ measured parallel time  n/p steps

→ speedup = n / (n/p) = p ☺

(p-1)n/p-1
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Parallel Simple string search

Given:   Large unknown shared string of length n,   

pattern of constant length m << n 

Search for any occurrence of the pattern in the string.

Simple parallel algorithm:  Contiguous partitions, linear search
0 n-1n/p-1 2n/p-1 3n/p-1

Case 2:  Pattern found in the first position scanned by the last processor

→ measured parallel time 1 step,  sequential time  n-n/p steps

→ observed speedup  n-n/p,  ”superlinear” speedup?!? 

But, …

… this is not the worst case (but the best case) for the parallel algorithm;

… and we could have achieved the same effect in the sequential algorithm,

too, by altering the string traversal order 

(p-1)n/p-1
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Simple Analysis of Cache Impact

▪ Call a variable (e.g. array element) live
between its first and its last access in an algorithm’s execution

▪ Focus on the large data structures of an algorithm (e.g. arrays)

▪ Working set of algorithm A at time t
WSA(t) = { v: variable v live at t }

▪ Worst-case working set size / working space of A
WSSA = maxt | WSA(t) |

▪ Average-case working set size / working space of A
…   = avgt | WSA(t) |

▪ Rule of thumb: Algorithm A has good (last-level) cache locality 
if WSSA < 0.9 * SizeOfLastLevelCache

▪ Assuming a fully associative cache with perfect LRU impl.

▪ Impact of the cache line size not modeled

▪ 10% reserve for some “small” data items 
(current instructions, loop variables, stack frame contents, …)

☺ Allows realistic performance prediction for simple regular algorithms

 Hard to analyze WSS for complex, irregular algorithmst

a[0]

a[1]

a[2]

a[n-1]
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Simple Analysis of Cache Impact

▪ Call a variable (e.g. array element) live
between its first and its last access in an algorithm’s execution

▪ Focus on the large data structures of an algorithm (e.g. arrays)

▪ Working set of algorithm A at time t
WSA(t) = { v: variable v live at t }

▪ Worst-case working set size / working space of A
WSSA = maxt | WSA(t) |

▪ Average-case working set size / working space of A
…   = avgt | WSA(t) |

▪ Rule of thumb: Algorithm A has good (last-level) cache locality 
if WSSA < 0.9 * SizeOfLastLevelCache

▪ Assuming a fully associative cache with perfect LRU impl.

▪ Impact of the cache line size not modeled

▪ 10% reserve for some “small” data items 
(current instructions, loop variables, stack frame contents, …)

☺ Allows realistic performance prediction for simple regular algorithms

 Hard to analyze WSS for complex, irregular algorithms
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Further fundamental 

parallel algorithms

Parallel prefix sums

Parallel list ranking

… as time permits …
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Data-Parallel Algorithms
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The Prefix-Sums Problem
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Sequential prefix sums algorithm
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Parallel prefix sums algorithm 1
A first attempt…
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Parallel Prefix Sums Algorithm 2:
Upper-Lower Parallel Prefix
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Parallel Prefix Sums Algorithm 3:
Recursive Doubling   (for EREW PRAM)

[Hillis, Steele ‘86]
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Parallel Prefix Sums Algorithm 4:
Odd-Even Parallel Prefix

Example: Poe(8) with 

base case Poe(4)
Recursive definition: Poe(n):
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Parallel Prefix Sums Algorithm 5
Ladner-Fischer Parallel Prefix Sums  (1980)

Odd-Even Parallel Prefix Sums algorithm

after work-time rescheduling:
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Parallel List Ranking (1)
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Parallel List Ranking  (2)
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Parallel List Ranking  (3)
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Parallel Mergesort

… if time permits …

More on parallel sorting in TDDD56
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Mergesort  (1)

▪ Known from sequential algorithm design

▪ Merge: take two sorted blocks of length k
and combine into one sorted block of length 2k

SeqMerge ( int a[k], int b[k], int c[2k] )
{

int ap=0, bp=0, cp=0;
while ( cp < 2k )  {         // assume a[k] = b[k] = ∞

if (a[ap]<b[bp])  c[cp++] = a[ap++];
else c[cp++] = b[bp++];

}
}

▪ Sequential time:  O(k)

▪ Can also be formulated for in-place merging (copy back)
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Divide&Conquer

(here, divide is trivial, merge does all the work)

• mrg(n1,n2) in time O(n1+n2)

• mergesort(n)  in time O(n log n)

Sequential Mergesort

Mergesort

Mergesort
Mergesort

Mergesort
Mergesort

Mergesort
Mergesort

Mergesort
Mergesort

Mergesort

MergesortMergesort
Mergesort

Mergesort

divide

divide
divide

divide

divide

divide

Mergesort

mrg
mrg

mrg
mrg

mrg

mrg

mrg
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Sequential Mergesort

void SeqMergesort ( int *array, int n )   // in place

{

if (n==1) return;   

//  divide and conquer:

SeqMergesort ( array,  n/2);

SeqMergesort ( array + n/2,  n-n/2 );

//  now the subarrays are sorted

SeqMerge ( array, n/2, n-n/2 );

}

void SeqMerge ( int array, int n1, int n2 )   // sequential merge in place

{    

... ordinary 2-to-1 merge in O(n1+n2) steps ...

}

Time:  O(n log n)

Split array (trivial, calculate n/2)

SeqMergesort SeqMergesort

SeqMerge
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Towards a simple parallel Mergesort…

Mergesort

mergesort
Mergesort

Mergesort
Mergesort

Mergesort
Mergesort

Mergesort
Mergesort

Mergesort

MergesortMergesort
Mergesort

Mergesort

divide

divide
divide

divide

divide

divide

Mergesort

mrg
mrg

mrg
mrg

mrg

mrg

mrg

Divide&Conquer – independent subproblems!

→ could run independent subproblems (calls)

in parallel on different resources (cores)

(but not much parallelism near the root)

Recursive parallel decomposition up to a   

maximum depth, to control #tasks
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Simple Parallel Mergesort

void SParMergesort ( int *array, int n )   // in place

{

if (n==1) return;   // nothing to sort

if (depth_limit_for_recursive_parallel_decomposition_reached()) 

SeqMergesort( array, n );   // switch to sequential 

//  parallel divide and conquer:

in parallel do {

SParMergesort ( array,  n/2);

SParMergesort ( array + n/2, n-n/2 );

}

//  now the two subarrays are sorted

seq SeqMerge ( array, n/2, n-n/2 );

}

void SeqMerge ( int *array, int n1, int n2 )   // sequential merge in place

{    

// ... merge in O(n1+n2) steps ...

}

Split array (trivial, calculate n/2)

SParMergesort SParMergesort

SeqMerge
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Simple Parallel Mergesort,  Analysis

Split array  (trivial)

SParMergesort SParMergesort

SeqMerge

…

Parallel Time:   

T( n ) = T(n/2) + Tsplit(n) + TSeqMerge(n) + O(1)  

= T(n/2) + O(n)

= O(n) + O(n/2) + O(n/4) + … + O(1)

= O(n)

Parallel Work:    O(n log n)

NB:  SeqMerging

(linear in input size)

does all the heavy

work in Mergesort



☺
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Simple Parallel Mergesort,  Discussion

▪ Structure is symmetric to Simple Parallel Quicksort

▪ Here, all the heavy work is done in the SeqMerge() calls

▪ The counterpart of SeqPartition in Quicksort

▪ Limits speedup and scalability 

▪ Parallel time  O(n),  

parallel work  O(n log n),

speedup limited to O(log n)

▪ (Parallel) Mergesort is an oblivious algorithm

▪ could be used for a sorting network like bitonic sort

▪ Exercise:  

Iterative formulation   (use a while loop instead of recursion)
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How to merge in parallel?

▪ For each element of the two arrays to be merged, calculate its final 
position in the merged array by cross-ranking

▪ rank( x, (a0,…,an-1)) = #elements ai < x

▪ Compute rank by a sequential binary search,  
time O(log n)

▪ ParMerge ( int a[n1], int b[n2] )
//  simplifying assumption:  
//  All elements in both a and b are pairwise different
{

for all i in 0…n1-1 in parallel
rank_a_in_b[i]  =  compute_rank( a[i], b, n2 );

for all i in 0…n2-1 in parallel
rank_b_in_a[i]  = compute_rank( b[i], a, n1 );

for all i in 0…n1-1 in parallel
c[ i + rank_a_in_b[i]  ]  =  a[i];  

for all i in 0…n2-1 in parallel
c[ i + rank_b_in_a[i]  ]  =  b[i];

}

a b

rank (a[i], b)

binary search

Time for one binary search: O(log n)

Par. Time for ParMerge:  O(log n)

Par. Work for parMerge:  O(n log n)
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Example:  ParMerge

▪ a = (2, 3, 7, 9 ),     b = (1, 4, 5, 8 ),    indices start at 0

▪ rank_a_in_b = ( 1, 1, 3, 4 )

rank_b_in_a = ( 0, 2, 2, 3 )

▪ a[0]  to  pos. c[ 0+1 ] = 1

a[1]  to  pos. c[ 1+1 ] = 2

a[2]  to  pos. c[ 2+3 ] = 5

a[3]  to  pos. c[ 3+4 ] = 7

b[0]  to  pos. c[ 0+0 ] = 0

b[1]  to  pos. c[ 1+2 ] = 3

b[2]  to  pos. c[ 2+2 ] = 4

b[3]  to  pos. c[ 3+3 ] = 6

▪ After copying, 

c = ( 1, 2, 3, 4, 5, 7, 8, 9 )

a b

rank (a[i], b)

binary search
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Fully Parallel Mergesort,  Analysis

Split array  (trivial)

ParMergeSort ParMergeSort

ParMerge

ParMerge ParMerge

…

Parallel Time:   

T( n ) = T(n/2) + Tsplit(n) + TParMerge(n) +O(1)  

= T(n/2) + O(log n)

= O(log n) + O(log n/2) + …+ O(1)

= O(log2 n)

Parallel Work: 

W( n ) = 2 W(n/2) +  O(n log n)

= …

= O(n log2 n)

NB:  ParMerge (time 

logarithmic in input size) 

does all the heavy lifting

work in ParMergeSort
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Summary
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Questions?
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Further Reading

On PRAM model and Design and Analysis of Parallel Algorithms

▪ J. Keller, C. Kessler, J. Träff: Practical PRAM Programming. 
Wiley Interscience, New York, 2001.

▪ J. JaJa: An introduction to parallel algorithms. Addison-Wesley, 
1992.

▪ D. Cormen, C. Leiserson, R. Rivest: Introduction to Algorithms, 
Chapter 30. MIT press, 1989.

▪ H. Jordan, G. Alaghband: Fundamentals of Parallel Processing.  
Prentice Hall, 2003.

▪ W. Hillis, G. Steele:  Data parallel algorithms. Comm. ACM 29(12), 
Dec. 1986.    Link on TDDC78 / TDDD56 course homepage.

See the TDDC78/TDDD56 Compendium!


