Design and Analysis
of Parallel Programs

TDDE35 Lecture 3-4

Christoph Kessler

PELAB / IDA
LinkOping university
Sweden

Background reading: C. Kessler, “Design and Analysis of Parallel Algorithms
— An Introduction”, Compendium TDDC78/TDDD56 Chapter 2. (c) 2019, 2020
https://www.ida.liu.se/~TDDC78/handouts.shtml login: parallel

LINKOPING
II." UNIVERSITY

Design and analysis of parallel algorithms

= Foster's PCAM method for the design of parallel programs

= Parallel cost models

= Parallel work, time, cost

= Parallel speed-up; speed-up anomalies

= Amdahl's Law

= Fundamental parallel algorithms: Parallel prefix, List ranking

+ TDDD56: Parallel Sorting Algorithms
+ TDDC78: Parallel Linear Algebra and Linear System Solving

C. Kessler, IDA, Linkoéping University 2

LINKOPING

Foster’s Method for Design of Parallel bz
Programs ("PCAM?”)

+PRI’OB_|—hEM PARALLEL
algorithmic. o\ 211 TIONING ALGORITHM
approach \ o DESIGN
0.0
OOOO OOOO © Elementary
COMMUNICATION 000 Of Tasks

+ SYNCHRONIZATION © "0 P %
Textbook-style

- w— — parallel algorith“l
OA(O
~

- PARALLEL
ALGORITHM
ENGINEERING

-
——__—

MAPPING

(Implementation and
adaptation for a specific
(type of) parallel
computer)

Macrotasks

C. Kes 3 - | Foster, Designing and Building Parallel Programs. Addison-Wesley, 1995.

Parallel Cost Models

A Quantitative Basis for the
Design of Parallel Algorithms

Christoph Kessler, IDA,
Linkdping University

: oo
Parallel Computation Model

= Programming Model + Cost Model

+ abstract from hardware and technology
+ specify basic operations, when applicable
+ specify how data can be stored

— analyze algorithms before implementation — T = f(n,p,...)
independent of a particular parallel computer

— focus on most characteristic (w.r.t. influence on exec. time)
features of a broader class of parallel machines

Programming model Cost model
e shared memory / e Key parameters
message passing, e cost functions for basic operations

e degree of synchronous execution e constraints

C.k

LINKOPING
Il.u UNIVERSITY

Parallel Computation Models

Shared-Memory Models

PRAM (Parallel Random Access Machine) [Fortune, Wyllie "78]
including variants such as Asynchronous PRAM, QRQW PRAM

Data-parallel computing
Task Graphs (Circuit model; Delay model)
Functional parallel programming

Message-Passing Models

BSP (Bulk-Synchronous Parallel) Computing [Valiant’90]
including variants such as Multi-BSP [Valiant’08]

MPI (programming model)
+ Delay-model or LogP-model (cost model)

Synchronous reactive (event-based) programming e.g. Erlang
Dataflow programming

C. Klssler, IRA, Linkdping University 6

iz
Cost Model
Cost model: should
+ explain available observations
+ predict future behaviour

+ abstract from unimportant details — generalization

Simplifications to reduce model complexity:

e use idealized multicomputer model
ignore hardware details: memory hierarchies, network topology, ...

e use scale analysis
drop insignificant effects

e use empirical studies
calibrate simple models with empirical data
rather than developing more complex models

Flashback to DALG, Lecture 1: sk

The RAM (von Neumann) model for sequential computing

RAM (Random Access Machine)

programming and cost model for the analysis of sequential algorithms

program memory

current instructios

data memory

M[3]
M[2]
M[1]
M[0]
load
clock store
Y
1
register |

register 2

| PC

Basic operations (instructions):
- Arithmetic (add, mul, ...) on registers
- Load

st)
- Brgrnech @ @

Simplifying assumptions

for time analysis:

- All of these take 1 time unit

- Serial composition adds time costs
T(opl;0p2) = T(opl)+T(op2)

Analysis of sequential algorithms:
RAM model (Random Access Machine)

Algorithm analysis: Counting instructions

LINKOPING
II." UNIVERSITY

Il
1; 1i<N; 1i++)
= s + d[1i];

s = d
for (
Example: Computing the global sum of N elements

I O

[
1
S

[=1ioad + Istore + 2 (2If(J(|‘d + ladd + Istore + [br(.'nc'/'.') =35N-3¢ G(N)

| < Data flow graph,
| showing dependences

= | (precedence constraints)
) # | | between operations
}L | | |
| | |

+ J lll'ull ||| ||| ||

} < Iﬁl"u. I".I |||| |'| |

| | | |.
d[0]|d[1]||d[2]|4d[3] |d[4]

dal5] |dle] |a[7]

~— arithmetic circuit model, directed acyclic graph (DAG) model

LINKOPING
II." UNIVERSITY

The PRAM Model — a Parallel RAM

Parallel Random Access Machine [Fortune/Wyllie’78]

p Processors
MIMD

common clock signal

arithm./jump: 1 clock cycle Shared Memory

shared memory

uniform memory access time

latency: 1 clock cycle (!)
concurrent memory accesses ‘Mg! | Mqi | Moi |Mg! M1

sequential consistency

private memory (optional)
processor-local access only

howvuues
Remark

PRAM model is very idealized,
extremely simplifying / abstracting from real parallel architectures:

unbounded number of processors:

abstracts from scheduling overhead The PRAM cost model

has only 1 machine-specific

: : . parameter:
local operations cost 1 unit of time the number of processors)

every processor has unit time memory access
to any shared memory location:
abstracts from communication time, bandwidth limitation,
memory latency, memory hierarchy, and locality

— focus on pure, fine-grained parallelism

- Good for rapid prototyping of parallel algorithm designs:
A parallel algorithm that does not scale under the PRAM model

does not scale well anywhere else!
C. Kessler, IDA, Linkoéping University 11

howvuues
PRAM Variants

Exclusive Read, Exclusive Write (EREW) PRAM
concurrent access only to different locations in the same cycle

Concurrent Read, Exclusive Write (CREW) PRAM
simultaneous reading from or writing to same location is possible:

Concurrent Read, Concurrent Write (CRCW) PRAM
simultaneous reading from or writing to same location is possible:
Weak CRCW
Common CRCW
Arbitrary CRCW
Priority CRCW

Combining CRCW
(global sum, max, etc.)

? Shared Memory

c.i1No need for ERCW ...

Divide&Conquer Parallel Sum Algorithm I
In the PRAM / Circuit (DAG) cost model

Given n numbers xy, x|, ...,x,_| stored in an array.

n—1
The global sum ¥ x; can be computed in |log,n| time steps

=0 on an EREW PRAM with n processors.

Parallel algorithmic paradigm used: Parallel Divide-and-Conquer

d[o]||d[1]||d[2]||d[3]|d[4] |Ad[5] |dl[eée] Aa[7]

ParSum(n): 1—1 L L |

ParSum((n/2) | | ParSum(n/2)

Divide phase: trivial, time O(1) Recurrence equation for
Recursive calls: parallel time 7T'(n/2) parallel execu“onzt'me ol

with base case: load operation, time O(1 [> {T(l) O(ln/ +O(1)
Combine phase: addition, time O(1)

Use induction or the master theorem [Cormen+'90 Ch.4] — T (n) € O(logn)

——

Recursive formulation of DC parallel sunf®##

LINKOPING

algorithm in some programming model

Implementation e.g. in Cilk: (shared memory) rawSumm): 1 [L1 |

cilk int parsum (int *d, int from, int to)

{

Int mid, sumleft, sumright;
If (from ==1to) return d[from];
else {

mid = (from + to) / 2;

/| base case

ParSum(n/2) | | ParSum(n/2)

sumleft = spawn parsum (d, from, mid);

sumright = parsum(d, mid+1, to);

Sync;
return sumleft + sumright;

) (.)

Fork-Join execution style:
single task starts,

tasks spawn child tasks for

independent subtasks, and

gynchronize with them)

C. Kessler, IDA, Linkop v roerrrersrey

14

e

/[The main program:

main()

{

parsum (data, 0, n-1);

C.

Recursive formulation of DC parallel ~ w##

sum algorithm in EREW-PRAM model

SPMD (single-program-multiple-data) execution style:
code executed by all threads (PRAM procs) in parallel, ParSum(n): 11— [T 1 |
threads distinguished by thread ID $

in the PRAM programming language Fork

[Keller, K., Tr&ff’01]

sync int parsum(sh int *d, sh int n)

{

ParSum(n/2) | | ParSum(n/2)

// calling group'’s processor ranks $ in [0...#-1]
sh int sl1, s2;

sh int nd2 = n / 2;

if (n==1) return d[0]; // base case

if ($<nd2) // split processor group:
sl = parsum(d, nd2);
else s2 = parsum(&(d[nd2]), n-nd2);

// subgroups merge here, barrier synchronization
return sl + s2;

LINKOPING

lterative formulation of DC parallel sum s
In EREW-PRAM model

int sum(sh int a[], sh int n) Ty
+ idle idle idle idle idle idle idle
{ —
int d, dd; B idle idle idle B8 idle idle idle
int ID = rerank(); T'\ T\
d = 1; o e & ide & ide BB ide
while (d<n) { T T\ T\ T\
dd = d: d = d*2; a(l) a(2) a(3) a(4) a(5) a(6) a(7) a(8)
1if (ID%d==0) al[ID] = al[ID] + al[ID+dd];

C. Kessler, IDA, Linkoéping University 16

LINKOPING
Il.u UNIVERSITY

Circuit / DAG model

= Independent of how the parallel computation is expressed,
the resulting (unfolded) task graph looks the same.

f‘wh’ idle idle idle
B idle idle idle B jdle idle idle

T idle = dle idle B idle

"N NG N

a(l) a(2) a(3) a(4) a(5) a(6) a(7) a(8)
= Task graph is a directed acyclic graph (DAG) G=(V,E)
= SetV of vertices: elementary tasks (taking time 1 resp. O(1) each)

= Set E of directed edges: dependences (partial order on tasks)
(v1,V,) In E = v, must be finished before v, can start

= Critical path = longest path from an entry to an exit node
= Length of critical path is a lower bound for parallel time complexity
= Parallel time can be longer if number of processors is limited
- schedule tasks to processors such that dependences are preserved -
by programmer (SPMD executlon) or run-time system (fork-join execution)

C. Kessler, IDA, LinKoping University

v s
For a fixed number of processors ... ?

= Usually, p<<n
= Requires scheduling the work to p processors

(A) manually, at algorithm design time:
= Requires algorithm engineering
= E.g. for parallel sum:

stop the parallel divide-and-conquer

e.g. at subproblem size n/p -
and switch there to sequential divide-and-conquer
(= task agglomeration)

= Step 0. Partition the array of n elements in p slices of n/p
elements each (= domain decomposition)

= Step 1. Each processor calculates a local sum for one slice,
using the sequential sum algorithm,

resulting in p partial sums (intermediate values)

= Step 2. The p processors run the parallel algorithm
to sum ugythe Intermediate 1\éalues to the global sum.

C. Kessler, IDA, Linképing Universi

v s
For a fixed number of processors ... ?

= Usually, p<<n
= Requires scheduling the work to p processors

(B) automatically, at run time:

= Requires a task-based runtime system
with dynamic scheduler

= Each newly created task is dispatched
at runtime to an available worker processor

Run-time

» run-time overhead ® | W

= Dynamic load balancing ©

» Central task queue where idle workers
fetch next task to execute

» Local task queues + Work stealing — % %

iIdle workers steal a task from
some other processor

Worker threads

C. Kessler, IDA, Linkdping University 19 1:1 pinned to cores

LINKOPING
II." UNIVERSITY

Delay Model

Idealized multicomputer: point-to-point communication costs overhead t,,,,.

4 time
tyy word transfer time

/

t, startup time

Cost of communicating a larger block of n bytes: l

time 1,,,(n) = sender overhead + latency + receiver overhead + n/bandwidth
= Isiarup T M- biransfer \/\ﬁeP‘R

Assumption: network not overloaded; no conflicts occur at routing

tyarmp = Startup time (time to send a 0-byte message)
accounts for hardware and software overhead.

tuansier = transter rate, send time per word sent.

depends on the network bandwidth.
C. Kessler, IDA, Linkoéping University 20

LINKOPING
II." UNIVERSITY

BSP-Model

Bulk-synchronous parallel programming [Valiant’90] [McColl’93]

BSP computer = abstract message passing architecture (p,L,g,s)

time PO P1 P2 P3 P4 P5 P6 P7 P8 P9 MIMD
/ EE = == == =m =mm mm ¢lobal barrier SPMD

V local computation h-relation models

using local data only Communication
superstep < o N pattern / volume
h; [words] = comm.

communication phase fan-in, fan-out of Pi
(message passing)
next barrier h = max<;<p hi

BSP program = sequence of supersteps, separated by (logical) barriers

C. Kessler, IDA, Linkoéping University 21

LINKOPING

BSP Example: s

Global Maximum (NB: non-optimal algorithm)

Compute maximum of n numbers A[0,...,n— 1] on BSP(p,L,g,s):

/I A|0..n— 1] distributed block-wise across p processors

step ‘J/
// local computation phase: =

m ¢— —oo;

for all A[i] in my local partition of A {
m < max (m, Ali);

// communication phase:

if myPID # 0 Local work:
send (m, 0); O(n/p)
else //on P Communication:
foreachie{l,...,p—1} h=p—1
t recv (mj, i); (P, is bottleneck)
step
if myPID =0 tsep = WA hg +L
foreachic {1,....,p—1} n
m < max(m, m;); =9 (1_7 +pg+L>

C. Kessler, IDA, Linkoéping University 22

[T TR
LogP Model - TDDC78

LogP model [Culler et al. 1993]
for the cost of communicating small messages (a few bytes)

4 parameters:

PO
latency L
overhead o
gap g (models bandwidth) P,

processor number P

abstracts from network topology

gap g = inverse network bandwidth per processor:
Network capacity is L/g messages to or from each processor.

L, o, g typically measured as multiples of the CPU cycle time.

transmission time for a small message:
2-0+ L if the network capacity is not exceeded

C. Kessler, IDA, Linkoéping University 23

oo
LogP Model: Example - TDDC78

Example: Broadcast on a 2-dimensional hypercube

With example parameters P =4, o =2us, g = 3us, L= 5us

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
send ~ .

Remark: gap constraint does not apply to recv; send sequences

P1 recw_send N
\
Pz recv \\
p N
P3
recv

it takes at least 18us to broadcast 1 byte from PO to P1, P2, P3

Remark: for determining time-optimal broadcast trees in LogP, see
[Papadimitriou/Yannakakis’89], [Karp et al.93]

C. Kessler, IDA, Linkoéping University 24

Analysis of Parallel Algorithms

Christoph Kessler, IDA,
Linkdping University

[KT R
Analysis of Parallel Algorithms

Performance metrics of parallel programs
= Parallel execution time

= Counted from the start time of the earliest task
to the finishing time of the latest task

= Work — the total number of performed elementary operations
= Cost — the product of parallel execution time and #processors
= Speed-up

= the factor by how much faster we can solve a problem with p
processors than with 1 processor, usually in range (O.. p)

= Parallel efficiency = Speed-up / #processors, usually in (
= Throughput = #operations finished per second < E.';? |atency<»>
= Scalability bandwidth

= does speedup keep growing well
also when #processors grows large?

C. Kessler, IDA, Linkoéping University 26

[KT R
Analysis of Parallel Algorithms

Asymptotic Analysis

= Estimation based on a cost model and algorithm idea
(pseudocode operations)

= Discuss behavior for large problem sizes, large #processors

Empirical Analysis
= Implement in a concrete parallel programming language
= Measure time on a concrete parallel computer
= Vary number of processors used, as far as possible
= More precise

= More work, and fixing bad designs at this stage is expensive

C. Kessler, IDA, Linkoéping University 27

Parallel Time, Work, Cost

problem size n
processors p
time t(p,n)
work w(p,n)

costc(p,n) =t-p

Example:
seq. sum algorithm

s = a(l

)
do 1 = 2, n
s = s + a(i)

end do

n— 1 additions
n loads

O(n) other

C. MNTODICTI, IVA,;, LILINUPITIY UITITIVTIDILY

LINKOPING
II." UNIVERSITY

fime fl- time
be 5= pi parallel sum algorithm
a(8)
+
|
a(7)
+
e
a(6)
+
|
a(5) \ costc=t*p
N L idle idle idle idle idle idle idle
a(4) “Hﬁh““x=xwm1_
: | idle idle idle 8 idle idle idle
+ o idle OB idle R idle [idle
-
a(2) \Qmu W Nﬁm] N}sm INJH"
a(1) a(l) a(2) a(3) a(4) a(5) a(6) a(7) a(8)
p= 1 » p=n

1(1,n) =tyy(n) = O(n)
w(1l,n) = O(n)
c(l,n)=1t(l,n)-1

= O(n)

2O

t(n,n) = O(logn)
w(n,n) = O(n)
c(n,n) = O(nlogn)

par. sum alg. not cost-effective!

howvuues
Parallel work, time, cost

parallel work w,(n) of algorithm A on an input of size n

= max. number of instructions performed by all procs during execution of A,
where in each (parallel) time step as many processors are available
as needed to execute the step in constant time.

parallel time r4(n) of algorithm A on input of size n
= max. number of parallel time steps required under the same circumstances

parallel cost c4(n) = ta(n) * pa(n) — ca(n) > wa(n)
where pa(n) = max;p;(n) = max. number of processors used in a step of A

Work, time, cost are thus worst-case measures.

ta(n) is sometimes called the depth of A
(cf. circuit model of (parallel) computation)

pi(n) = number of processors needed in time step i, 0 <i < ta(n), ()
Aln

to execute the step in constant time. Then, wy(n) = 3 pi(n)
i=0

v s
Work-optimal and cost-optimal

A parallel algorithm A is asymptotically work-optimal iff wa(p,n) = O(tsq(n))

A parallel algorithm A is asymptotically cost-optimal iff ca(p,n) = O(tsey(n))

Making the parallel sum algorithm cost-optimal:
Instead of n processors, use only n/log,n processors.

First, each processor computes sequentially the global sum of
“its” logn local elements. This takes time O(logn).

Then, they compute the global sum of n/logn partial sums
using the previous parallel sum algorithm.

Time: O(logn) for local summation, O(logn) for global summation

Cost: n/logn- O(logn) = O(n) linear!

- TDDD56

. This is an example of a more general technique based on Brent’s theorem.

LINKOPING
II." UNIVERSITY

Speedup

Consider problem P, parallel algorithm A for P

T; = time to execute the best serial algorithm for P
on one processor of the parallel machine

T'(1) = time to execute parallel algorithm A on 1 processor
T(p) = time to execute parallel algorithm A on p processors

Absolute speedup S s =

)

P
)) Sabs < Sr@l

Relative speedup S, = g

C. Kessler, IDA, Linkoéping University 31

LINKOPING
II." UNIVERSITY

Speedup

trivially parallel

ideal speedup: (€.9., matrix product, LU
S=p decomposition, ray tracing)
— cClose to ideal S = p

(superline&r)

linear
work-bound algorithms

sublinear ~ — linear S € ©(p), work-optimal

tree-like task graphs
(e.g., global sum / max)
— sublinear S € ©(p/logp)

decreasing
> communication-bound
p — sublinear S =1/ fn(p)

Most papers on parallelization show only relative speedup
(as Sus < S,., and best seq. algorithm needed for ;)

C. MNTODICTI, IVA,;, LILINUPITIY UITITIVTIDILY 64

LINKOPING
II." UNIVERSITY

Amdahl’s Law: Upper bound on Speedup

Consider execution (trace) of parallel algorithm A:
sequential part A* where only 1 processor is active
parallel part A” that can be sped up perfectly by p processors

— total work wy(n) = wys(n) +wyp(n), time T = Tys + %,

Amdahl’s Law

If the sequential part of A Is a fixed fraction of the total work
irrespective of the problem size n, that is, if there is a constant 3 with

_ WAS(H)
wa(n)

<1
the relative speedup of A with p processors is limited by

p |
prop ~ /P

C. Keourer, 1y winimupiniy wiinver oy 55

LINKOPING
II." UNIVERSITY

Amdahl’s Law

g A

>
1 2 3 4 5 p
v |

C. Kessler, IDA, Linkoéping University 34

[T RS
Proof of Amdahl’s Law

r() T(1)
 T(p) Tw+Tw(p)

Assume perfect parallelizability of the parallel part A,
thatis, Tur(p) = (1=B)T(p) = (1 =B)T(1)/p:

r) __
Br()+(1=B)T(1)/p) Bp+1-B —

ro [
CBT) T AsIT)

Pl
P2 p
P3

Srel —

1/B

(1-B)T(1)p
Remark:
. For most parallel algorithms the sequential part is not a fixed fraction.

C.K

v e
Remarks on Amdahl’s Law

Not limited to speedup by parallelization only!

Can also be applied with other optimizations
e.g. SIMDization, instruction scheduling, data locality improvements, ...

Amdahl’s Law, general formulation:

If you speed up a fraction (1 —) of a computation by a factor p,
the overall speedup is P , which is < 1
PEEtEP B Bp+ (T B) B

Implications

e Optimize for the common case.
If 1 — [Iis small, optimization has little effect.

e Ignored optimization opportunities (also) limit the speedup.

As p — oo, speedup is bound by %

C.l

v,
Speedup Anomalies

Speedup anomaly:
An implementation on p processors may execute faster than expected.

Superlinear speedup
speedup function that grows faster than linear, i.e., in ()

Possible causes:

e cache effects 71\) /x:

e search anomalies

Speedup anomalies may occur only for fixed (small) range of p.

Real-world example: move scaffolding

Theorem:
There Is no absolute superlinear speedup for arbitrarily large p.

Search Anomaly Example: Iuis
Simple string search

Given: Large unknown string of length n,
pattern of constant length m << n
Search for any occurrence of the pattern in the string.

Simple sequential algorithm: Linear search
Q t

Pattern found at first occurrence at position tin the string after t time steps
or not found after n steps

C. Kessler, IDA, Linkoéping University 38

v s
Parallel Simple string search

Given: Large unknown shared string of length n,
pattern of constant length m << n
Search for any occurrence of the pattern in the string.

Simple parallel algorithm: Contiguous partitions, linear search
0 n/p-1 2n/p- 3n/p- (p-1)n/p-1 n-1
1

Case 1. Pattern not found in the string
- measured parallel time n/p steps
2> speedup=n/(np)=p ©

C. Kessler, IDA, Linkoéping University 39

v s
Parallel Simple string search

Given: Large unknown shared string of length n,
pattern of constant length m << n
Search for any occurrence of the pattern in the string.

Simple parallel algorithm: Contiguous partitions, linear search
0 n/p-1 2n/p-1 3n/p-1 (p-1)n/p-1 n-1

Case 2: Pattern found in the first position scanned by the last processor
- measured parallel time 1 step, sequential time n-n/p steps
- observed speedup n-n/p, "superlinear’ speedup?!?

But, ...

... this is not the worst case (but the best case) for the parallel algorithm;

... and we could have achieved the same effect in the sequential algorithm,
too, by altering the string traversal order

C. Kessler, IDA, Linkoéping University 40

LINKOPING
II." UNIVERSITY

Simple Analysis of Cache Impact

Call a variable (e.g. array element) live
between its first and its last access in an algorithm’s execution

= Focus on the large data structures of an algorithm (e.g. arrays)

Working set of algorithm A at time t
WS, (t) = { v: variable v live at t }

Worst-case working set size / working space of A
WSS, = max, | WS,(1) |

Average-case working set size / working space of A

= avg, | WS,(1) |
al0] eo—e o >0
a[1] O +()
a[2] C—0———0—0
a[n-1] O O—0
>

v s
Simple Analysis of Cache Impact

= Call avariable (e.g. array element) live
between its first and its last access in an algorithm’s execution

= Focus on the large data structures of an algorithm (e.g. arrays)

= Working set of algorithm A at time t
WS, (t) = { v: variable v live at t }

= Worst-case working set size / working space of A
WSS, = max, | WS,(t) |

= Average-case working set size / working space of A
= avg; | WS,(1) |

= Rule of thumb: Algorithm A has good (last-level) cache locality
If WSS, < 0.9 * SizeOfLastLevelCache

= Assuming a fully associative cache with perfect LRU impl.
= Impact of the cache line size not modeled

= 10% reserve for some “small’ data items
(current instructions, loop variables, stack frame contents, ...)

© Allows realistic performance prediction for simple regular algorithms
« @ Hardite.analyze WSS for complex, irregular algorithms

Further fundamental
parallel algorithms

Parallel prefix sums
Parallel list ranking

... as time permits ...

Christoph Kessler, IDA,
Linkdping University

LINKOPING
II." UNIVERSITY

Data-Parallel Algorithms

One task (virtual processor) associated with each data element
Agglomeration + mapping to hardware processors by the compiler

Problems of size N
solved usually in time O(1) or O(logN) using N processors

Some data-parallel algorithms

Parallel sum /

Prefix sums (partial sums)

Radix sort

Parsing a regular language

Parallel combinator reduction

List ran king (finding the end of a parallel linked list, list prefix sums etc.)
Matching components of two lists

howvuues
The Prefix-Sums Problem

Given:asetS (e.g., the integers)
a binary associative operator & on S,
a sequence of n items xg,...,x, 1 €S

compute the sequence y of prefix sums defined by

i
yi:@xjf0r0§i<n
j=0

An important building block of many parallel algorithms! [Blelloch’89]

typical operations &:
integer addition, maximum, bitwise AND, bitwise OR

Example:
bank account: initially 0$, daily changes xy, xi, ...
., — compute daily balances: (0,) xop, xo-+ x1, xo+x1+ x2, ...

vy
Sequential prefix sums algorithm

void seq prefix(int x[], 1nt n, int yI[])
‘ X, x, X X X

int 1i; T~
int ps; // 1’'th prefix sum u
if (n>0) ps = y[0] = x[0]; +
for (i=1; 1<n; 1++) {

ps += x[1]; L(

+
y[i] = ps; +l(

}

©

if run in parallel on n virtual processors: | T T A A |

. Yoo X Y Y s Vs Y,
time ©(n), work O(n), cost O(n?)

Task dependence graph: linear chain of dependences
— seems to be inherently sequential — how to parallelize?

C. Kessler, IDA, Linkoéping University 46

: : [KT R
Parallel prefix sums algorithm 1 Y

A first attempt...

Naive parallel implementation:

apply the definition,

i
yi:@xjf0r0§i<n
j=0

and assign one processor for computing each y;
— parallel time ©(n), work and cost ©(n?)

But we observe:
a lot of redundant computation (common subexpressions)

C. Kessler, IDA, Linkoéping University 47

LINKOPING

Parallel Prefix Sums Algorithm 2: .0t
Upper-Lower Parallel Prefix

Algorithmic technique: parallel divide&conquer
We consider the simplest variant, called Upper/lower parallel prefix:

recursive formulation:

N—prefix is computed as Upper/lower parallel prefix, unfolded for N = 8:

4 8
Y xl +x2 Z X; Z X;
i=1 i=1

Parallel time: logn steps, work: n/2 logn additions, cost: ©(nlogn)

- Not work-optimal! And needs concurrent read...

Parallel Prefix Sums Algorithm 3: b

Recursive Doubling (for EREW PRAM)
[Hillis, Steele ‘86]

EREW (exclusive read, exclusive write) prefix sums algorithm:

iterative formulation
Bl 1% 1% 10160 1%1% %1% %9 91 91%1% %) in data-parallel pseudocode:

real ¢ : array|0..N — 1];
0 0 s I
AN int stride;

stride « 1;
while stride < N do

forall i : [0..N — 1] in parallel do

if { >stride then
alil| < ali—stride] + alil;

stride := stride * 2;
Work: ©(nlogn) :-(

C. Kessler, IDA, Linkoéping University 49

(* finally, sum in a[N — 1] *)

LINKOPING

Parallel Prefix Sums Algorithm 4: .0t
Odd-Even Parallel Prefix
Example: P°¢(8) with

base case P°¢(4)

X X2 X3 Xy X5 Xg .. X; X; X3 Xy X5 X5 X. X

oo - oo ?+<?+> i{})

Recursive definition: P°®(n):

P odd/even (n /2)

Rl [[efel]

A 4 X
y Ji y 2 y 3 y,; y 3 y 6 y; y 8

.}:1 }; Vs y:, Vs Vg oo
EREW, 2logn—2 time steps, work 2n—logn—2, cost ©(nlogn)

Not cost-optimal! But may use Brent’s theorem...

C. Kessler, IDA, Linkoéping University 50

Parallel Prefix Sums Algorithm 5 vz

Ladner-Fischer Parallel Prefix Sums (1980)

Odd-Even Parallel Prefix Sums algorithm
after work-time rescheduling:

cost-optimal (cost ©(n)) if using ©(n/logn) virtual processors only

C. Kessler, IDA, Linkoéping University 51

LINKOPING
II." UNIVERSITY

Parallel List Ranking (1)

Parallel list: (unordered) array of list items (one per proc.), singly linked

Problem: for each element, find poxt | opext | opext | pext | pext | pext | ypext | opext
the end of its linked list.

Algorithmic technique:
recurS|Ve dOUblIng’ here: chum | jichum| ,jchum| ,lchum]| ,lchum| ,lchum| ,lchum| ,lchum
“pointer jumping” [Wyllie’79]

The algorlthm In pseUdOCOde: nmext ext ext ext ext ext ext ext

chun{ chu.n{ chu.n{ chu.n{ chun{ chun{ chum chum

forall k in [1..N| in parallel do
chumlk] <— next|k];
While Chum[k] # nu” nzxt next ext ext ext ext ext ext
chum ichum ichum chum chun{ chun{ chum| ,/chum
and chum|chum|4]] # null do
chum|k] + chum|chum/k||;
od

0 d mext ext ext ext ext ext ext ext
ichum chu.nk ichum chum chum chun{ chum| ,/chum

lengths of chum lists halved in each step U
. = [logN] pointer jumping steps

Parallel List Ranking (2)

LINKOPING
II." UNIVERSITY

Extended problem: compute the rank = distance to the end of the list

O—O— O 0—-O—O—
(O~ DAD)ADADAD)——

affoge

C. Kessler, IDA, Linkoéping University

DEoRO
© @/@@

By pointer jumping:
In each step:

to my own
distance value,

| add the distance
of my —chum
that | splice

out of the list

Every step
+ doubles #lists
+ halves lengths

— [log,n| steps

Not work-efficient!

[KT R
Parallel List Ranking (3)
NULL-checks can be avoided by marking list end by a self-loop.
Pointer jumping algorithm for list ranking, implementation in Fork:

wyllie(sh LIST list[], sh int length)

{
LIST *e; // private pointer

int nn;
e = 1list[$S]; // $$ 1s my processor 1index
i1f (e->next != e) e->rank = 1; else e->rank = 0;

nn = length;

while (nn>1) {
e->rank = e->rank + e->next->rank;
e->next = e->next->next;
nn = nn>>1; // division by 2

}
}

C. Kessler, IDA, Linkoéping University 54

Parallel Mergesort

... if time permits ...

More on parallel sorting in TDDD56

Christoph Kessler, IDA,
Linkdping University

LINKOPING
Il.u UNIVERSITY

Mergesort (1)

= Known from sequential algorithm design

= Merge: take two sorted blocks of length k
and combine into one sorted block of length 2k

SegMerge (int a[k], int b[k], int c[2k])
{
int ap=0, bp=0, cp=0;
while (cp < 2k) { // assume alk] = b[k] = oo
if (a[ap]<b[bp]) c[cp++] = a[ap++];
else c[cp++] = b[bp++];
}
}

= Sequential time: O(k)

= (Can also be formulated for in-é%Iace merging (copy back)

C. Kessler, IDA, Linkoéping University

v s
Sequential Mergesort

\ t —— Divide&Conquer
ergesort - == (here, divide is trivial, merge does all the work)

[iVide —

> — g * mrg(nl,n2) in time O(n1+n2)
* ‘wt(n) in time O(n log n)
Mergesort=— =5
divide — Mergesort
9
Mergesort g \ l \
divide J Mergesort
— = divide 1 - Mergesort
divide Mergesort
di\@Le
mrg
Mergeort *
Mergegto
Mergesort

Merggsort

C. Kessler, IDA, Linkoéping University 57

v s
Seguential Mergesort

Time: O(n log n)

void SegMergesort (int *array, intn) //in place

{
If (n==1) return;
/I divide and conquer: Split array (trivial, calculate n/2
SeqMergesort (array, n/2); /\
SegMergesort (array + n/2, n-n/2);
/[now the subarrays are sorted SegMergesort SegMergesort
SegMerge (array, n/2, n-n/2); \/

} SegMerge

void SegMerge (int array, int nl, int n2) // sequential merge in place

{
}

... ordinary 2-to-1 merge in O(n1+n2) steps ...

C. Kessler, IDA, Linkoéping University 58

vy
Towards a simple parallel Mergesort...

Mergesort =—— Divide&Conquer — independent subproblems!

—> could run independent subproblems (calls)
g In parallel on different resources (cores)

IVide —
——

\

Mergesort=
divide —

(but not much parallelism near the root)

Recursive parallel decomposition up to a
maximum depth, to control #tasks

g~~~

Mergesort s —— \
divide Mergesort
— = divide 1 - Mergesort
divide Mergesort
divide
_> 1 —
mrg
Mergeort *
Mergegto
Mergesort

Merggsort

C. Kessler, IDA, Linkoéping University 59

howvuues
Simple Parallel Mergesort

void SParMergesort (int *array, intn) //in place

{
If (n==1) return; // nothing to sort
If (depth_limit_for_recursive_parallel decomposition_reached())
SegMergesort(array, n); // switch to sequential
// parallel divide and conquer:
In parallel do { Split array (trivial, calculate n/2}
SParMergesort (array, n/2);
SParMergesort (array + n/2, n-n/2); /\
} SParMergesort SParMergesort
// now the two subarrays are sorted
seq SegMerge (array, n/2, n-n/2); \/
} SeqMerge

void SegMerge (int *array, int n1, intn2) // sequential merge in place

{
C.K}

/Il ... merge in O(n1+n2) steps ...

v s
Simple Parallel Mergesort, Analysis

Spli array (iivia) inar input i)

/\ does all the heavy

[SParMergesch (SParMergeso} work in Mergesort

| T

;E; [j; [j; [j% Parallel;ime;

;; ;; T(n) = T(n/2) t Tsplit(n) + TSequrge(n) + 0(1)

\L 1) L J) =T(n/2) + O(n)

= O(n) + O(n/2) + O(n/4) + ... + O(1)
~.. -0 @

SeqMerge
Parallel Work: O(nlogn) ©

C. Kessler, IDA, Linkoéping University 61

v s
Simple Parallel Mergesort, Discussion

= Structure is symmetric to Simple Parallel Quicksort

= Here, all the heavy work is done in the SegMerge() calls
= The counterpart of SegPartition in Quicksort
= Limits speedup and scalability

= Parallel time O(n),
parallel work O(n log n),
speedup limited to O(log n)

= (Parallel) Mergesort is an oblivious algorithm
= could be used for a sorting network like bitonic sort

= EXxercise:
erative formulation (use a6;/vhile loop instead of recursion)

C. Kessler,tDA, Linkoping University

[KT R
How to merge In parallel?

= For each element of the two arrays to be merged, calculate its final
position in the merged array by cross-ranking

= rank(x, (ay,...,a,.1)) = #elements a, < X

= Compute rank by a sequential binary search, .
time O(log n) rank {alll, b)
a b
« ParMerge (int a[n1], int b[n2]) SN— —
/I simplifying assumption: binary search

é/ All elements in both a and b are pairwise different

foralliin 0...n1-1 in parallel
rank_a_in_b[i] = compute_rank(a[i], b, n2);

foralliin 0...n2-1 in parallel
rank_b _Iin_a[i] = compute_rank(b[i], a, n1);

foralliin 0...n1-1 in parallel
c[i+rank_a_In_b[i]] = alif;

for all iin 0...n2-1 in parallel Time for one binary search: O(log n)
c[i+rank_b _in_afi]] = b[i]; 'Par. Time for ParMerge: O(log n)

Par. Work for parMerge: O(n log n)

C. Kessler, IDA, Linkoéping University 63

howvuues
Example: ParMerge

= a=(2,3,7,9), b=(1,4,5,8), IindicesstartatO

= rank_ a in b=(1,1,3,4)

rank_b_in_a=(0,2,2,3) rank ([, b)

= a[0] to pos.c[0+1]=1
a[l] to pos.c[1+1]=2 a b
al2] to pos.c[2+3]=5 ~— = _—
i - . inary search
al3] to pos.c[3+4|=7
b[0] to pos.c[0+0]=0
b[1l] to pos.c[1+2]=3
b[2] to pos.c[2+2] =4
b[3] to pos.c[3+3]=6

= After copying,
c=(1,23,4,5,7,8,9)

C. Kessler, IDA, Linkoéping University 64

v s
Fully Parallel Mergesort, Analysis

Split array (trivial) NIE: P arl_/le_r ge (timg
logarithmic in input size)

/\ does all the heavy lifting

[P arMergeSOQ (P arMergeSoD work in ParMergeSort

:-\’ :-\’ Parallel Time:

T(n) = T(I’]/Z) i Tsplit(n) i TParMerge(n) +O(1)

‘TL ‘T’ ‘TL JTL =T(n/2) + O(log n)
= O(log n) + O(log n/2) + ...+ O(1)
)) (] | N () | (el

=0(log?n) ©

;; ;; Parallel Work:

ParMerge ParMerge
\ =) \L =)

\/ W(n)=2W(n/2) + O(nlog n)

ParMerge = O(n log? n) @

C. Kessler, IDA, Linkoéping University 65

howvuues
Summary

Parallel computation model = programming model + performance model

— quantitative basis for design and analysis of parallel algorithms

Use simple performance models (PRAM, Delay, BSP)
early in the design process.

Refine performance model at later stages (BSP, LogP, LogGP)
and conduct simple experiments to derive model parameters

During implementation, compare performance to predictions by the model
— may identify implementation errors and improve quality.

C. Kessler, IDA, Linkoéping University 66

Questions?

Christoph Kessler, IDA,
Linkdping University

LINKOPING
Il.u UNIVERSITY

Further Reading

See the TDDC78/TDDD56 Compendium!

C. Kessler, J. Keller: Models for Parallel Computing: Review and Perspectives.
PARS-Mitteilungen 24, Gesellschaft fur Informatik, Dec. 2007, ISSN 0177-0454.

On PRAM model and Design and Analysis of Parallel Algorithms

J. Keller, C. Kessler, J. Traff: Practical PRAM Programming.
Wiley Interscience, New York, 2001.

= J. JaJa: An introduction to parallel algorithms. Addison-Wesley,
1992.

= D. Cormen, C. Leiserson, R. Rivest: Introduction to Algorithms,
Chapter 30. MIT press, 19809.

= H. Jordan, G. Alaghband: Fundamentals of Parallel Processing.
Prentice Hall, 2003.

= W. Hillis, G. Steele: Data parallel algorithms. Comm. ACM 29(12),
Dec. 1986. Link on TDDC78/ TDDD56 course homepage.

C. Kessler, IDA, Linkoéping University 68

