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Outline

Lecture 2a:  Parallel programming with threads

▪ Shared Memory programming model

▪ Revisiting processes, threads, synchronization

▪ Pthreads

▪ OpenMP  (very shortly) 

Lecture 2b:  Parallel programming with message passing

▪ Distributed Memory programming model

▪ MPI introduction
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Concurrency vs. Parallelism

Concurrent 

computing

Parallel 

computing

Common issues:

- threads/processes for overlapping execution

- synchronization, communication

- resource contention, races, deadlocks

1 or few CPUs

Quasi-simultaneous 

execution

Many CPUs

Simultaneous 

execution of many 

/ all threads of the 

same application

Goals of concurrent execution:

- Increase CPU utilization

- Increase responsitivity of a system

- Support multiple users

Central issues: Scheduling, priorities, …

Goals of parallel execution:

- Speedup of 1 application (large problem)

Central issues: Parallel algorithms and 

data structures, Mapping, Load balancing…



Parallel Programming Models
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Parallel Programming Model

▪ System-software-enabled programmer’s view of the underlying hardware

▪ Abstracts from details of the underlying architecture, e.g. network topology

▪ Focuses on a few characteristic properties, e.g. memory model

→ Portability of algorithms/programs across a family of parallel architectures

Programmer’s view of

the underlying system

(Lang. constructs, API, …)

→ Programming model

Underlying parallel

computer architecture

Mapping(s) performed by

programming toolchain

(compiler, runtime system, 

library, OS, …)

Shared Memory

Message passing



Processes

(Refresher from TDDB68)
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int main()

{

Pid_t ret;

/* fork another process: */

ret = fork();

if (ret < 0)  {  /* error occurred */

fprintf ( stderr, "Fork Failed“ );

exit(-1);

}

else if (ret == 0)  {  /* child process */

execlp ( "/bin/ls", "ls", NULL );

}

else { /*parent process: ret=childPID */

/* will wait for child to complete: */

wait (NULL);

printf ("Child Complete");

exit(0);

}

}

Example: Process Creation in UNIX

▪ fork system call 

▪ creates new child process

▪ exec system call 

▪ used after a fork to replace 
the process’ memory space 
with a new program

▪ wait system call 

▪ by parent, suspends parent 
execution until child process 
has terminated

C program forking

a separate process
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Parallel programming with processes

▪ Processes can create new processes that execute 

concurrently with the parent process

▪ OS scheduler – also for single-core CPUs

▪ Different processes share nothing by default

▪ Inter-process communication via OS only,

via shared memory (write/read)

or message passing (send/recv)

▪ Threads are a more light-weight alternative for programming 

shared-memory applications

▪ Sharing memory (except local stack) by default

▪ Lower overhead for creation and scheduling/dispatch

E.g. Solaris: creation 30x, switching 5x faster
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IPC Models – Realization by OS

IPC via Message Passing IPC via Shared Memory

Syscalls:  send, recv Syscalls: shmget, shmat, 

then load / store
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Example:  POSIX Shared Memory API

▪ #include  <sys/shm.h>
#include  <sys/stat.h>

▪ Let OS create a shared memory segment  (system call):
▪ int segment_id = shmget ( IPC_PRIVATE, size, S_IRUSR | S_IWUSR );

▪ Attach the segment to the executing process  (system call):
▪ void *shmemptr = shmat ( segment_id, NULL, 0 );

▪ Now access it:
▪ strcpy ( (char *)shmemptr, ”Hello world” );     // Example: copy a string into it

▪ …

▪ Detach it from executing process 
when no longer accessed:
▪ shmdt ( shmemptr );

▪ Let OS delete it when no longer used:
▪ shmctl ( segment_id, IPC_RMID, NULL );



Threads
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Single- and Multithreaded Processes

A thread is a basic unit of CPU utilization:

• Thread ID,  program counter,  register set,  stack.

A process may have one or several threads.
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Benefits of Multithreading

▪ Responsiveness

▪ Interactive application can continue even when part of it is 

blocked

▪ Resource Sharing

▪ Threads of a process share its memory by default.

▪ Economy

▪ Light-weight

▪ Creation, management, context switching for threads

is much faster than for processes

▪ Utilization of Multiprocessor Architectures

▪ Convenient (but low-level) shared memory programming
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POSIX Threads  (Pthreads)

▪ A POSIX standard (IEEE 1003.1c) API
for thread programming in C

▪ start and terminate threads

▪ coordinate threads

▪ regulate access to shared data structures

▪ API specifies behavior, not implementation, 
of the thread library

▪ C interface, e.g.

▪ int pthread_create ( pthread_t *thread,  const pthread_attr_t *attr,
void *(*start_routine)(void*),  void *arg);

▪ Note: as a library, rely on underlying OS and hardware!

▪ Common in UNIX operating systems 
(Solaris, Linux, Mac OS X)
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Starting a Thread  (1)

▪ Thread is started with function

int pthread_create ( pthread_t *thread,

const pthread_attr_t *attr,

void *(*func)(void*),
void *arg);

▪ Called func must have parameter and ret values void*

Exception: first thread is started with main()

▪ Thread terminates when called function terminates,
or by pthread_exit ( void *retval )

▪ Threads started one by one

▪ Threads represented by data structure of type pthread_t
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Starting a Thread  (2)

▪ Example:

#include <pthread.h>

int main ( int argc, char *argv[] )
{
int *ptr;
pthread_t thr;

pthread_create( &thr,
NULL, 
foo,
(void*)ptr  );

…
pthread_join( &thr, NULL );
return 0;

}

void *foo ( void *vp )
{

int i  =  (int) vp;;
…

}

// alternative
//  – pass a parameter block:

void *foo ( void *vp ) 
{

Userdefinedstructtype *ptr;
ptr=(Userdefinedstructtype*)vp;
…

} 
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Access to Shared Data  (0)

▪ Globally defined variables 
are globally shared and
visible to all threads.

▪ Locally defined variables 
are visible to the thread
executing the function.

▪ But all data in shared memory
publish an address of data: 
all threads could access…

▪ Take care: typically no protection
between thread data –
thread1 (foo1) could even write
to thread2‘s (foo2) stack frame

▪ Example 0:  Parallel incrementing

int a[N];    // shared,   assume P | N 
pthread_t thr[P];

int main( void )
{

int t;
for (t=0; t<P; t++)

pthread_create(&(thr[t]), NULL,
incr, a + t*N/P );

for (t=0; t<P; t++)
pthread_join( thr[t], NULL );

… 
}
void *incr ( void *myptr_a )
{   int i;

for (i=0; i<N/P; i++)          
((int*)myptr_a[i])++;     }
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Access to Shared Data  (1)

▪ Globally defined variables 
are globally shared and
visible to all threads.

▪ Locally defined variables 
are visible to the thread
executing the function.

▪ But all data in shared memory
publish an address of data: 
all threads could access…

▪ Take care: typically no protection 
between thread data –
thread1 (foo1) could even write 
to thread2‘s (foo2) stack frame

▪ Example 1

int *globalptr = NULL;    // shared ptr

void *foo1 ( void *ptr1 )
{

int i = 15;
globalptr = &i;  // ??? dangerous!

// if foo1 terminates, foo2 writes
// somewhere, unless globalptr
// value is reset to NULL manually

… 
}

void *foo2 ( void *ptr2 )
{

if (globalptr) *globalptr = 17;
…  

}
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Access to Shared Data  (2)

▪ Globally defined variables 
are globally shared and
visible to all threads

▪ Locally defined variables 
are visible to the thread
executing the function

▪ But all data in shared memory
publish an address of data: 
all threads could access…

▪ Take care: typically no protection 
between thread data –
thread1 could even write to 
thread2‘s stack frame

▪ Example 2

int *globalptr = NULL;    // shared ptr

void *foo1 ( void *ptr1 )
{

int i = 15;
globalptr =(int*)malloc(sizeof(int));
// safe, but possibly memory leak;
// OK if garbage collection ok

}

void *foo2 ( void *ptr2 )
{

if (globalptr) *globalptr = 17;
…  

}
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Coordinating Shared Access (3)

What if several threads need to write a 
shared variable?

▪ If they simply write:  ok if write order 
does not matter

▪ If they read and write: encapsulate 
(critical section, monitor)
and protect e.g. by mutual exclusion 
using mutex locks)

▪ Example:   Access to a taskpool

▪ Maintain shared list of tasks to be 
performed

▪ If a thread is idle, it gets a task 
and performs it

// each thread:
while (! workdone)
{

task = gettask( Pooldescr );
performtask ( task );

}

// may be called concurrently:

Tasktype gettask ( Pool p )
{

// begin critical section

task = p.queue [ p.index ];    
p.index++; 

// end critical section

return task; 
}
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Race Conditions lead to Nondeterminism

▪ Example:  p.index++

▪ could be implemented in machine code as

39: register1 = p.index                    // load
40: register1 = register1 + 1           // add 
41: p.index = register1                   // store

▪ Consider this execution interleaving, with “index = 5” initially:

39: thread1 executes register1 = p.index           { T1.register1 = 5 }
39: thread2 executes register1 = p.index           { T2.register1 = 5 } 
40: thread1 executes register1 = register1 + 1 { T1.register1 = 6 } 
40: thread2 executes register1 = register1 + 1 { T2.register1 = 6 } 
41: thread1 executes p.index = register1 { p.index = 6 } 
41: thread2 executes p.index = register1 { p.index = 6 }

▪ Compare to a different interleaving,  
e.g., 39,40,41, 39,40,41…

→ Result depends on relative speed of the accessing threads
(race condition)

Not 

atomic!
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Critical Section

▪ Critical Section: A set of instructions, operating on 
shared data or resources, that should be executed
by a single thread at a time without interruption

▪ Atomicity of execution

▪ Mutual exclusion: At most one process should
be allowed to operate inside at any time

▪ Consistency: inconsistent intermediate states of 
shared data not visible to other processes outside

▪ May consist of different program parts for different threads

▪ that access the same shared data

▪ General structure, with structured control flow:

...

Entry of critical section C 

… critical section C: operation on shared data

Exit of critical section C

…
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Coordinating Shared Access (4)

pthread_mutex_t mutex;    // global variable - shared

…
// in main:

pthread_mutex_init( &mutex, NULL );      
…

// in gettask:
…
pthread_mutex_lock( &mutex );

task = p.queue [p.index]; 

p.index++;

pthread_mutex_unlock( &mutex );
…

Often implemented using

test_and_set or other atomic

instruction where available
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Hardware Support for Synchronization

▪ Most systems provide hardware support for protecting critical sections

▪ Uniprocessors – could disable interrupts

▪ Currently running code would execute without preemption

▪ Generally too inefficient on multiprocessor systems

Operating systems using this are not broadly scalable

▪ Modern machines provide special atomic instructions

▪ TestAndSet:  test memory word and set value atomically

Atomic = non-interruptable

 If multiple TestAndSet instructions are executed simultaneously  
(each on a different CPU in a multiprocessor), 
then they take effect sequentially in some arbitrary order.

▪ AtomicSwap:  swap contents of two memory words atomically

▪ CompareAndSwap

▪ Load-linked / Store-conditional
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TestAndSet Instruction 

▪ Definition in pseudocode:

boolean TestAndSet (boolean *target)

{

boolean rv = *target;

*target = TRUE;

return rv;      // return the OLD value

}

atomic
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Mutual Exclusion using TestAndSet

▪ Shared boolean variable lock, initialized to FALSE (= unlocked)

▪ do {

while ( TestAndSet (&lock ))

;    // do nothing but spinning on the lock (busy waiting)

//  …  critical section

lock = FALSE;

//  …    remainder section 

} while ( TRUE);               
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Pitfalls with Semaphores

▪ Correct use of mutex operations:

▪ Protect all possible entries/exits of 
control flow into/from critical section:

pthread_mutex_lock (&mutex)
….

pthread_mutex_unlock (&mutex)

▪ Possible sources of synchronization errors:

▪ Omitting lock(&mutex) or unlock(&mutex) (or both)  ??

▪ lock(&mutex)  ….  lock(&mutex) ??

▪ lock(&mutex1) …. unlock(&mutex2) ??

▪ if-statement in critical section, unlock in then-branch only
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Problems:  Deadlock and Starvation

▪ Deadlock – two or more threads are waiting 
indefinitely for an event that can be caused 
only by one of the waiting threads

▪ Typical example: Nested critical sections

Guarded by locks S and Q, initialized to unlocked

P0 P1

mutex_lock(S); mutex_lock(Q);

mutex_lock(Q); mutex_lock(S);

… …

mutex_unlock(S); mutex_unlock(Q);

mutex_unlock(Q); mutex_unlock(S);

▪ Starvation – indefinite blocking.  A thread may never get the 
chance to acquire a lock if the mutex mechanism is not fair.

time
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Deadlock Characterization

▪ Mutual exclusion: only one thread at a time can use a 
resource.

▪ Hold and wait: a thread holding at least one resource is 
waiting to acquire additional resources held by other threads.

▪ No preemption of resources: a resource can be released 
only voluntarily by the thread holding it, after that thread has 
completed its task.

▪ Circular wait: there exists a set {P0, P1, …, Pn} of waiting 
threads such that 

▪ P0 is waiting for a resource that is held by P1, 

▪ P1 is waiting for a resource that is held by P2,   …, 

▪ Pn–1 is waiting for a resource that is held by Pn, and 

▪ Pn is waiting for a resource that is held by P0.

Deadlock can arise only if four conditions hold simultaneously:

[Coffman et al. 1971]
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Coordinating Shared Access (5)

▪ Must also rely on implementation for efficiency

▪ Time to lock / unlock mutex or synchronize threads varies
widely between different platforms

▪ A mutex that all threads access serializes the threads!

▪ Convoying

▪ Goal:  Make critical section as short as possible

// in gettask():
int tmpindex;  // local (thread-private) variable
pthread_mutex_lock( &mutex );
tmpindex = p.index++;
pthread_mutex_unlock( &mutex );
task = p.queue [ tmpindex ]; 

Possibly slow shared

memory access now

outside critical section
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Coordinating Shared Access (6)

▪ When programming on this level of abstraction:
can minimize serialization, but not avoid

▪ Example:  Fine-grained locking  

▪ Better: avoid mutex and similar constructs, and
use higher-level data structures that are lock-free

▪ Example:  NOBLE library

▪ Also:  Transactional memory

More about this in TDDD56



Performance Issues with 

Threads on Multicores



33C. Kessler, IDA, Linköping University

Performance Issue:

Thread Pools

▪ For a multithreaded process:

Create a number of threads in a pool 

where they await work

▪ Advantages:

▪ Faster to service a request with an existing thread

than to create a new thread

▪ Allows the number of threads in the application(s) 

to be bound to the size of the pool

▪ Win32 API

▪ OpenMP

Serial region in execution

Parallel region, 

multithreaded

spawn threads

spawn threads

Multithreaded process

Single thread begins

delete threads

delete threads

…
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Performance Issue:

Spinlocks on Multiprocessors

▪ Recall busy waiting at spinlocks:

// … lock initially 0 (unlocked)
while ( ! test_and_set( &lock ))

;
// … the critical section …
lock = 0;

▪ Test_and_set in a tight loop 
→ high bus traffic on multiprocessor

▪ Cache coherence mechanism 
must broadcast all writing 
accesses (incl. t&s) to lock 
immediately to all writing 
processors,  to maintain a 
consistent view of lock’s value

→ contention 

→ degrades performance

Solution 1:  TTAS

▪ Combine with ordinary read:

while ( ! test_and_set( &lock ))
while ( lock )

;
// … the critical section …

▪ Most accesses to lock are now 
reads 
→ less contention,

as long as lock is not released.

Solution 2:   Back-Off

▪ while ( ! test_and_set( &lock ))
do_nothing_for ( short_time );

// … the critical section …

▪ Exponential / random back-off
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Performance Issue:

Manual Avoidance of Idle Waiting

▪ Thread that unsuccessfully tried to acquire mutex is

blocked but not suspended  

▪ busy waiting, idle  

▪ Can find out that mutex is locked and do something else:

pthread_mutex_trylock ( &mutex_lock );

▪ If mutex is unlocked, returns 0

If mutex is locked, returns EBUSY

▪ Useful for locks that are not accessed too frequently

and for threads having the chance to do something else



Better Programmability

for Thread Programming

Short overview of OpenMP™

(see TDDC78 for in-depth treatment of OpenMP)
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OpenMP™

▪ Standard for shared-memory thread programming

▪ Developed for incremental parallelization of HPC code

▪ Directives  (e.g. #pragma omp parallel)

▪ Support in recent C compilers, e.g. gcc from v.4.3 and later

▪ High-level constructs for data and work sharing

▪ Low-level thread programming still possible

#include <omp.h>

…

#pragma omp parallel shared(N)  private(i)

{     // creating a team of OMP_NUM_THREADS threads

…

#pragma omp for schedule(static)

for (i=0;  i<N;  i++)

domuchwork( i );

}

Work (here: iterations of for loop)

shared among all threads

of the current team
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Performance Issue:

Load Balancing

▪ Parallel execution time (”makespan” in scheduling terminology) 
is determined by the longest-running process / thread

▪ Minimized by load balancing

▪ Static – mapping of tasks to cores before runtime, no OH

▪ Dynamic – mapping done at runtime

Shared (critical section) or distributed work pool

On-line problem – don’t know the future, only the past

– Heuristics such as best-fit, random work stealing 

Example:  Parallel loop, iterations of unknown+varying workload

#pragma omp parallel for  schedule(dynamic)

for (i=0;  i<N; i++)   work ( i, unknownworkload(i) );
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Example:  Sequential sum in C

#include <omp.h>

#define N 2048

int sum, arr[N]; 

void main()

{

// … initialize arr

#pragma omp parallel private(i)

#pragma omp for reduction(+:sum)

for (i=0; i<N; i++)  {

sum = sum + arr[i];

}

// … output sum

}
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Example:  Parallel sum in OpenMP

#include <omp.h>

#define N 2048

int sum, arr[N]; 

void main()

{

// … initialize arr

#pragma omp parallel private(i)

{

#pragma omp for reduction(+:sum)

for (i=0; i<N; i++)  {

sum = sum + arr[i];

}

}

// … output sum

}



Message Passing
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MPI – Program Startup

▪ MPI (implementation) is a library of message passing

operations, linked with the application’s executable code.

▪ SPMD execution style 

▪ all started processes (at least, 1 per node) execute main() 

of the same program

▪ Startup script (platform-dependent), e.g.:

mpirun –np 8 a.out

launches 8 MPI processes, each executing main() of a.out

▪ Distinguished only by their MPI rank 

(unique ID in 0 … #processes – 1)

0 1 7
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Background:   SPMD vs. Fork-Join
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Hello World  (1)
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MPI Core Routines   (C API)



47C. Kessler, IDA, Linköping University

MPI – Determinism

MPI blocking vs. nonblocking communication operations → TDDC78

MPI communication modes (synchronous, buffered, …) → TDDC78
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Collective Communication Operations



49C. Kessler, IDA, Linköping University

Some Collective Communication 

Operations in MPI
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Collective Communication in MPI

Example:  Scatter and Gather
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Example:  Global Sum in MPI
#include <mpi.h>

#define N 2048

…

void main( int argc, int argv )

{

int rank, p, i, sum, arr[N], *myarr, myN, mysum;

MPI_Init( &argc, &argv );

MPI_Comm_rank( MPI_COMM_WORLD, &rank );

MPI_Comm_size( MPI_COMM_WORLD, &p );

if (rank==0)     // initialize on P0 only:

for (i=0; i<N; i++) 

arr[i] = …; myN = N / p;     // assume p divides N

myarr = (int *) malloc( myN * 

sizeof(int));

MPI_Scatter( arr, N, MPI_INT,  myarr, myN, MPI_INT,  0,  MPI_COMM_WORLD);

mysum = 0;

for (i=0; i<myN; i++)

mySum += myarr[i];      // each process calculates partial sum of N/p elements

MPI_Reduce( &mysum, &sum, 1, MPI_INT, MPI_SUM, 0, MPI_COMM_WORLD);

// … now output sum

MPI_Finalize();

}

0 N-1

arr
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Example:  Global Sum in MPI
#include <mpi.h>

#define N 2048

…

void main( int argc, int argv )

{

int rank, p, i, sum, arr[N], *myarr, myN, mysum;

MPI_Init( &argc, &argv );

MPI_Comm_rank( MPI_COMM_WORLD, &rank );

MPI_Comm_size( MPI_COMM_WORLD, &p );

if (rank==0)     // initialize on P0 only:

for (i=0; i<N; i++) 

arr[i] = …; myN = N / p;     // assume p divides N

myarr = (int *) malloc( myN * sizeof(int));

MPI_Scatter( arr, N, MPI_INT,  myarr, myN, MPI_INT,  0,  MPI_COMM_WORLD);

mysum = 0;

for (i=0; i<myN; i++)

mySum += myarr[i];      // each process calculates partial sum of N/p elements

MPI_Reduce( &mysum, &sum, 1, MPI_INT, MPI_SUM, 0, MPI_COMM_WORLD);

// … now output sum

MPI_Finalize();

}

0 N-1

arr
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Example:  Global Sum in MPI
#include <mpi.h>

#define N 2048

…

void main( int argc, int argv )

{

int rank, p, i, sum, arr[N], *myarr, myN, mysum;

MPI_Init( &argc, &argv );

MPI_Comm_rank( MPI_COMM_WORLD, &rank );

MPI_Comm_size( MPI_COMM_WORLD, &p );

if (rank==0)     // initialize on P0 only:

for (i=0; i<N; i++) 

arr[i] = …; 

myN = N / p;     // assume p divides N

myarr = (int *) malloc( myN * sizeof(int));

MPI_Scatter( arr, N, MPI_INT,  myarr, myN, MPI_INT,  0,  MPI_COMM_WORLD);

mysum = 0;

for (i=0; i<myN; i++)

mySum += myarr[i];      // each process calculates partial sum of N/p elements

MPI_Reduce( &mysum, &sum, 1, MPI_INT, MPI_SUM, 0, MPI_COMM_WORLD);

// … now output sum

MPI_Finalize();

}

0 N-1

arr



54C. Kessler, IDA, Linköping University

Example:  Global Sum in MPI
#include <mpi.h>

#define N 2048

…

void main( int argc, int argv )

{

int rank, p, i, sum, arr[N], *myarr, myN, mysum;

MPI_Init( &argc, &argv );

MPI_Comm_rank( MPI_COMM_WORLD, &rank );

MPI_Comm_size( MPI_COMM_WORLD, &p );

if (rank==0)     // initialize on P0 only:

for (i=0; i<N; i++) 

arr[i] = …; 

myN = N / p;     // assume p divides N

myarr = (int *) malloc( myN * sizeof(int));

MPI_Scatter( arr, N, MPI_INT,  myarr, myN, MPI_INT,  0,  MPI_COMM_WORLD);

mysum = 0;

for (i=0; i<myN; i++)

mySum += myarr[i];      // each process calculates partial sum of N/p elements

MPI_Reduce( &mysum, &sum, 1, MPI_INT, MPI_SUM, 0, MPI_COMM_WORLD);

// … now output sum

MPI_Finalize();

}

0 N-1

arr



55C. Kessler, IDA, Linköping University

Example:  Global Sum in MPI
#include <mpi.h>

#define N 2048

…

void main( int argc, int argv )

{

int rank, p, i, sum, arr[N], *myarr, myN, mysum;

MPI_Init( &argc, &argv );

MPI_Comm_rank( MPI_COMM_WORLD, &rank );

MPI_Comm_size( MPI_COMM_WORLD, &p );

if (rank==0)     // initialize on P0 only:

for (i=0; i<N; i++) 

arr[i] = …; 

myN = N / p;     // assume p divides N

myarr = (int *) malloc( myN * sizeof(int));

MPI_Scatter( arr, N, MPI_INT,  myarr, myN, MPI_INT,  0,  MPI_COMM_WORLD);

mysum = 0;

for (i=0; i<myN; i++)

mySum += myarr[i];      // each process calculates partial sum of N/p elements

MPI_Reduce( &mysum, &sum, 1, MPI_INT, MPI_SUM, 0, MPI_COMM_WORLD);

// … now output sum

MPI_Finalize();

}

0 N-1

arr
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Example:  Global Sum in MPI
#include <mpi.h>

#define N 2048

…

void main( int argc, int argv )

{

int rank, p, i, sum, arr[N], *myarr, myN, mysum;

MPI_Init( &argc, &argv );

MPI_Comm_rank( MPI_COMM_WORLD, &rank );

MPI_Comm_size( MPI_COMM_WORLD, &p );

if (rank==0)     // initialize on P0 only:

for (i=0; i<N; i++) 

arr[i] = …; 

myN = N / p;     // assume p divides N

myarr = (int *) malloc( myN * sizeof(int));

MPI_Scatter( arr, N, MPI_INT,  myarr, myN, MPI_INT,  0,  MPI_COMM_WORLD);

mysum = 0;

for (i=0; i<myN; i++)

mySum += myarr[i];      // each process calculates partial sum of N/p elements

MPI_Reduce( &mysum, &sum, 1, MPI_INT, MPI_SUM, 0, MPI_COMM_WORLD);

// … now output sum

MPI_Finalize();

}

0 N-1

arr
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More about MPI    → TDDC78

▪ MPI Communication modes for point-to-point communication

▪ MPI Communicators and Groups

▪ MPI Datatypes

▪ MPI One-Sided Communication  (Remote Memory Access)

▪ MPI Virtual Topologies

▪ Labs:  Image filter,  Particle simulation



Questions?
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Further Reading   (Selection)

▪ C. Lin, L. Snyder: Principles of Parallel Programming. Addison 

Wesley, 2008.   (general introduction; Pthreads)

▪ B. Wilkinson, M. Allen:  Parallel Programming, 2e. Prentice 

Hall, 2005.  (general introduction; pthreads, OpenMP, MPI)

▪ M. Herlihy, N. Shavit:  The Art of Multiprocessor 

Programming. Morgan Kaufmann, 2008.  (threads; 

nonblocking synchronization)

▪ Chandra, Dagum, Kohr, Maydan, McDonald, Menon:  Parallel 

Programming in OpenMP. Morgan Kaufmann, 2001.

▪ Barbara Chapman et al.:  Using OpenMP - Portable Shared 

Memory Parallel Programming.  MIT press, 2007.

▪ OpenMP: www.openmp.org

▪ MPI: www.mpi-forum.org


