
Parallel Programming

with Processes, Threads

and Message Passing

TDDE35

Christoph Kessler

PELAB / IDA
Linköping University

Sweden

2C. Kessler, IDA, Linköping University

Outline

Lecture 2a: Parallel programming with threads

▪ Shared Memory programming model

▪ Revisiting processes, threads, synchronization

▪ Pthreads

▪ OpenMP (very shortly)

Lecture 2b: Parallel programming with message passing

▪ Distributed Memory programming model

▪ MPI introduction

3C. Kessler, IDA, Linköping University

Concurrency vs. Parallelism

Concurrent

computing

Parallel

computing

Common issues:

- threads/processes for overlapping execution

- synchronization, communication

- resource contention, races, deadlocks

1 or few CPUs

Quasi-simultaneous

execution

Many CPUs

Simultaneous

execution of many

/ all threads of the

same application

Goals of concurrent execution:

- Increase CPU utilization

- Increase responsitivity of a system

- Support multiple users

Central issues: Scheduling, priorities, …

Goals of parallel execution:

- Speedup of 1 application (large problem)

Central issues: Parallel algorithms and

data structures, Mapping, Load balancing…

Parallel Programming Models

5C. Kessler, IDA, Linköping University

Parallel Programming Model

▪ System-software-enabled programmer’s view of the underlying hardware

▪ Abstracts from details of the underlying architecture, e.g. network topology

▪ Focuses on a few characteristic properties, e.g. memory model

→ Portability of algorithms/programs across a family of parallel architectures

Programmer’s view of

the underlying system

(Lang. constructs, API, …)

→ Programming model

Underlying parallel

computer architecture

Mapping(s) performed by

programming toolchain

(compiler, runtime system,

library, OS, …)

Shared Memory

Message passing

Processes

(Refresher from TDDB68)

7C. Kessler, IDA, Linköping University

int main()

{

Pid_t ret;

/* fork another process: */

ret = fork();

if (ret < 0) { /* error occurred */

fprintf (stderr, "Fork Failed“);

exit(-1);

}

else if (ret == 0) { /* child process */

execlp ("/bin/ls", "ls", NULL);

}

else { /*parent process: ret=childPID */

/* will wait for child to complete: */

wait (NULL);

printf ("Child Complete");

exit(0);

}

}

Example: Process Creation in UNIX

▪ fork system call

▪ creates new child process

▪ exec system call

▪ used after a fork to replace
the process’ memory space
with a new program

▪ wait system call

▪ by parent, suspends parent
execution until child process
has terminated

C program forking

a separate process

8C. Kessler, IDA, Linköping University

Parallel programming with processes

▪ Processes can create new processes that execute

concurrently with the parent process

▪ OS scheduler – also for single-core CPUs

▪ Different processes share nothing by default

▪ Inter-process communication via OS only,

via shared memory (write/read)

or message passing (send/recv)

▪ Threads are a more light-weight alternative for programming

shared-memory applications

▪ Sharing memory (except local stack) by default

▪ Lower overhead for creation and scheduling/dispatch

E.g. Solaris: creation 30x, switching 5x faster

9C. Kessler, IDA, Linköping University

IPC Models – Realization by OS

IPC via Message Passing IPC via Shared Memory

Syscalls: send, recv Syscalls: shmget, shmat,

then load / store

10C. Kessler, IDA, Linköping University

Example: POSIX Shared Memory API

▪ #include <sys/shm.h>
#include <sys/stat.h>

▪ Let OS create a shared memory segment (system call):
▪ int segment_id = shmget (IPC_PRIVATE, size, S_IRUSR | S_IWUSR);

▪ Attach the segment to the executing process (system call):
▪ void *shmemptr = shmat (segment_id, NULL, 0);

▪ Now access it:
▪ strcpy ((char *)shmemptr, ”Hello world”); // Example: copy a string into it

▪ …

▪ Detach it from executing process
when no longer accessed:
▪ shmdt (shmemptr);

▪ Let OS delete it when no longer used:
▪ shmctl (segment_id, IPC_RMID, NULL);

Threads

12C. Kessler, IDA, Linköping University

Single- and Multithreaded Processes

A thread is a basic unit of CPU utilization:

• Thread ID, program counter, register set, stack.

A process may have one or several threads.

13C. Kessler, IDA, Linköping University

Benefits of Multithreading

▪ Responsiveness

▪ Interactive application can continue even when part of it is

blocked

▪ Resource Sharing

▪ Threads of a process share its memory by default.

▪ Economy

▪ Light-weight

▪ Creation, management, context switching for threads

is much faster than for processes

▪ Utilization of Multiprocessor Architectures

▪ Convenient (but low-level) shared memory programming

14 TDDB68 Concurrent Programming and Operating SystemsC. Kessler, IDA, Linköping University

POSIX Threads (Pthreads)

▪ A POSIX standard (IEEE 1003.1c) API
for thread programming in C

▪ start and terminate threads

▪ coordinate threads

▪ regulate access to shared data structures

▪ API specifies behavior, not implementation,
of the thread library

▪ C interface, e.g.

▪ int pthread_create (pthread_t *thread, const pthread_attr_t *attr,
void *(*start_routine)(void*), void *arg);

▪ Note: as a library, rely on underlying OS and hardware!

▪ Common in UNIX operating systems
(Solaris, Linux, Mac OS X)

15 TDDB68 Concurrent Programming and Operating SystemsC. Kessler, IDA, Linköping University

Starting a Thread (1)

▪ Thread is started with function

int pthread_create (pthread_t *thread,

const pthread_attr_t *attr,

void *(*func)(void*),
void *arg);

▪ Called func must have parameter and ret values void*

Exception: first thread is started with main()

▪ Thread terminates when called function terminates,
or by pthread_exit (void *retval)

▪ Threads started one by one

▪ Threads represented by data structure of type pthread_t

16 TDDB68 Concurrent Programming and Operating SystemsC. Kessler, IDA, Linköping University

Starting a Thread (2)

▪ Example:

#include <pthread.h>

int main (int argc, char *argv[])
{
int *ptr;
pthread_t thr;

pthread_create(&thr,
NULL,
foo,
(void*)ptr);

…
pthread_join(&thr, NULL);
return 0;

}

void *foo (void *vp)
{

int i = (int) vp;;
…

}

// alternative
// – pass a parameter block:

void *foo (void *vp)
{

Userdefinedstructtype *ptr;
ptr=(Userdefinedstructtype*)vp;
…

}

17 TDDB68 Concurrent Programming and Operating SystemsC. Kessler, IDA, Linköping University

Access to Shared Data (0)

▪ Globally defined variables
are globally shared and
visible to all threads.

▪ Locally defined variables
are visible to the thread
executing the function.

▪ But all data in shared memory
publish an address of data:
all threads could access…

▪ Take care: typically no protection
between thread data –
thread1 (foo1) could even write
to thread2‘s (foo2) stack frame

▪ Example 0: Parallel incrementing

int a[N]; // shared, assume P | N
pthread_t thr[P];

int main(void)
{

int t;
for (t=0; t<P; t++)

pthread_create(&(thr[t]), NULL,
incr, a + t*N/P);

for (t=0; t<P; t++)
pthread_join(thr[t], NULL);

…
}
void *incr (void *myptr_a)
{ int i;

for (i=0; i<N/P; i++)
((int*)myptr_a[i])++; }

18 TDDB68 Concurrent Programming and Operating SystemsC. Kessler, IDA, Linköping University

Access to Shared Data (1)

▪ Globally defined variables
are globally shared and
visible to all threads.

▪ Locally defined variables
are visible to the thread
executing the function.

▪ But all data in shared memory
publish an address of data:
all threads could access…

▪ Take care: typically no protection
between thread data –
thread1 (foo1) could even write
to thread2‘s (foo2) stack frame

▪ Example 1

int *globalptr = NULL; // shared ptr

void *foo1 (void *ptr1)
{

int i = 15;
globalptr = &i; // ??? dangerous!

// if foo1 terminates, foo2 writes
// somewhere, unless globalptr
// value is reset to NULL manually

…
}

void *foo2 (void *ptr2)
{

if (globalptr) *globalptr = 17;
…

}

19 TDDB68 Concurrent Programming and Operating SystemsC. Kessler, IDA, Linköping University

Access to Shared Data (2)

▪ Globally defined variables
are globally shared and
visible to all threads

▪ Locally defined variables
are visible to the thread
executing the function

▪ But all data in shared memory
publish an address of data:
all threads could access…

▪ Take care: typically no protection
between thread data –
thread1 could even write to
thread2‘s stack frame

▪ Example 2

int *globalptr = NULL; // shared ptr

void *foo1 (void *ptr1)
{

int i = 15;
globalptr =(int*)malloc(sizeof(int));
// safe, but possibly memory leak;
// OK if garbage collection ok

}

void *foo2 (void *ptr2)
{

if (globalptr) *globalptr = 17;
…

}

20 TDDB68 Concurrent Programming and Operating SystemsC. Kessler, IDA, Linköping University

Coordinating Shared Access (3)

What if several threads need to write a
shared variable?

▪ If they simply write: ok if write order
does not matter

▪ If they read and write: encapsulate
(critical section, monitor)
and protect e.g. by mutual exclusion
using mutex locks)

▪ Example: Access to a taskpool

▪ Maintain shared list of tasks to be
performed

▪ If a thread is idle, it gets a task
and performs it

// each thread:
while (! workdone)
{

task = gettask(Pooldescr);
performtask (task);

}

// may be called concurrently:

Tasktype gettask (Pool p)
{

// begin critical section

task = p.queue [p.index];
p.index++;

// end critical section

return task;
}

21 TDDB68 Concurrent Programming and Operating SystemsC. Kessler, IDA, Linköping University

Race Conditions lead to Nondeterminism

▪ Example: p.index++

▪ could be implemented in machine code as

39: register1 = p.index // load
40: register1 = register1 + 1 // add
41: p.index = register1 // store

▪ Consider this execution interleaving, with “index = 5” initially:

39: thread1 executes register1 = p.index { T1.register1 = 5 }
39: thread2 executes register1 = p.index { T2.register1 = 5 }
40: thread1 executes register1 = register1 + 1 { T1.register1 = 6 }
40: thread2 executes register1 = register1 + 1 { T2.register1 = 6 }
41: thread1 executes p.index = register1 { p.index = 6 }
41: thread2 executes p.index = register1 { p.index = 6 }

▪ Compare to a different interleaving,
e.g., 39,40,41, 39,40,41…

→ Result depends on relative speed of the accessing threads
(race condition)

Not

atomic!

22 TDDB68 Concurrent Programming and Operating SystemsC. Kessler, IDA, Linköping University

Critical Section

▪ Critical Section: A set of instructions, operating on
shared data or resources, that should be executed
by a single thread at a time without interruption

▪ Atomicity of execution

▪ Mutual exclusion: At most one process should
be allowed to operate inside at any time

▪ Consistency: inconsistent intermediate states of
shared data not visible to other processes outside

▪ May consist of different program parts for different threads

▪ that access the same shared data

▪ General structure, with structured control flow:

...

Entry of critical section C

… critical section C: operation on shared data

Exit of critical section C

…

23 TDDB68 Concurrent Programming and Operating SystemsC. Kessler, IDA, Linköping University

Coordinating Shared Access (4)

pthread_mutex_t mutex; // global variable - shared

…
// in main:

pthread_mutex_init(&mutex, NULL);
…

// in gettask:
…
pthread_mutex_lock(&mutex);

task = p.queue [p.index];

p.index++;

pthread_mutex_unlock(&mutex);
…

Often implemented using

test_and_set or other atomic

instruction where available

24C. Kessler, IDA, Linköping University

Hardware Support for Synchronization

▪ Most systems provide hardware support for protecting critical sections

▪ Uniprocessors – could disable interrupts

▪ Currently running code would execute without preemption

▪ Generally too inefficient on multiprocessor systems

Operating systems using this are not broadly scalable

▪ Modern machines provide special atomic instructions

▪ TestAndSet: test memory word and set value atomically

Atomic = non-interruptable

 If multiple TestAndSet instructions are executed simultaneously
(each on a different CPU in a multiprocessor),
then they take effect sequentially in some arbitrary order.

▪ AtomicSwap: swap contents of two memory words atomically

▪ CompareAndSwap

▪ Load-linked / Store-conditional

25C. Kessler, IDA, Linköping University

TestAndSet Instruction

▪ Definition in pseudocode:

boolean TestAndSet (boolean *target)

{

boolean rv = *target;

*target = TRUE;

return rv; // return the OLD value

}

atomic

26C. Kessler, IDA, Linköping University

Mutual Exclusion using TestAndSet

▪ Shared boolean variable lock, initialized to FALSE (= unlocked)

▪ do {

while (TestAndSet (&lock))

; // do nothing but spinning on the lock (busy waiting)

// … critical section

lock = FALSE;

// … remainder section

} while (TRUE);

27 TDDB68 Concurrent Programming and Operating SystemsC. Kessler, IDA, Linköping University

Pitfalls with Semaphores

▪ Correct use of mutex operations:

▪ Protect all possible entries/exits of
control flow into/from critical section:

pthread_mutex_lock (&mutex)
….

pthread_mutex_unlock (&mutex)

▪ Possible sources of synchronization errors:

▪ Omitting lock(&mutex) or unlock(&mutex) (or both) ??

▪ lock(&mutex) …. lock(&mutex) ??

▪ lock(&mutex1) …. unlock(&mutex2) ??

▪ if-statement in critical section, unlock in then-branch only

28C. Kessler, IDA, Linköping University

Problems: Deadlock and Starvation

▪ Deadlock – two or more threads are waiting
indefinitely for an event that can be caused
only by one of the waiting threads

▪ Typical example: Nested critical sections

Guarded by locks S and Q, initialized to unlocked

P0 P1

mutex_lock(S); mutex_lock(Q);

mutex_lock(Q); mutex_lock(S);

… …

mutex_unlock(S); mutex_unlock(Q);

mutex_unlock(Q); mutex_unlock(S);

▪ Starvation – indefinite blocking. A thread may never get the
chance to acquire a lock if the mutex mechanism is not fair.

time

29C. Kessler, IDA, Linköping University

Deadlock Characterization

▪ Mutual exclusion: only one thread at a time can use a
resource.

▪ Hold and wait: a thread holding at least one resource is
waiting to acquire additional resources held by other threads.

▪ No preemption of resources: a resource can be released
only voluntarily by the thread holding it, after that thread has
completed its task.

▪ Circular wait: there exists a set {P0, P1, …, Pn} of waiting
threads such that

▪ P0 is waiting for a resource that is held by P1,

▪ P1 is waiting for a resource that is held by P2, …,

▪ Pn–1 is waiting for a resource that is held by Pn, and

▪ Pn is waiting for a resource that is held by P0.

Deadlock can arise only if four conditions hold simultaneously:

[Coffman et al. 1971]

30 TDDB68 Concurrent Programming and Operating SystemsC. Kessler, IDA, Linköping University

Coordinating Shared Access (5)

▪ Must also rely on implementation for efficiency

▪ Time to lock / unlock mutex or synchronize threads varies
widely between different platforms

▪ A mutex that all threads access serializes the threads!

▪ Convoying

▪ Goal: Make critical section as short as possible

// in gettask():
int tmpindex; // local (thread-private) variable
pthread_mutex_lock(&mutex);
tmpindex = p.index++;
pthread_mutex_unlock(&mutex);
task = p.queue [tmpindex];

Possibly slow shared

memory access now

outside critical section

31 TDDB68 Concurrent Programming and Operating SystemsC. Kessler, IDA, Linköping University

Coordinating Shared Access (6)

▪ When programming on this level of abstraction:
can minimize serialization, but not avoid

▪ Example: Fine-grained locking

▪ Better: avoid mutex and similar constructs, and
use higher-level data structures that are lock-free

▪ Example: NOBLE library

▪ Also: Transactional memory

More about this in TDDD56

Performance Issues with

Threads on Multicores

33C. Kessler, IDA, Linköping University

Performance Issue:

Thread Pools

▪ For a multithreaded process:

Create a number of threads in a pool

where they await work

▪ Advantages:

▪ Faster to service a request with an existing thread

than to create a new thread

▪ Allows the number of threads in the application(s)

to be bound to the size of the pool

▪ Win32 API

▪ OpenMP

Serial region in execution

Parallel region,

multithreaded

spawn threads

spawn threads

Multithreaded process

Single thread begins

delete threads

delete threads

…

34C. Kessler, IDA, Linköping University

Performance Issue:

Spinlocks on Multiprocessors

▪ Recall busy waiting at spinlocks:

// … lock initially 0 (unlocked)
while (! test_and_set(&lock))

;
// … the critical section …
lock = 0;

▪ Test_and_set in a tight loop
→ high bus traffic on multiprocessor

▪ Cache coherence mechanism
must broadcast all writing
accesses (incl. t&s) to lock
immediately to all writing
processors, to maintain a
consistent view of lock’s value

→ contention

→ degrades performance

Solution 1: TTAS

▪ Combine with ordinary read:

while (! test_and_set(&lock))
while (lock)

;
// … the critical section …

▪ Most accesses to lock are now
reads
→ less contention,

as long as lock is not released.

Solution 2: Back-Off

▪ while (! test_and_set(&lock))
do_nothing_for (short_time);

// … the critical section …

▪ Exponential / random back-off

35C. Kessler, IDA, Linköping University

Performance Issue:

Manual Avoidance of Idle Waiting

▪ Thread that unsuccessfully tried to acquire mutex is

blocked but not suspended

▪ busy waiting, idle 

▪ Can find out that mutex is locked and do something else:

pthread_mutex_trylock (&mutex_lock);

▪ If mutex is unlocked, returns 0

If mutex is locked, returns EBUSY

▪ Useful for locks that are not accessed too frequently

and for threads having the chance to do something else

Better Programmability

for Thread Programming

Short overview of OpenMP™

(see TDDC78 for in-depth treatment of OpenMP)

37C. Kessler, IDA, Linköping University

OpenMP™

▪ Standard for shared-memory thread programming

▪ Developed for incremental parallelization of HPC code

▪ Directives (e.g. #pragma omp parallel)

▪ Support in recent C compilers, e.g. gcc from v.4.3 and later

▪ High-level constructs for data and work sharing

▪ Low-level thread programming still possible

#include <omp.h>

…

#pragma omp parallel shared(N) private(i)

{ // creating a team of OMP_NUM_THREADS threads

…

#pragma omp for schedule(static)

for (i=0; i<N; i++)

domuchwork(i);

}

Work (here: iterations of for loop)

shared among all threads

of the current team

38C. Kessler, IDA, Linköping University

Performance Issue:

Load Balancing

▪ Parallel execution time (”makespan” in scheduling terminology)
is determined by the longest-running process / thread

▪ Minimized by load balancing

▪ Static – mapping of tasks to cores before runtime, no OH

▪ Dynamic – mapping done at runtime

Shared (critical section) or distributed work pool

On-line problem – don’t know the future, only the past

– Heuristics such as best-fit, random work stealing

Example: Parallel loop, iterations of unknown+varying workload

#pragma omp parallel for schedule(dynamic)

for (i=0; i<N; i++) work (i, unknownworkload(i));

39C. Kessler, IDA, Linköping University

Example: Sequential sum in C

#include <omp.h>

#define N 2048

int sum, arr[N];

void main()

{

// … initialize arr

#pragma omp parallel private(i)

#pragma omp for reduction(+:sum)

for (i=0; i<N; i++) {

sum = sum + arr[i];

}

// … output sum

}

40C. Kessler, IDA, Linköping University

Example: Parallel sum in OpenMP

#include <omp.h>

#define N 2048

int sum, arr[N];

void main()

{

// … initialize arr

#pragma omp parallel private(i)

{

#pragma omp for reduction(+:sum)

for (i=0; i<N; i++) {

sum = sum + arr[i];

}

}

// … output sum

}

Message Passing

42C. Kessler, IDA, Linköping University

MPI – Program Startup

▪ MPI (implementation) is a library of message passing

operations, linked with the application’s executable code.

▪ SPMD execution style

▪ all started processes (at least, 1 per node) execute main()

of the same program

▪ Startup script (platform-dependent), e.g.:

mpirun –np 8 a.out

launches 8 MPI processes, each executing main() of a.out

▪ Distinguished only by their MPI rank

(unique ID in 0 … #processes – 1)

0 1 7

43C. Kessler, IDA, Linköping University

Background: SPMD vs. Fork-Join

44C. Kessler, IDA, Linköping University

Hello World (1)

45C. Kessler, IDA, Linköping University

46C. Kessler, IDA, Linköping University

MPI Core Routines (C API)

47C. Kessler, IDA, Linköping University

MPI – Determinism

MPI blocking vs. nonblocking communication operations → TDDC78

MPI communication modes (synchronous, buffered, …) → TDDC78

48C. Kessler, IDA, Linköping University

Collective Communication Operations

49C. Kessler, IDA, Linköping University

Some Collective Communication

Operations in MPI

50C. Kessler, IDA, Linköping University

Collective Communication in MPI

Example: Scatter and Gather

51C. Kessler, IDA, Linköping University

Example: Global Sum in MPI
#include <mpi.h>

#define N 2048

…

void main(int argc, int argv)

{

int rank, p, i, sum, arr[N], *myarr, myN, mysum;

MPI_Init(&argc, &argv);

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

MPI_Comm_size(MPI_COMM_WORLD, &p);

if (rank==0) // initialize on P0 only:

for (i=0; i<N; i++)

arr[i] = …; myN = N / p; // assume p divides N

myarr = (int *) malloc(myN *

sizeof(int));

MPI_Scatter(arr, N, MPI_INT, myarr, myN, MPI_INT, 0, MPI_COMM_WORLD);

mysum = 0;

for (i=0; i<myN; i++)

mySum += myarr[i]; // each process calculates partial sum of N/p elements

MPI_Reduce(&mysum, &sum, 1, MPI_INT, MPI_SUM, 0, MPI_COMM_WORLD);

// … now output sum

MPI_Finalize();

}

0 N-1

arr

52C. Kessler, IDA, Linköping University

Example: Global Sum in MPI
#include <mpi.h>

#define N 2048

…

void main(int argc, int argv)

{

int rank, p, i, sum, arr[N], *myarr, myN, mysum;

MPI_Init(&argc, &argv);

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

MPI_Comm_size(MPI_COMM_WORLD, &p);

if (rank==0) // initialize on P0 only:

for (i=0; i<N; i++)

arr[i] = …; myN = N / p; // assume p divides N

myarr = (int *) malloc(myN * sizeof(int));

MPI_Scatter(arr, N, MPI_INT, myarr, myN, MPI_INT, 0, MPI_COMM_WORLD);

mysum = 0;

for (i=0; i<myN; i++)

mySum += myarr[i]; // each process calculates partial sum of N/p elements

MPI_Reduce(&mysum, &sum, 1, MPI_INT, MPI_SUM, 0, MPI_COMM_WORLD);

// … now output sum

MPI_Finalize();

}

0 N-1

arr

53C. Kessler, IDA, Linköping University

Example: Global Sum in MPI
#include <mpi.h>

#define N 2048

…

void main(int argc, int argv)

{

int rank, p, i, sum, arr[N], *myarr, myN, mysum;

MPI_Init(&argc, &argv);

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

MPI_Comm_size(MPI_COMM_WORLD, &p);

if (rank==0) // initialize on P0 only:

for (i=0; i<N; i++)

arr[i] = …;

myN = N / p; // assume p divides N

myarr = (int *) malloc(myN * sizeof(int));

MPI_Scatter(arr, N, MPI_INT, myarr, myN, MPI_INT, 0, MPI_COMM_WORLD);

mysum = 0;

for (i=0; i<myN; i++)

mySum += myarr[i]; // each process calculates partial sum of N/p elements

MPI_Reduce(&mysum, &sum, 1, MPI_INT, MPI_SUM, 0, MPI_COMM_WORLD);

// … now output sum

MPI_Finalize();

}

0 N-1

arr

54C. Kessler, IDA, Linköping University

Example: Global Sum in MPI
#include <mpi.h>

#define N 2048

…

void main(int argc, int argv)

{

int rank, p, i, sum, arr[N], *myarr, myN, mysum;

MPI_Init(&argc, &argv);

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

MPI_Comm_size(MPI_COMM_WORLD, &p);

if (rank==0) // initialize on P0 only:

for (i=0; i<N; i++)

arr[i] = …;

myN = N / p; // assume p divides N

myarr = (int *) malloc(myN * sizeof(int));

MPI_Scatter(arr, N, MPI_INT, myarr, myN, MPI_INT, 0, MPI_COMM_WORLD);

mysum = 0;

for (i=0; i<myN; i++)

mySum += myarr[i]; // each process calculates partial sum of N/p elements

MPI_Reduce(&mysum, &sum, 1, MPI_INT, MPI_SUM, 0, MPI_COMM_WORLD);

// … now output sum

MPI_Finalize();

}

0 N-1

arr

55C. Kessler, IDA, Linköping University

Example: Global Sum in MPI
#include <mpi.h>

#define N 2048

…

void main(int argc, int argv)

{

int rank, p, i, sum, arr[N], *myarr, myN, mysum;

MPI_Init(&argc, &argv);

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

MPI_Comm_size(MPI_COMM_WORLD, &p);

if (rank==0) // initialize on P0 only:

for (i=0; i<N; i++)

arr[i] = …;

myN = N / p; // assume p divides N

myarr = (int *) malloc(myN * sizeof(int));

MPI_Scatter(arr, N, MPI_INT, myarr, myN, MPI_INT, 0, MPI_COMM_WORLD);

mysum = 0;

for (i=0; i<myN; i++)

mySum += myarr[i]; // each process calculates partial sum of N/p elements

MPI_Reduce(&mysum, &sum, 1, MPI_INT, MPI_SUM, 0, MPI_COMM_WORLD);

// … now output sum

MPI_Finalize();

}

0 N-1

arr

56C. Kessler, IDA, Linköping University

Example: Global Sum in MPI
#include <mpi.h>

#define N 2048

…

void main(int argc, int argv)

{

int rank, p, i, sum, arr[N], *myarr, myN, mysum;

MPI_Init(&argc, &argv);

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

MPI_Comm_size(MPI_COMM_WORLD, &p);

if (rank==0) // initialize on P0 only:

for (i=0; i<N; i++)

arr[i] = …;

myN = N / p; // assume p divides N

myarr = (int *) malloc(myN * sizeof(int));

MPI_Scatter(arr, N, MPI_INT, myarr, myN, MPI_INT, 0, MPI_COMM_WORLD);

mysum = 0;

for (i=0; i<myN; i++)

mySum += myarr[i]; // each process calculates partial sum of N/p elements

MPI_Reduce(&mysum, &sum, 1, MPI_INT, MPI_SUM, 0, MPI_COMM_WORLD);

// … now output sum

MPI_Finalize();

}

0 N-1

arr

57C. Kessler, IDA, Linköping University

More about MPI → TDDC78

▪ MPI Communication modes for point-to-point communication

▪ MPI Communicators and Groups

▪ MPI Datatypes

▪ MPI One-Sided Communication (Remote Memory Access)

▪ MPI Virtual Topologies

▪ Labs: Image filter, Particle simulation

Questions?

59C. Kessler, IDA, Linköping University

Further Reading (Selection)

▪ C. Lin, L. Snyder: Principles of Parallel Programming. Addison

Wesley, 2008. (general introduction; Pthreads)

▪ B. Wilkinson, M. Allen: Parallel Programming, 2e. Prentice

Hall, 2005. (general introduction; pthreads, OpenMP, MPI)

▪ M. Herlihy, N. Shavit: The Art of Multiprocessor

Programming. Morgan Kaufmann, 2008. (threads;

nonblocking synchronization)

▪ Chandra, Dagum, Kohr, Maydan, McDonald, Menon: Parallel

Programming in OpenMP. Morgan Kaufmann, 2001.

▪ Barbara Chapman et al.: Using OpenMP - Portable Shared

Memory Parallel Programming. MIT press, 2007.

▪ OpenMP: www.openmp.org

▪ MPI: www.mpi-forum.org

