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Outline

Lecture 1:  Parallel Computer Architecture Concepts

▪ Parallel computer, multiprocessor, multicomputer

▪ SIMD vs. MIMD execution

▪ Shared memory vs. Distributed memory architecture

▪ Interconnection networks

▪ Parallel architecture design concepts

▪ Instruction-level parallelism

▪ Hardware multithreading

▪ Multi-core and many-core

▪ Accelerators and heterogeneous systems

▪ Clusters

▪ Implications for programming and algorithm design
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Traditional Use of Parallel Computing:

Large-Scale HPC Applications

NSC Tetralith

▪ High Performance Computing (HPC)

▪ E.g. climate simulations, particle physics, proteine docking, …

▪ Much computational work
(in FLOPs, floatingpoint operations)

▪ Often, large data sets

▪ Single-CPU computers and even today’s
multicore processors cannot provide such
massive computation power

▪ Aggregate LOTS of computers → Clusters

▪ Need scalable parallel algorithms

▪ Need exploit multiple levels of parallelism

▪ Cost of communication, memory access
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High Performance Computing

Application Areas    (Selection)

▪ Computational Fluid Dynamics

▪ Weather Forecasting and Climate Simulation

▪ Aerodynamics / Air Flow Simulations and Optimization

▪ Structural Engineering

▪ Fuel-Efficient Aircraft Design

▪ Molecular Modelling

▪ Material Science

▪ Computational Chemistry

▪ Battery Simulation and Optimization

▪ Galaxy Simulations

▪ Earthquake Engineering, Oil Reservoir Simulation

▪ Flood Prediction

▪ Bioinformatics (DNA Pattern Matching, Proteine Docking)

▪ Fluid / Structural Interaction 

▪ Blood Flow Simulation

▪ fRMI Image Analysis

▪ ...

www.e-science.se
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Example:  Weather Forecast

cell

• Air pressure

• Temperature

• Humidity

• Sun radiation

• Wind direction

• Wind velocity

• …

(very simplified…)

• 3D Space discretization (cells)

• Time discretization (steps)

• Start from current observations

(sent from weather stations etc.)

• Simulation step by evaluating 

weather model equations

E.g., cell size 1km3 and 

10min time discretization

→ 10-day simulation: 1015 FLOPs

SMHI:  4 forecasts per day,

50 variants (simulations) per forecast

https://www.smhi.se/kunskapsbanken/meteorologi/sa-gor-smhi-en-vaderprognos-1.4662
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Another Classical Use of Parallel Computing:

Parallel Embedded Computing

NSC Tetralith

▪ High-performance embedded computing

▪ E.g. on-board realtime image/video processing, gaming, …

▪ Much computational work
(often fixed point operations)

▪ Often, in energy-constrained mobile devices

▪ Sequential programs on single-core computers
cannot provide sufficient computation power
at a reasonable power budget

▪ Use many small cores at low frequency

▪ Need scalable parallel algorithms

▪ Cost of communication, memory access

▪ Energy cost (Power x Time)



7

More Recent Use of Parallel Computing:

Big-Data Analytics Applications

▪ Big Data Analytics

▪ Data access intensive (disk I/O, memory accesses)

▪ Typically, very large data sets (GB … TB … PB … EB …)

▪ Also some computational work for combining/aggregating data

▪ E.g. data center applications, business analytics, click stream
analysis, scientific data analysis, machine learning, …

▪ Soft real-time requirements on interactive querys

▪ Single-CPU and multicore processors cannot
provide such massive computation power
and I/O bandwidth+capacity

▪ Aggregate LOTS of computers → Clusters

▪ Need scalable parallel algorithms

▪ Need to exploit multiple levels of parallelism

▪ Fault tolerance
NSC Tetralith
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HPC vs Big-Data Computing

▪ Both need parallel computing

▪ Same kind of hardware – Clusters of (multicore) servers

▪ Same OS family (Linux)

▪ Different programming models, languages, and tools

HW: Cluster

OS: Linux

Par. programming models:

MPI, OpenMP, …

HW: Cluster

OS: Linux

Par. programming models:

MapReduce, Spark, …

HPC prog. languages: 

Fortran, C/C++  (Python)
Big-Data prog. languages: 

Java, Scala, Python, …

→ Let us start with the common basis:  Parallel computer architecture 

Big-data storage/access: 

HDFS, …

Scientific computing 

libraries: BLAS, …

HPC application Big-Data application 
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Parallel Computer
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Parallel Computer Architecture Concepts

Classification of parallel computer architectures:

▪ by control structure

▪ by memory organization

▪ in particular,  Distributed memory vs. Shared memory

▪ by interconnection network topology



11

Classification by Control Structure

…

vop

op op op op
1 2 3 4

op
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Classification by Memory Organization

Most common today in HPC and Data centers:

Hybrid Memory System
• Cluster (distributed memory) 

of hundreds, thousands of

shared-memory servers 

each containing one or several multi-core CPUs

NSC Triolith

e.g. (traditional) HPC cluster e.g. multiprocessor (SMP) or computer 

with a standard multicore CPU

NSC Tetralith

(DMS) (SMS)
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Hybrid (Distributed + Shared) Memory

M M

SC Tetralith
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Interconnection Networks (1)

▪ Network

=   physical interconnection medium  (wires, switches)

+ communication protocol

(a) connecting cluster nodes with each other (for DMS)

(b) connecting processors with memory modules (for SMS)

Classification

▪ Direct / static interconnection networks

▪ connecting nodes directly to each other

▪ Hardware routers (communication coprocessors) 

can be used to offload processors from most communication work

▪ Switched / dynamic interconnection networks

P R
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Interconnection Networks (2):  

Simple Topologies P

P

P
P

P

Pfully connected
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Interconnection Networks (3):

Fat-Tree Network

▪ Tree network extended for higher bandwidth (more switches, 

more links) closer to the root

▪ avoids bandwidth bottleneck 

▪ Example:  Infiniband network 

(www.mellanox.com)
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More about Interconnection Networks

▪ Hypercube, Crossbar, Butterfly, Hybrid networks…  → TDDC78

▪ Switching and routing algorithms

▪ Discussion of interconnection network properties

▪ Cost (#switches, #lines)

▪ Scalability

(asymptotically, cost grows not much faster than #nodes)

▪ Node degree

▪ Longest path (→ latency)

▪ Accumulated bandwidth

▪ Fault tolerance (worst-case impact of node or switch failure)

▪ …
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Instruction Level Parallelism (1):

Pipelined Execution Units
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SIMD computing

with Pipelined Vector Units e.g., vector supercomputers

Cray (1970s, 1980s), Fujitsu, …
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Instruction-Level Parallelism (2):

VLIW and Superscalar

▪ Multiple functional units in parallel

▪ 2 main paradigms:

▪ VLIW (very large instruction word) architecture  ^

▪ Parallelism is explicit, progr./compiler-managed (hard)                          

▪ Superscalar architecture    →

▪ Sequential instruction stream

▪ Hardware-managed dispatch

▪ power + area overhead  

▪ ILP in applications is limited

▪ typ. < 3...4 instructions can be issued simultaneously

▪ Due to control and data dependences in applications

▪ Solution:  Multithread the application and the processor
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Hardware Multithreading

PP P P

E.g.,

data

dependence
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SIMD Instructions

▪ “Single Instruction stream, 
Multiple Data streams”

▪ single thread of control flow

▪ restricted form of data parallelism

▪ apply the same primitive operation 
(a single instruction) in parallel to 
multiple data elements stored contiguously

▪ SIMD units use long “vector registers”

▪ each holding multiple data elements

▪ Common today

▪ MMX, SSE, SSE2, SSE3,…

▪ Altivec, VMX, SPU, …

▪ Performance boost for operations on shorter data types

▪ Area- and energy-efficient

▪ Code to be rewritten (SIMDized) by programmer or compiler

▪ Does not help (much) for memory bandwidth

SIMD unitop

”vector register”
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The Memory Wall

▪ Performance gap  CPU – Memory

▪ Memory hierarchy

▪ Increasing cache sizes shows diminishing returns

▪ Costs power and chip area 

▪ GPUs spend the area instead on many simple cores with little memory

▪ Relies on good data locality in the application

▪ What if there is no / little data locality?

▪ Irregular applications, 
e.g. sorting, searching, optimization...

▪ Solution:  Spread out / overlap memory access delay

▪ Programmer/Compiler:  Prefetching,  on-chip pipelining,
SW-managed on-chip buffers

▪ Generally:  Hardware multithreading, again!
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Moore’s Law   (since 1965)

Exponential increase in transistor density

Data from Kunle Olukotun, Lance Hammond, Herb Sutter, 

Burton Smith, Chris Batten, and Krste Asanoviç
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The Power Issue

▪ Power = Static (leakage) power + Dynamic (switching) power  

▪ Dynamic power ~ Voltage2 *  Clock frequency                            

where Clock frequency approx. ~ voltage 

→ Dynamic power ~ Frequency3

▪ Total power  ~ #processors
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Moore’s Law  vs.  Clock Frequency

• #Transistors / mm2 still 

growing exponentially 

according to Moore’s Law

• Clock speed flattening out

2003

~3GHz

More transistors + Limited frequency 

 More cores
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Solution for CPU Design:  

Multicore + Multithreading

▪ Single-thread performance does not improve any more
since ca. 2003  

▪ ILP wall

▪ Memory wall

▪ Power wall  (end of “Dennard Scaling”)

▪ but thanks to Moore’s Law continuing,
we could still put more cores on a chip

▪ And hardware-multithread the cores 
to hide (some) memory latency

▪ All major chip manufacturers produce multicore CPUs today
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Main features of a multicore system

▪ A parallel computer

▪ There are multiple computational cores on the same CPU chip.

▪ Homogeneous multicore (same core type)

▪ Heterogeneous multicore (different core types)

▪ The cores might have (small) private on-chip memory modules

and/or access to on-chip memory shared by several cores.

▪ The cores have access to a common off-chip main memory

▪ There is a way by which these cores communicate with each 

other and/or with the environment.
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Standard CPU Multicore Designs

▪ Standard desktop/server CPUs have a few ... up to ~32 cores 

with shared off-chip main memory

▪ On-chip cache (typ., 3 levels)

▪ L1-cache mostly core-private

▪ L2-cache often shared by 

groups of cores, L3 often by all

▪ Memory access interface shared by all or groups of cores

▪ Caching → multiple copies of the same data item

▪ Writing to one copy (only) causes inconsistency

▪ Shared memory coherence mechanism to enforce automatic 

updating or invalidation of all copies around

→ More about shared-memory architecture, caches, data locality, 

consistency issues and coherence protocols in TDDC78/TDDD56

core core corecore

L1$ L1$ L1$ L1$

L2$ L2$

L3 /

Interconnect / Memory interface

main memory (DRAM)
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Some early dual-core CPUs (2004/2005)

P0 P1

L1$ D1$ L1$ D1$

L2$

Memory Ctrl

Main memory

L2$

AMD Opteron 

Dualcore (2005)

P0 P1

L1$ D1$ L1$

L2$

Memory Ctrl

IBM Power5

(2004)

Main memory

P0 P1

L1$ D1$ L1$ D1$

L2$

Memory Ctrl

Intel Xeon 

Dualcore(2005)

Main memory

SMT

D1$

$ = ”cache”

L1$ = ”level-1 instruction cache”

D1$ = ”level-1 data cache”

L2$ = ”level-2 cache” (uniform)
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SUN/Oracle SPARC T Niagara (8 cores)

P6 P7

L1$ D1$ L1$ D1$

L2$

Memory Ctrl

Niagara T1 (2005):        

8 cores, 32 HW threads

Main memory

P4 P5

L1$ D1$ L1$ D1$

P2 P3

L1$ D1$ L1$ D1$

P0 P1

L1$ D1$ L1$ D1$

Memory Ctrl Memory Ctrl Memory Ctrl

Main memory Main memory Main memory

Sun UltraSPARC ”Niagara”

Niagara T1 (2005):        

8 cores, 32 HW threads

Niagara T2 (2008):

8 cores, 64 HW threads

Niagara T3 (2010):

16 cores, 128 HW threads

T5 (2012):

16 cores, 128 HW threads
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SUN / Oracle  SPARC-T5  (2012)

28nm process, 16 cores x 8 HW threads, L3 cache on-chip,

On-die accelerators for common encryption algorithms
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Scaling Up:   Network-On-Chip

▪ Cache-coherent shared memory (hardware-controlled) –
does not scale well to many cores

▪ power- and area-hungry

▪ signal latency across whole chip

▪ not well predictable access times

▪ Idea:  NCC-NUMA – non-cache-coherent, non-uniform memory
access

▪ Physically distributed on-chip [cache] memory,  

▪ on-chip network, connecting PEs or coherent ”tiles” of PEs

▪ global shared address space, 

▪ but software responsible
for maintaining coherence

▪ Examples:

▪ STI Cell/B.E., 

▪ Tilera TILE64,

▪ Intel SCC,  Kalray MPPA
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Example: Cell/B.E.    (IBM/Sony/Toshiba 2006)

▪ An on-chip network (four parallel unidirectional rings)

interconnect the master core, the slave cores and the main 

memory interface

▪ LS = local on-chip memory,  PPE = master, SPE = slave

Heterogeneous Multicore!
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Towards Many-Core CPUs...

▪ For low-power, throughput-oriented computing

▪ Many (today: >100) but small (energy-efficient) CPU cores on  

the chip

▪ No longer fully cache coherent

over the entire chip

▪ MPI-like message passing

over 2D mesh network on chip

Source: Intel
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▪ Tilera TILE64 (2007): 64 cores, 8x8 2D-mesh on-chip network 

Towards Many-Core Architectures

1 tile:  VLIW-processor

+ cache + router

P C

R

(Image simplified)

Mem-controller

I/O I/O
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Clustered Many-core CPU:  

Kalray MPPA-256

▪ 16 tiles 

with 16 VLIW compute cores each

plus 1 control core per tile

▪ Message passing network on chip

▪ Virtually unlimited array extension 

by clustering several chips

▪ First version ca. 2012

▪ 28 nm CMOS technology 

▪ Low power dissipation, typ. 5 W Image source: 

Kalray
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Intel Xeon Phi   

▪ First generation (late 2012):

Up to 61 cores, 244 HW threads, 1.2 Tflops peak performance

▪ Simpler x86 (Pentium) cores (x 4 HW threads), 

with 512 bit wide SIMD vector registers  (AVX-512)

▪ Could also be used as a coprocessor, instead of a GPU

▪ Last version (2016): x200 ”Knight’s Landing”

(up to 72 cores / 288 HW threads), no longer as coprocessor
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”General-purpose”  GPUs

• Main GPU providers for laptop/desktop  
Nvidia, AMD(ATI), Intel

• Example: 
NVIDIA’s 10-series GPU (Tesla, 2008)
has 240 cores

• Each core has a
• Floating point / integer unit

• Logic unit 

• Move, compare unit

• Branch unit

• Cores managed by thread manager
• Thread manager can spawn 

and manage 30,000+ threads 

• Zero overhead thread switching

Source:  NVidia

Nvidia Tesla C1060:

933 GFlops

(Images removed)
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Nvidia Fermi (2010):  512 cores
1 ”shared-memory

multiprocessor” (SM)1 Fermi C2050 GPU

SM

L2

I-cache

Scheduler

Dispatch

Register file

32 Streaming 

processors

(cores)

Load/Store units

Special function units

64K configurable L1cache/ 

shared memory

1 Streaming

Processor 

(SP)

FPU IntU
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GPU Architecture Paradigm

▪ Optimized for high throughput

▪ In theory, ~10x to ~100x higher throughput than CPU is 

possible

▪ Massive hardware-multithreading hides memory access latency

▪ Massive parallelism

▪ GPUs are good at data-parallel computations 

▪ multiple threads executing the same instruction on different 

data, preferably located adjacently in memory
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The future will be heterogeneous!

Need 2 kinds of cores – often on same chip:

▪ For non-parallelizable code:
Parallelism only from running several serial applications
simultaneously on different cores
(e.g. on desktop: word processor, email, virus scanner, …

… not much more)

→ Few (ca. 4-8) ”fat” cores – designed for low latency
(power-hungry, area-costly, 
large caches, out-of-order issue / speculation)
for high single-thread performance

▪ For well-parallelizable code:  
→ hundreds of simple cores –

designed for high throughput
at low power consumption

(power + area efficient)
(GPU-/SCC-like)
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Heterogeneous / Hybrid Multi-/Manycore

Key concept:  Master-worker parallelism,  offloading

▪ General-purpose CPU (master) processor controls execution 

of worker processors by submitting tasks to them and 

transfering operand data to the workers’ local memory

→Master offloads computation to the slaves

▪ Workers often optimized for heavy throughput computing

▪ Master could do something else while waiting for the result, 

or switch to a power-saving mode

▪ Master and worker cores might reside 

on the same chip (e.g., Cell/B.E.) 

or on different chips (e.g., most GPU-based systems today)

▪ Workers might have access to off-chip main memory (e.g., 

Cell) or not (e.g., today’s GPUs)
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Heterogeneous / Hybrid Multi-/Manycore Systems

▪ Cell/B.E.

▪ GPU-based system:

CPU

GPU

Offload

heavy 

computation

Data 

transfer

Device

memory

Main

memory
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Multi-GPU Systems

▪ Connect one or few general-purpose (CPU) multicore 

processors with shared off-chip memory to several GPUs

▪ Increasingly popular in high-performance computing, DNN

▪ Cost and (quite) energy effective if offloaded computation

fits GPU architecture well

Main Memory

(DRAM)
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Reconfigurable Computing Units

▪ FPGA – Field Programmable Gate Array

"Altera StratixIVGX FPGA" by Altera Corp. 
Licensed under CC BY 3.0 via Wikimedia Commons
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Example:  Beowulf-class PC Clusters

with off-the-shelf CPUs

(Xeon, Opteron, …)
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Example:  Tetralith  (NSC, 2018/2019)

• Each Tetralith compute node has 

2 Intel Xeon Gold 6130 CPUs (2.1 GHz)

each with 16 cores (32 hardware threads) 

• 1832 "thin" nodes with 96 GiB of primary 

memory (RAM) 

• and 60 "fat" nodes with 384 GiB.

→ 1892 nodes, 60544 cores in total

All nodes are interconnected with a 100 Gbps

Intel Omni-Path network (Fat-Tree topology)
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The Challenge

▪ Today, basically all computers are parallel computers!

▪ Single-thread performance stagnating  

▪ Dozens of cores and hundreds of HW threads available per server

▪ May even be heterogeneous (core types, accelerators)

▪ Data locality matters

▪ Large clusters for HPC and Data centers, require message passing

▪ Utilizing more than one CPU core requires thread-level parallelism

▪ One of the biggest software challenges:  Exploiting parallelism

▪ Need LOTS of (mostly, independent) tasks to keep cores/HW threads 
busy and overlap waiting times (cache misses, I/O accesses) 

▪ All application areas, not only traditional HPC

▪ General-purpose, data mining, graphics, games, embedded, DSP, …

▪ Affects HW/SW system architecture, programming languages, 
algorithms, data structures …

▪ Parallel programming is more error-prone
(deadlocks, races, further sources of inefficiencies)

▪ And thus more expensive and time-consuming
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Can’t the compiler fix it for us?

▪ Automatic parallelization?

▪ at compile time:  

▪ Requires static analysis – not effective for pointer-based 

languages

▪ needs programmer hints / rewriting ...

▪ ok for few benign special cases: 

▪ (Fortran) loop SIMDization, 

▪ extraction of instruction-level parallelism, …

▪ at run time (e.g. speculative multithreading)

▪ High overheads, not scalable

▪ More about parallelizing compilers in TDDD56 + TDDC78
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And worse yet,

▪ A lot of variations/choices in hardware

▪ Many will have performance implications 

▪ No standard parallel programming model

▪ portability issue

▪ Understanding the hardware will make it easier to make 

programs get high performance

▪ Performance-aware programming gets more important

also for single-threaded code

▪ Adaptation leads to portability issue again

▪ How to write future-proof parallel programs?
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Bread-and-Butter Programming is Not 

Sufficient for High-Performance Computing

▪ Resource-Aware Programming can give orders of magnitude in speedup

▪ Exploit multiple levels of parallelism and optimizations

Table source: Turing award lecture by J. Hennessy and D. Patterson, 2018. See also: 

J. Hennessy, D. Patterson: A New Golden Age for Computer Architecture. 

Communications of the ACM 62(2):48-60, Feb. 2019.

Version Speedup Optimization

Python 1

C 47 Rewrite in a static, compiled 

(“native”) progr. language

C with parallel loops 366 Extract multi-core parallelism 

(OpenMP)

C with loops and memory optimization 6,727 Loop tiling for data locality

Loop vectorization using Intel AVX 

SIMD instructions

62,806 Extract SIMD parallelism

Example: 

Matrix-Multiply: relative speedup to a Python version (18 core Intel Xeon CPU)
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What we had learned so far …

▪ Sequential von-Neumann model 

programming, algorithms, data structures, complexity

▪ Sequential / few-threaded languages:  C/C++,  Java,  ...

not designed for exploiting massive parallelism

time

problem size

T(n) = O ( n log n )
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… and what we need now

▪ Parallel programming!

▪ Parallel algorithms and data structures

▪ Analysis / cost model:  parallel time, work, cost;  scalability;

▪ Performance-awareness:  data locality, load balancing, communication

time

problem size

number of

processing 

units used

T(n,p) = O ( (n log n)/p + log p )



Questions?


