

Parallel Computer Architecture Concepts

TDDE35 Lecture 1

Christoph Kessler

PELAB / IDA Linköping university Sweden

2022

Outline

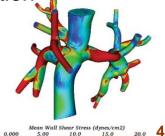
Lecture 1: Parallel Computer Architecture Concepts

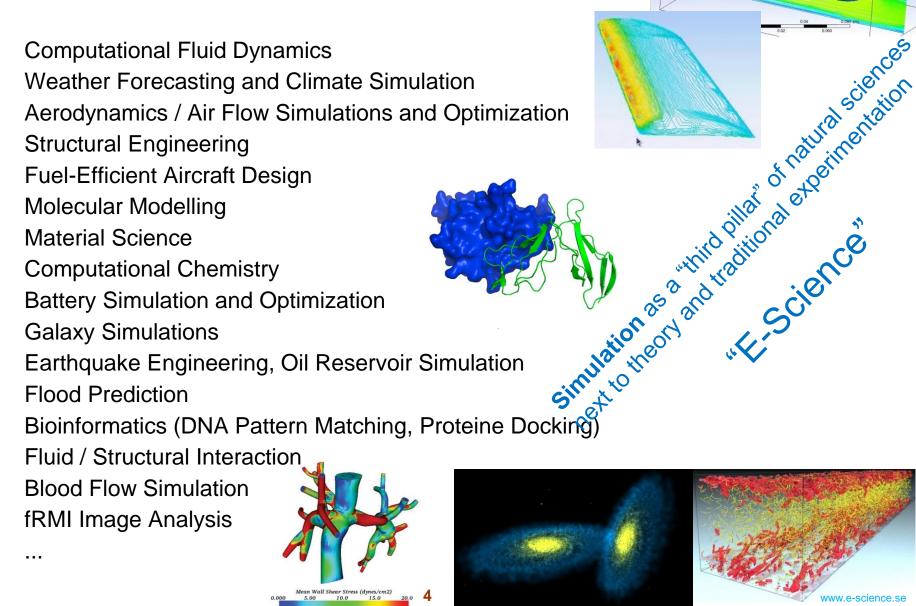
- Parallel computer, multiprocessor, multicomputer
- SIMD vs. MIMD execution
- Shared memory vs. Distributed memory architecture
- Interconnection networks
- Parallel architecture design concepts
 - Instruction-level parallelism
 - Hardware multithreading
 - Multi-core and many-core
 - Accelerators and heterogeneous systems
 - Clusters
- Implications for programming and algorithm design

Traditional Use of Parallel Computing: Large-Scale HPC Applications

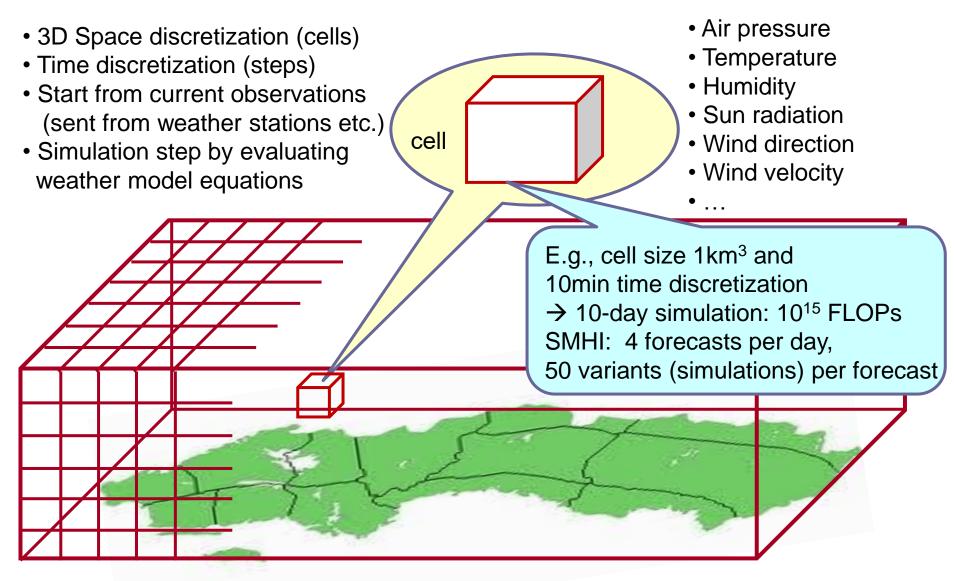
- High Performance Computing (HPC)
 - E.g. climate simulations, particle physics, proteine docking, …
 - Much computational work (in FLOPs, floatingpoint operations)
 - Often, large data sets
- Single-CPU computers and even today's multicore processors cannot provide such massive computation power
- Aggregate LOTS of computers → Clusters
 - Need scalable parallel algorithms
 - Need exploit multiple levels of parallelism
 - Cost of communication, memory access

High Performance Computing Application Areas (Selection)





Example: Weather Forecast (very simplified...)



https://www.smhi.se/kunskapsbanken/meteorologi/sa-gor-smhi-en-vaderprognos-1.4662

Another Classical Use of Parallel Computing: Parallel Embedded Computing

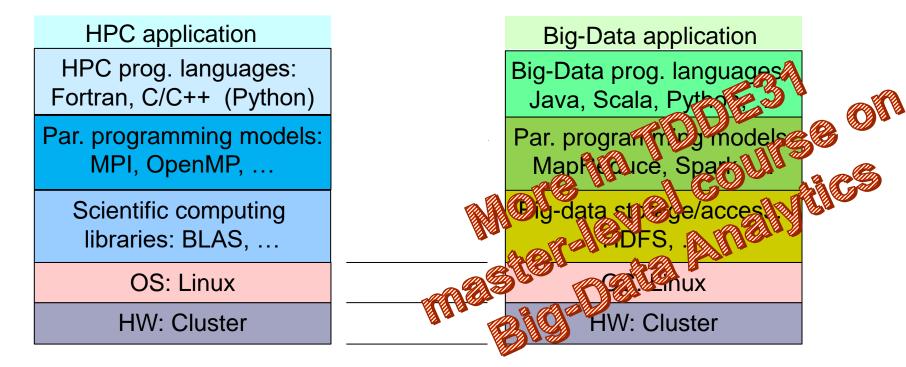
- High-performance embedded computing
 - E.g. on-board realtime image/video processing, gaming, ...
 - Much computational work (often fixed point operations)
 - Often, in energy-constrained mobile devices
- Sequential programs on single-core computers cannot provide sufficient computation power at a reasonable power budget
- Use many small cores at low frequency
 - Need scalable parallel algorithms
 - Cost of communication, memory access
 - Energy cost (Power x Time)

More Recent Use of Parallel Computing: Big-Data Analytics Applications

- Big Data Analytics
 - Data access intensive (disk I/O, memory accesses)
 - Typically, very large data sets (GB ... TB ... PB ... EB ...)
 - Also some computational work for combining/aggregating data
 - E.g. data center applications, business analytics, click stream analysis, scientific data analysis, machine learning, ...
 - Soft real-time requirements on interactive querys
- Single-CPU and multicore processors cannot provide such massive computation power and I/O bandwidth+capacity
- Aggregate LOTS of computers → Clusters
 - Need scalable parallel algorithms
 - Need to exploit multiple levels of parallelism
 - Fault tolerance

HPC vs Big-Data Computing

- Both need parallel computing
- Same kind of hardware Clusters of (multicore) servers
- Same OS family (Linux)
- **Different programming models**, languages, and tools



 \rightarrow Let us start with the common basis: Parallel computer architecture

Parallel Computer

A parallel computer is a computer consisting of

- + two or more processors
 that can cooperate and communicate
 to solve a large problem faster,
- + one or more memory modules,
- + an interconnection network

that connects processors with each other and/or with the memory modules.

Multiprocessor: tightly connected processors, e.g. shared memory

Multicomputer: more loosely connected, e.g. distributed memory

Parallel Computer Architecture Concepts

Classification of parallel computer architectures:

- by control structure
- by memory organization
 - in particular, Distributed memory vs. Shared memory
- by interconnection network topology

Classification by Control Structure

SISD single instruction stream, single data stream

- + sequential. OK where performance is not an issue.
- SIMD single instruction stream, multiple data streams

Common clock, common program memory, common program counter.

[Flynn'72]

op

vop -

op,

op,-

op 🚽

op

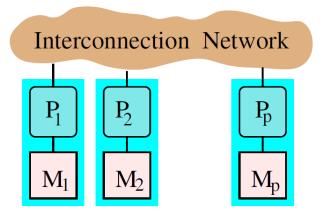
- + VLIW processors
- + traditional vector processors
- + traditional array computers
- + SIMD instructions on wide data words (e.g. Altivec, SSE

MIMD multiple instruction streams, multiple data streams

Each processor has its own program counter.

Hybrid forms

Classification by Memory Organization

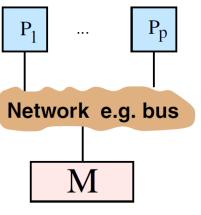


Distributed memory system (DMS) e.g. (traditional) HPC cluster

Most common today in HPC and Data centers:

Hybrid Memory System

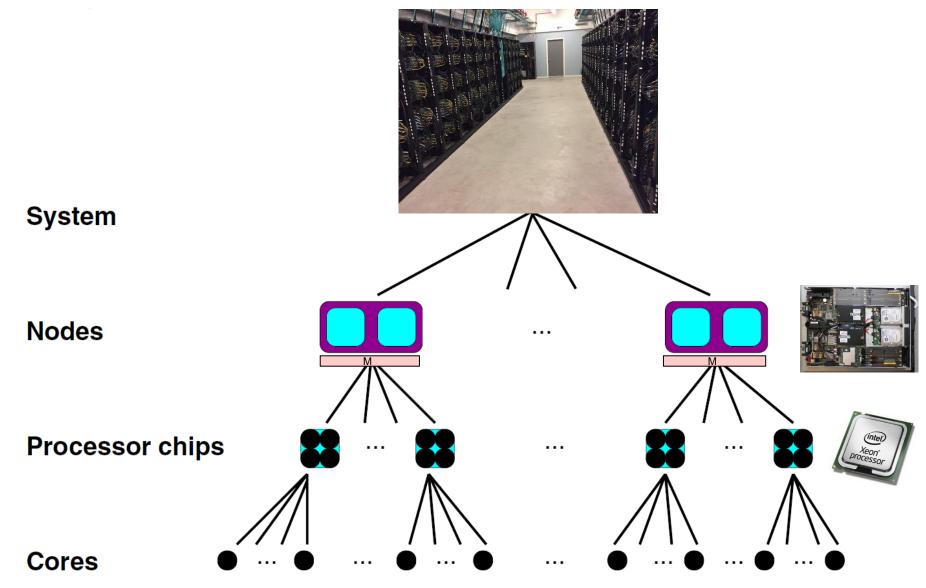
 Cluster (distributed memory) of hundreds, thousands of shared-memory servers each containing one or several multi-core CPUs



Shared memory system (SMS) e.g. multiprocessor (SMP) or computer with a standard multicore CPU

 NSC Tetralith

Hybrid (Distributed + Shared) Memory



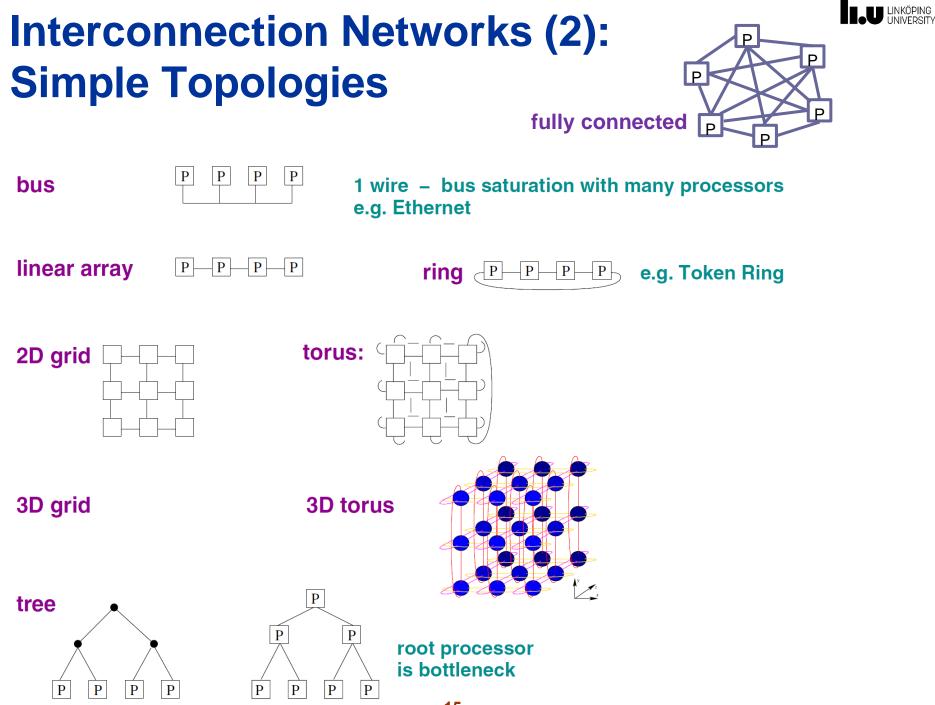
Interconnection Networks (1)

Network

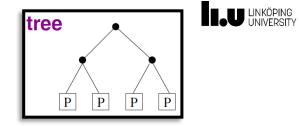
- physical interconnection medium (wires, switches)
 + communication protocol
- (a) connecting cluster nodes with each other (for DMS)(b) connecting processors with memory modules (for SMS)

Classification

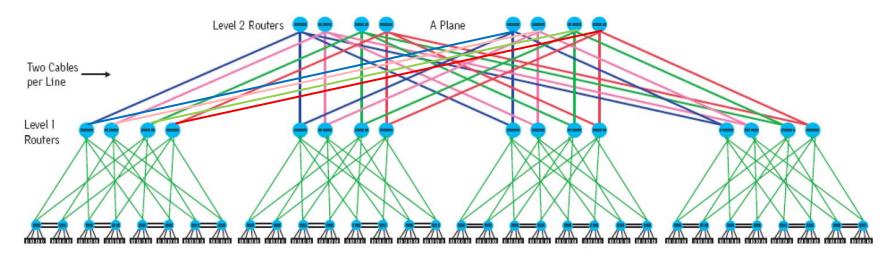
- Direct / static interconnection networks
 - connecting nodes directly to each other
 - Hardware routers (communication coprocessors)
 Can be used to offload processors from most communication work
- Switched / dynamic interconnection networks



Interconnection Networks (3): Fat-Tree Network



- Tree network extended for higher bandwidth (more switches, more links) closer to the root
 - avoids bandwidth bottleneck



 Example: Infiniband network (www.mellanox.com)

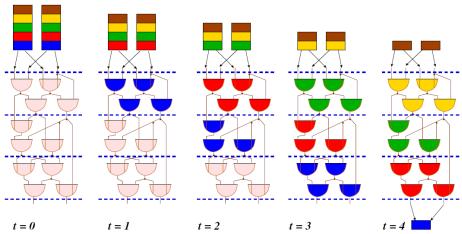
More about Interconnection Networks

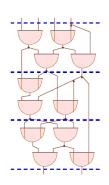
- Hypercube, Crossbar, Butterfly, Hybrid networks... → TDDC78
- Switching and routing algorithms
- Discussion of interconnection network properties
 - Cost (#switches, #lines)
 - Scalability (asymptotically, cost grows not much faster than #nodes)
 - Node degree
 - Longest path (\rightarrow latency)
 - Accumulated bandwidth
 - Fault tolerance (worst-case impact of node or switch failure)

Instruction Level Parallelism (1): Pipelined Execution Units

Principle: SIMD + pipelining cf. assembly line manufacturing of cars etc.

- + Idea: partition "deep" arithmetic circuits (e.g., floatingpoint-adder) into d > 1 horizontal layers, called stages, of about equal depth. Reduce clock cycle time such that each stage needs one cycle.
- + Intermediate results of stage k are forwarded to stage k+1
- + The operands and result(s) are vectors, sequences (arrays) of floats
- + All stages work simultaneously, but on different components of the vectors
- + Stage k works on l-th vector component in cycle k+l
- + First result available after d cycles, a startup phase of d-1 cycles is needed to fill the pipeline

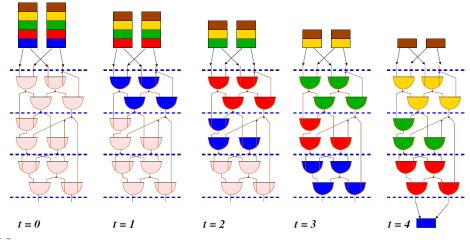




SIMD computing with Pipelined Vector Units

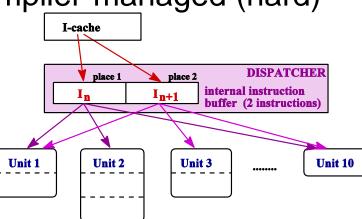
e.g., vector supercomputers Cray (1970s, 1980s), Fujitsu, ...

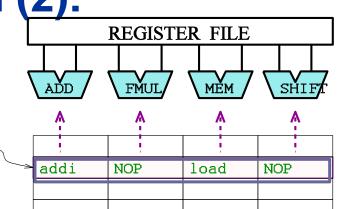
- A vector operation, e.g. C[1:N] ← A[1:N] + B[1:N] (elementwise addition) takes N + d 1 cycles (compared to N × d cycles without pipelining)
- Condition: All component computations of a vector operation must be of same operation type and independent of each other
- Scalar operations take *d* cycles no improvement.
- Programs must be vectorized (by the programmer or compiler)
- + Stage k works on l-th vector component in cycle k+l
- + First result available after d cycles, a startup phase of d-1 cycles is needed to fill the pipeline



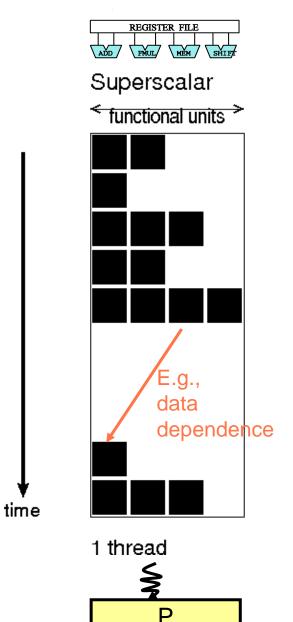
Instruction-Level Parallelism (2): VLIW and Superscalar

- Multiple functional units in parallel PC-
- 2 main paradigms:
 - VLIW (very large instruction word) architecture ^
 - Parallelism is explicit, progr./compiler-managed (hard)
 - Superscalar architecture \rightarrow
 - Sequential instruction stream
 - Hardware-managed dispatch
 - power + area overhead
- ILP in applications is limited
 - typ. < 3...4 instructions can be issued simultaneously</p>
 - Due to control and data dependences in applications
- Solution: Multithread the application and the processor

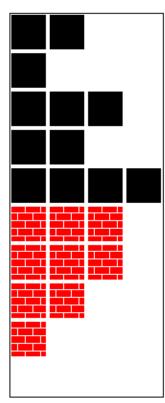


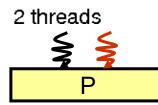


Hardware Multithreading

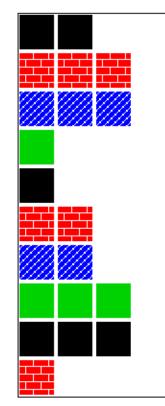


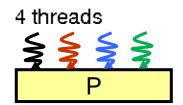
Coarse multithreading



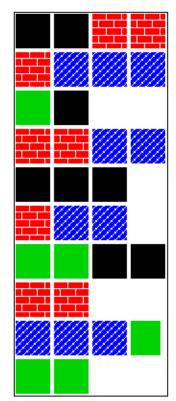


Fine multithreading





Simultaneous multithreading

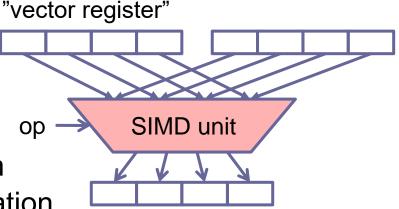


4 threads \$ \$ \$ \$ \$ P

SIMD Instructions

- "Single Instruction stream, Multiple Data streams"
 - single thread of control flow
 - restricted form of data parallelism
 - apply the same primitive operation

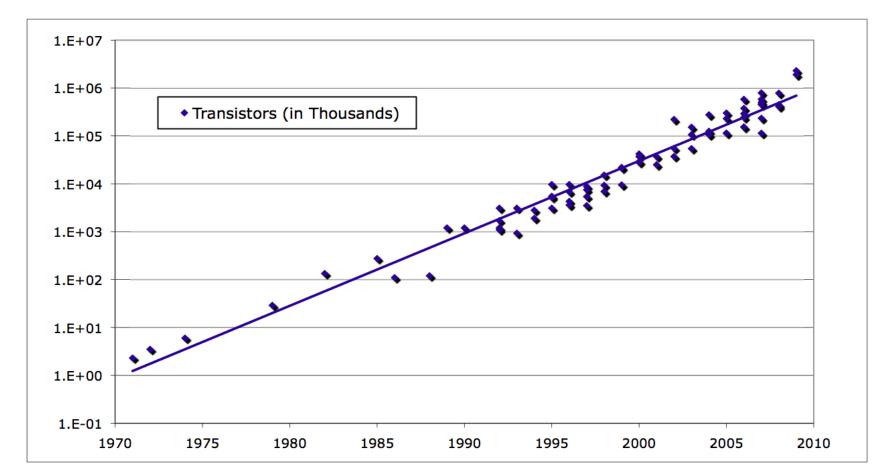
 (a single instruction) in parallel to
 multiple data elements stored contiguously
 - SIMD units use long "vector registers"
 - each holding multiple data elements
- Common today
 - MMX, SSE, SSE2, SSE3,...
 - Altivec, VMX, SPU, …
- Performance boost for operations on shorter data types
- Area- and energy-efficient
- Code to be rewritten (SIMDized) by programmer or compiler
- Does not help (much) for memory bandwidth



The Memory Wall

- Performance gap CPU Memory
- Memory hierarchy
- Increasing cache sizes shows diminishing returns
 - Costs power and chip area
 - GPUs spend the area instead on many simple cores with little memory
 - Relies on good data locality in the application
- What if there is no / little data locality?
 - Irregular applications, e.g. sorting, searching, optimization...
- Solution: Spread out / overlap memory access delay
 - Programmer/Compiler: Prefetching, on-chip pipelining, SW-managed on-chip buffers
 - Generally: Hardware multithreading, again!

Moore's Law (since 1965) Exponential increase in transistor density



Data from Kunle Olukotun, Lance Hammond, Herb Sutter, 24Burton Smith, Chris Batten, and Krste Asanoviç

The Power Issue

- Power = Static (leakage) power + Dynamic (switching) power
- Dynamic power ~ Voltage² * Clock frequency where Clock frequency approx. ~ voltage
 - \rightarrow Dynamic power ~ Frequency³
- Total power ~ #processors

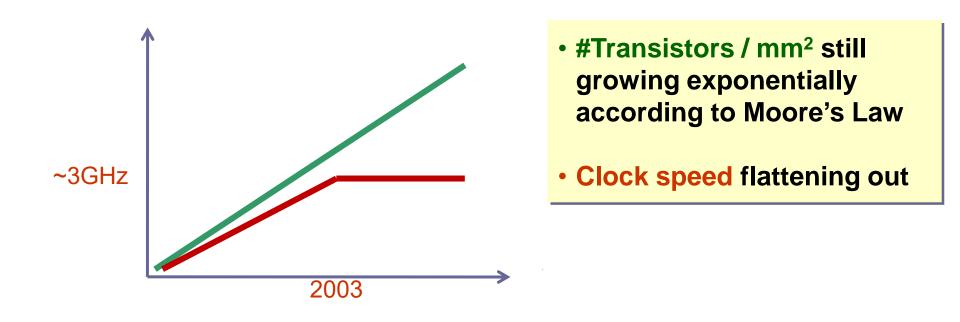
Processor	#cores	Volt-	Fre-	Perfor-	Power	Power efficien-
architecture		age	quency	mance		cy [Gflops/W]
Classical superscalar	1x	1x	1x	1x	1x	1x
"Faster" superscalar	1x	1.5x	1.5x	1.5x	3.3x	0.45x
Multi-core	2x	0.75x	0.75x	1.5x	0.8x	1.88x

Source: J. Dongarra, 2009

 \rightarrow Preferable to use multiple slower processors than one superfast processor

... PROVIDED THAT the application can be parallelized efficiently!

Moore's Law vs. Clock Frequency



More transistors + Limited frequency \Rightarrow More cores

Solution for CPU Design: Multicore + Multithreading

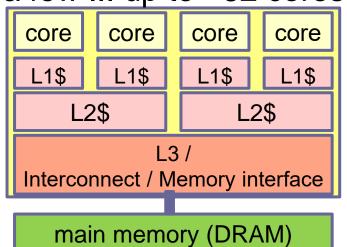
- Single-thread performance does not improve any more since ca. 2003
 - ILP wall
 - Memory wall
 - Power wall (end of "Dennard Scaling")
- but thanks to Moore's Law continuing, we could still put more cores on a chip
 - And hardware-multithread the cores to hide (some) memory latency
 - All major chip manufacturers produce multicore CPUs today

Main features of a multicore system

- A parallel computer
- There are <u>multiple computational cores</u> on the same CPU chip.
 - Homogeneous multicore (same core type)
 - Heterogeneous multicore (different core types)
- The cores might have (small) private <u>on-chip memory modules</u> and/or access to on-chip memory shared by several cores.
- The cores have access to a common <u>off-chip main memory</u>
- There is a way by which these cores <u>communicate</u> with each other and/or with the environment.

Standard CPU Multicore Designs

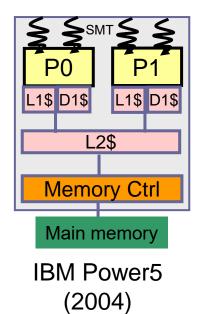
- Standard desktop/server CPUs have a few ... up to ~32 cores with shared off-chip main memory
 - On-chip cache (typ., 3 levels)
 - L1-cache mostly core-private
 - L2-cache often shared by groups of cores, L3 often by all

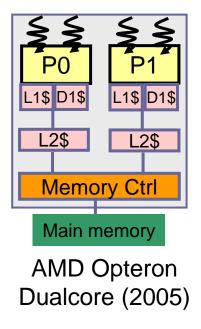


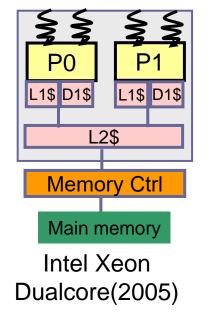
- Memory access interface shared by all or groups of cores
- Caching → multiple copies of the same data item
- Writing to one copy (only) causes <u>inconsistency</u>
- <u>Shared memory coherence mechanism</u> to enforce automatic updating or invalidation of all copies around

→ More about shared-memory architecture, caches, data locality, consistency issues and coherence protocols in TDDC78/TDDD56

Some early dual-core CPUs (2004/2005)

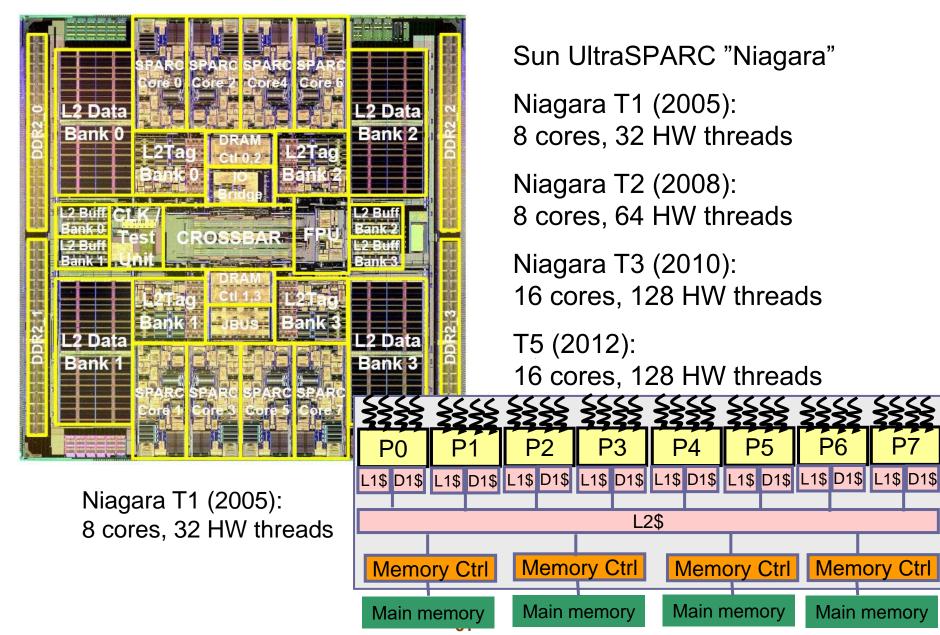




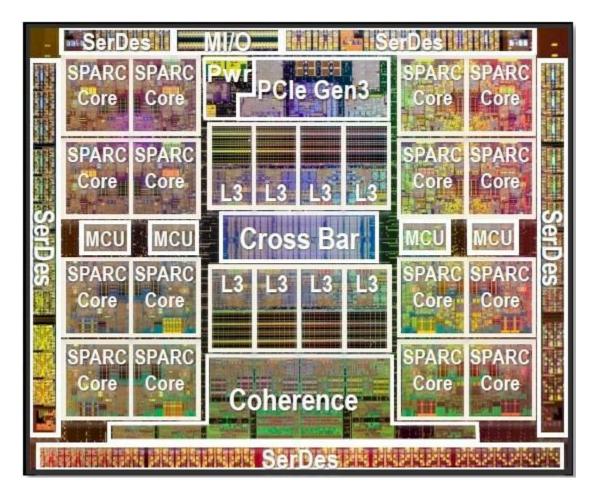


\$ = "cache"
L1\$ = "level-1 instruction cache"
D1\$ = "level-1 data cache"
L2\$ = "level-2 cache" (uniform)

SUN/Oracle SPARC T Niagara (8 cores)



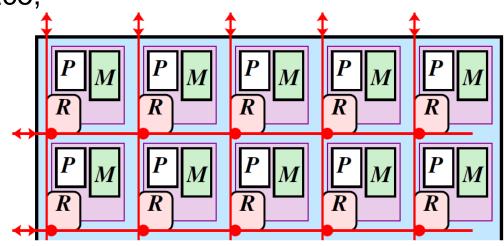
SUN/Oracle SPARC-T5 (2012)



28nm process, 16 cores x 8 HW threads, L3 cache on-chip, On-die accelerators for common encryption algorithms

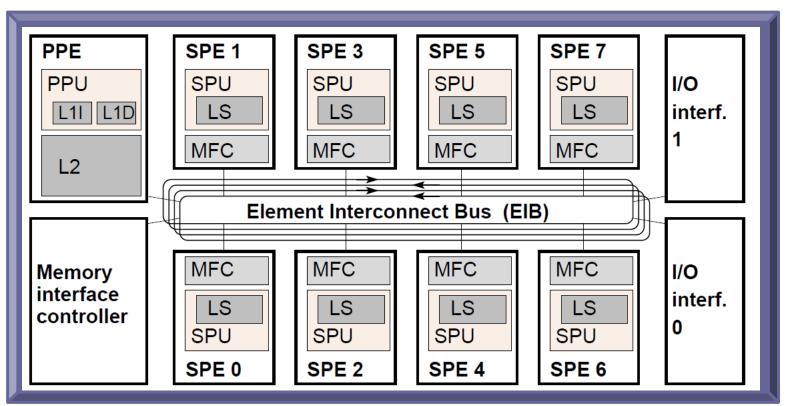
Scaling Up: Network-On-Chip

- Cache-coherent shared memory (hardware-controlled) does not scale well to many cores
 - power- and area-hungry
 - signal latency across whole chip
 - not well predictable access times
- Idea: NCC-NUMA non-cache-coherent, non-uniform memory access
 - Physically distributed on-chip [cache] memory,
 - on-chip network, connecting PEs or coherent "tiles" of PEs
 - global shared address space,
 - but software responsible for maintaining coherence
- Examples:
 - STI Cell/B.E.,
 - Tilera TILE64,
 - Intel SCC, Kalray MPPA



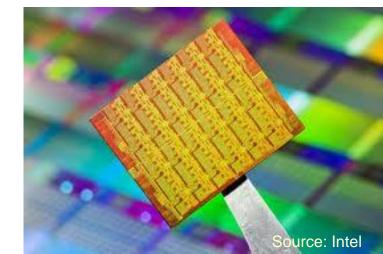
Example: Cell/B.E. (IBM/Sony/Toshiba 2006)

- An on-chip network (four parallel unidirectional rings) interconnect the master core, the slave cores and the main memory interface
- LS = local on-chip memory, PPE = master, SPE = slave



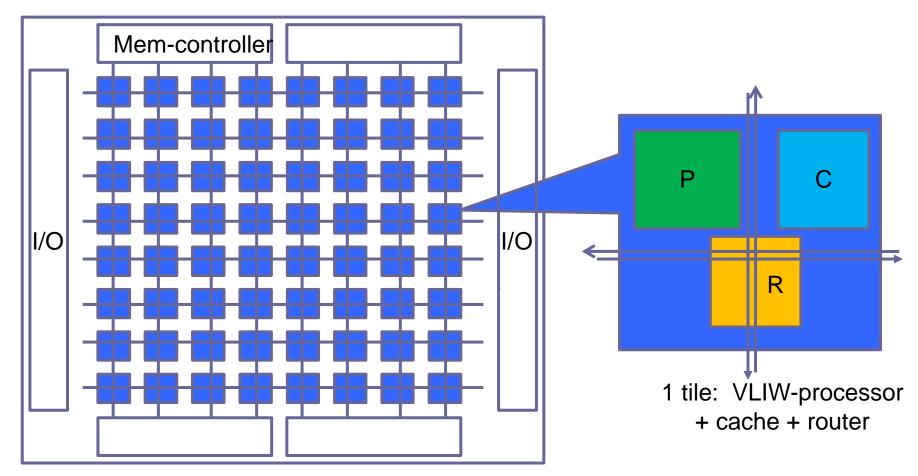
Towards Many-Core CPUs...

- For low-power, throughput-oriented computing
- Many (today: >100) but small (energy-efficient) CPU cores on the chip
 - No longer fully cache coherent over the entire chip
 - MPI-like message passing over 2D mesh network on chip



Towards Many-Core Architectures

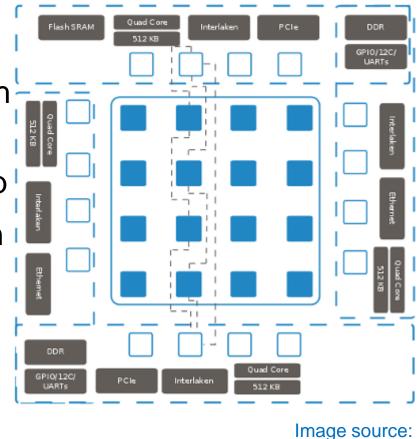
• Tilera TILE64 (2007): 64 cores, 8x8 2D-mesh on-chip network



(Image simplified)

Clustered Many-core CPU: Kalray MPPA-256

- 16 tiles with 16 VLIW compute cores each plus 1 control core per tile
- Message passing network on chip
- Virtually unlimited array extension by clustering several chips
- First version ca. 2012
- 28 nm CMOS technology
- Low power dissipation, typ. 5 W



Kalray

Intel Xeon Phi

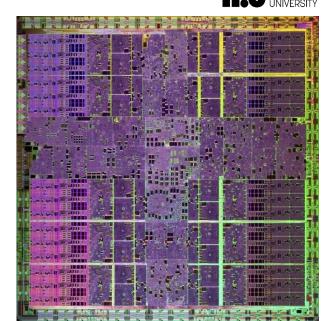
- First generation (late 2012): Up to 61 cores, 244 HW threads, 1.2 Tflops peak performance
 - Simpler x86 (Pentium) cores (x 4 HW threads), with 512 bit wide SIMD vector registers (AVX-512)
 - Could also be used as a coprocessor, instead of a GPU
- Last version (2016): x200 "Knight's Landing" (up to 72 cores / 288 HW threads), no longer as coprocessor

"General-purpose" GPUs

- Main GPU providers for laptop/desktop Nvidia, AMD(ATI), Intel
- Example:

NVIDIA's 10-series GPU (Tesla, 2008) has 240 cores

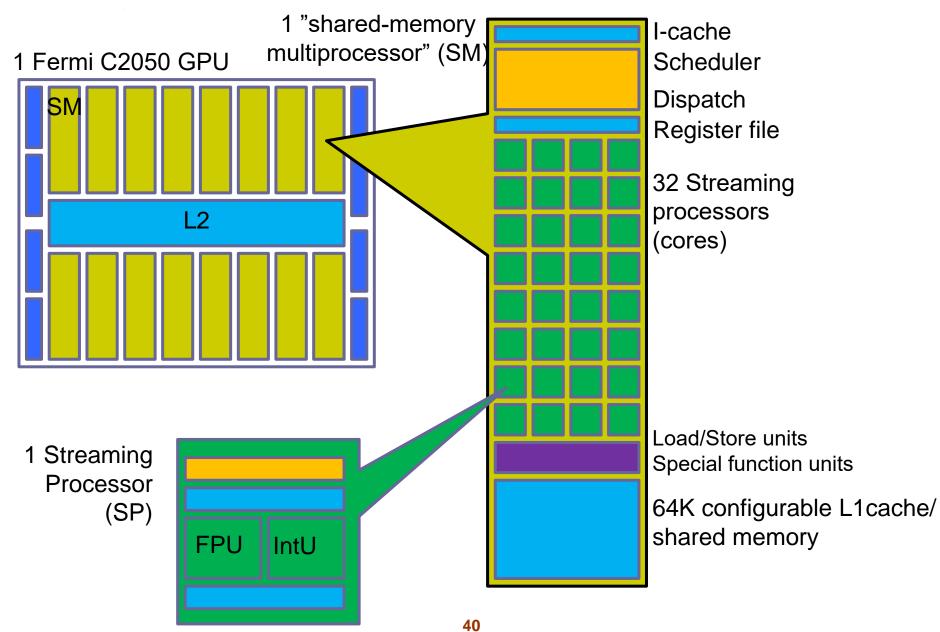
- Each core has a
 - Floating point / integer unit
 - Logic unit
 - Move, compare unit
 - Branch unit
- Cores managed by thread manager
 - Thread manager can spawn and manage 30,000+ threads
 - Zero overhead thread switching



Source: NVidia

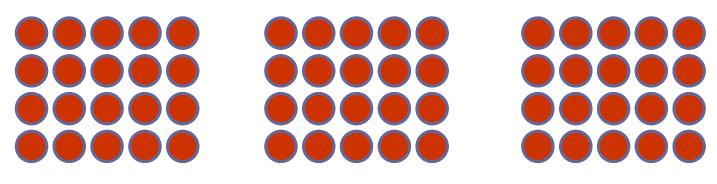
Nvidia Tesla C1060: 933 GFlops

Nvidia Fermi (2010): 512 cores



GPU Architecture Paradigm

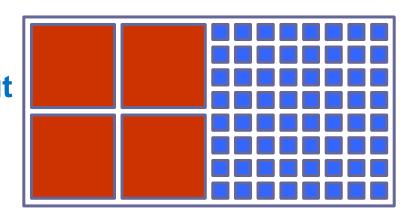
- Optimized for high throughput
 - In theory, ~10x to ~100x higher throughput than CPU is possible
- Massive hardware-multithreading hides memory access latency
- Massive parallelism
- GPUs are good at data-parallel computations
 - multiple threads executing the <u>same</u> instruction on different data, preferably located adjacently in memory



The future will be heterogeneous!

Need 2 kinds of cores – often on same chip:

- For non-parallelizable code: Parallelism only from running several serial applications simultaneously on different cores (e.g. on desktop: word processor, email, virus scanner, not much more)
 - \rightarrow Few (ca. 4-8) "fat" cores designed for low latency (power-hungry, area-costly, large caches, out-of-order issue / speculation) for high single-thread performance
- For well-parallelizable code: \rightarrow hundreds of simple cores – designed for high throughput at low power consumption (power + area efficient) (GPU-/SCC-like) 42



Heterogeneous / Hybrid Multi-/Manycore

Key concept: Master-worker parallelism, offloading

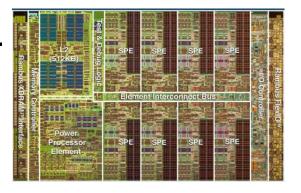
 General-purpose CPU (master) processor controls execution of worker processors by submitting tasks to them and transfering operand data to the workers' local memory

→ Master offloads computation to the slaves

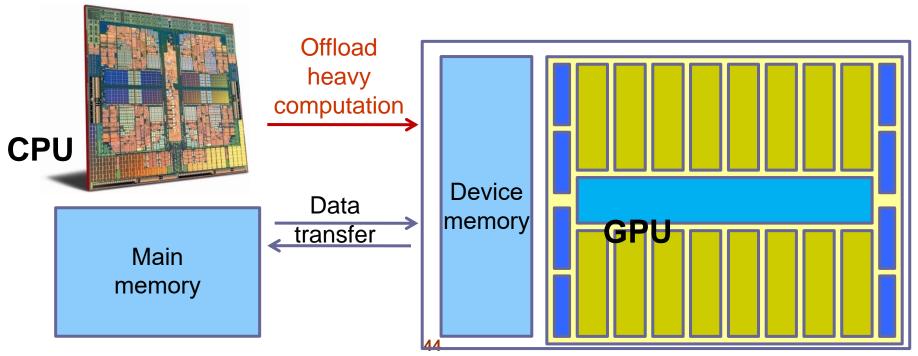
- Workers often optimized for heavy throughput computing
 - Master could do something else while waiting for the result, or switch to a power-saving mode
- Master and worker cores might reside on the same chip (e.g., Cell/B.E.) or on different chips (e.g., most GPU-based systems today)
- Workers might have access to off-chip main memory (e.g., Cell) or not (e.g., today's GPUs)

Heterogeneous / Hybrid Multi-/Manycore Systems

Cell/B.E.

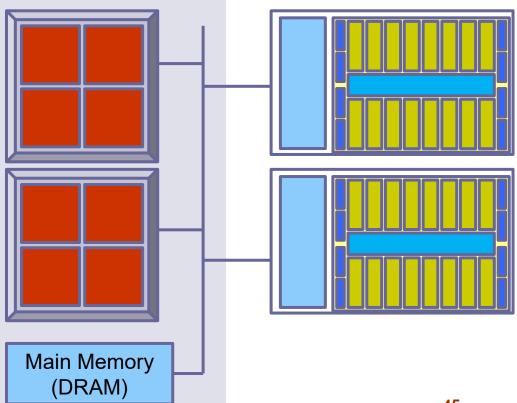


GPU-based system:



Multi-GPU Systems

- Connect one or few general-purpose (CPU) multicore processors with shared off-chip memory to several GPUs
- Increasingly popular in high-performance computing, DNN
 - Cost and (quite) energy effective if offloaded computation



fits GPU architecture well

Reconfigurable Computing Units

• **FPGA** – Field Programmable Gate Array

"Altera StratixIVGX FPGA" by Altera Corp. Licensed under CC BY 3.0 via Wikimedia Commons

Example: Beowulf-class PC Clusters

Interconnection Network

Pp

Characteristics:

- off-the-shelf (PC) nodes M₁ M₂ M_p
 with off-the-shelf CPUs Distributed memory system (Xeon, Opteron, ...)
- commodity interconnect G-Ethernet, Myrinet, Infiniband, SCI
- Open Source Unix Linux, BSD
- Message passing computing MPI, PVM

Advantages:

- + best price-performance ratio
- + low entry-level cost
- + vendor independent
- + scalable
- + rapid technology tracking

T. Sterling: The scientific workstation of the future may be a pile of PCs. *Communications of the ACM* **39**(9), Sep. 1996

Example: Tetralith (NSC, 2018/2019)

- Each Tetralith **compute node** has 2 Intel Xeon Gold 6130 CPUs (2.1 GHz) each with 16 cores (32 hardware threads)
- 1832 "thin" nodes with 96 GiB of primary memory (RAM)
- and 60 "fat" nodes with 384 GiB.
 → 1892 nodes, 60544 cores in total
 All nodes are interconnected with a 100 Gbps
 Intel Omni-Path network (Fat-Tree topology)

The Challenge

- Today, basically *all* computers are parallel computers!
 - Single-thread performance stagnating
 - Dozens of cores and hundreds of HW threads available per server
 - May even be heterogeneous (core types, accelerators)
 - Data locality matters
 - Large clusters for HPC and Data centers, require message passing
- Utilizing more than one CPU core requires thread-level parallelism
- One of the biggest *software* challenges: **Exploiting parallelism**
 - Need LOTS of (mostly, independent) tasks to keep cores/HW threads busy and overlap waiting times (cache misses, I/O accesses)
 - All application areas, not only traditional HPC
 - General-purpose, data mining, graphics, games, embedded, DSP, ...
 - Affects HW/SW system architecture, programming languages, algorithms, data structures ...
 - Parallel programming is more error-prone (deadlocks, races, further sources of inefficiencies)
 - And thus more expensive and time-consuming

Can't the compiler fix it for us?

- Automatic parallelization?
 - at compile time:
 - Requires static analysis not effective for pointer-based languages
 - needs programmer hints / rewriting ...
 - ok for few benign special cases:
 - (Fortran) loop SIMDization,
 - extraction of instruction-level parallelism, ...
 - at run time (e.g. speculative multithreading)
 - High overheads, not scalable
- More about parallelizing compilers in TDDD56 + TDDC78

And worse yet,

- A lot of variations/choices in hardware
 - Many will have performance implications
 - No standard parallel programming model
 - portability issue
- Understanding the hardware will make it easier to make programs get high performance
 - Performance-aware programming gets more important also for single-threaded code
 - Adaptation leads to portability issue again
- How to write future-proof parallel programs?

Bread-and-Butter Programming is Not Sufficient for High-Performance Computing

- Resource-Aware Programming can give orders of magnitude in speedup
- Exploit multiple levels of parallelism and optimizations

Example:

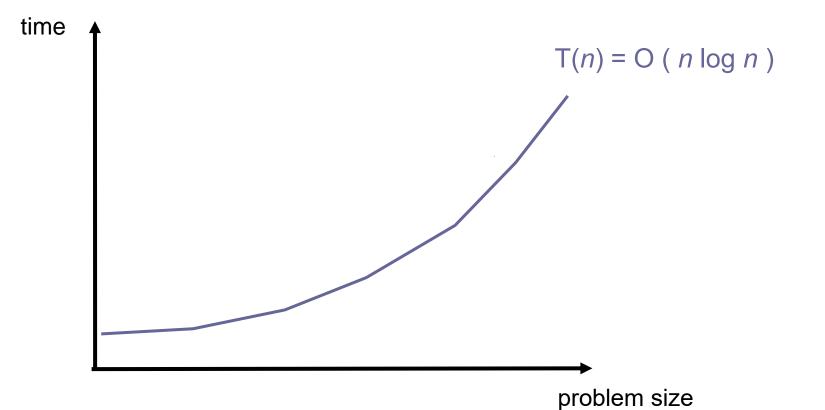
Matrix-Multiply: relative speedup to a Python version (18 core Intel Xeon CPU)

Version	Speedup	Optimization
Python	1	
С	47	Rewrite in a static, compiled ("native") progr. language
C with parallel loops	366	Extract multi-core parallelism (OpenMP)
C with loops and memory optimization	6,727	Loop tiling for data locality
Loop vectorization using Intel AVX SIMD instructions	62,806	Extract SIMD parallelism
	·	

Table source: Turing award lecture by J. Hennessy and D. Patterson, 2018. See also: J. Hennessy, D. Patterson: A New Golden Age for Computer Architecture. *Communications of the ACM* 62(2):48-60, Feb. 2019.

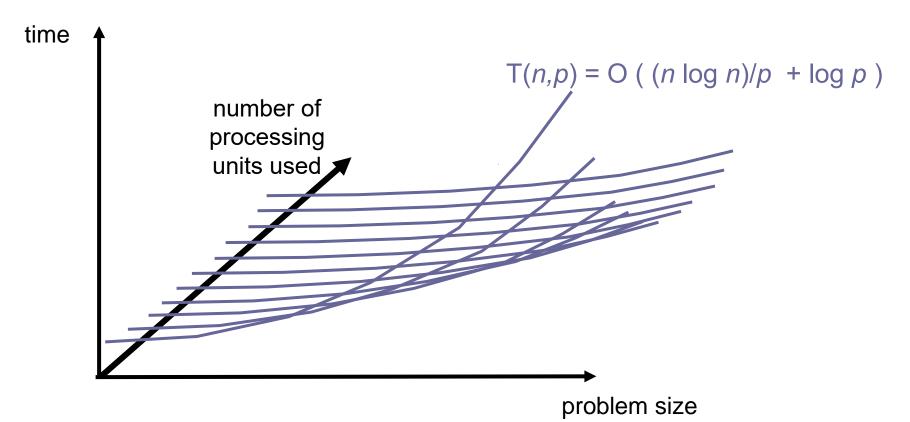
What we had learned so far ...

- Sequential von-Neumann model programming, algorithms, data structures, complexity
 - Sequential / few-threaded languages: C/C++, Java, ... not designed for exploiting massive parallelism



... and what we need now

- Parallel programming!
 - Parallel algorithms and data structures
 - Analysis / cost model: parallel time, work, cost; scalability;
 - Performance-awareness: data locality, load balancing, communication



Questions?