
Parallel Computer

Architecture Concepts

TDDE35 Lecture 1

Christoph Kessler

PELAB / IDA
Linköping university

Sweden

2022

2

Outline

Lecture 1: Parallel Computer Architecture Concepts

▪ Parallel computer, multiprocessor, multicomputer

▪ SIMD vs. MIMD execution

▪ Shared memory vs. Distributed memory architecture

▪ Interconnection networks

▪ Parallel architecture design concepts

▪ Instruction-level parallelism

▪ Hardware multithreading

▪ Multi-core and many-core

▪ Accelerators and heterogeneous systems

▪ Clusters

▪ Implications for programming and algorithm design

3

Traditional Use of Parallel Computing:

Large-Scale HPC Applications

NSC Tetralith

▪ High Performance Computing (HPC)

▪ E.g. climate simulations, particle physics, proteine docking, …

▪ Much computational work
(in FLOPs, floatingpoint operations)

▪ Often, large data sets

▪ Single-CPU computers and even today’s
multicore processors cannot provide such
massive computation power

▪ Aggregate LOTS of computers → Clusters

▪ Need scalable parallel algorithms

▪ Need exploit multiple levels of parallelism

▪ Cost of communication, memory access

4

High Performance Computing

Application Areas (Selection)

▪ Computational Fluid Dynamics

▪ Weather Forecasting and Climate Simulation

▪ Aerodynamics / Air Flow Simulations and Optimization

▪ Structural Engineering

▪ Fuel-Efficient Aircraft Design

▪ Molecular Modelling

▪ Material Science

▪ Computational Chemistry

▪ Battery Simulation and Optimization

▪ Galaxy Simulations

▪ Earthquake Engineering, Oil Reservoir Simulation

▪ Flood Prediction

▪ Bioinformatics (DNA Pattern Matching, Proteine Docking)

▪ Fluid / Structural Interaction

▪ Blood Flow Simulation

▪ fRMI Image Analysis

▪ ...

www.e-science.se

5

Example: Weather Forecast

cell

• Air pressure

• Temperature

• Humidity

• Sun radiation

• Wind direction

• Wind velocity

• …

(very simplified…)

• 3D Space discretization (cells)

• Time discretization (steps)

• Start from current observations

(sent from weather stations etc.)

• Simulation step by evaluating

weather model equations

E.g., cell size 1km3 and

10min time discretization

→ 10-day simulation: 1015 FLOPs

SMHI: 4 forecasts per day,

50 variants (simulations) per forecast

https://www.smhi.se/kunskapsbanken/meteorologi/sa-gor-smhi-en-vaderprognos-1.4662

6

Another Classical Use of Parallel Computing:

Parallel Embedded Computing

NSC Tetralith

▪ High-performance embedded computing

▪ E.g. on-board realtime image/video processing, gaming, …

▪ Much computational work
(often fixed point operations)

▪ Often, in energy-constrained mobile devices

▪ Sequential programs on single-core computers
cannot provide sufficient computation power
at a reasonable power budget

▪ Use many small cores at low frequency

▪ Need scalable parallel algorithms

▪ Cost of communication, memory access

▪ Energy cost (Power x Time)

7

More Recent Use of Parallel Computing:

Big-Data Analytics Applications

▪ Big Data Analytics

▪ Data access intensive (disk I/O, memory accesses)

▪ Typically, very large data sets (GB … TB … PB … EB …)

▪ Also some computational work for combining/aggregating data

▪ E.g. data center applications, business analytics, click stream
analysis, scientific data analysis, machine learning, …

▪ Soft real-time requirements on interactive querys

▪ Single-CPU and multicore processors cannot
provide such massive computation power
and I/O bandwidth+capacity

▪ Aggregate LOTS of computers → Clusters

▪ Need scalable parallel algorithms

▪ Need to exploit multiple levels of parallelism

▪ Fault tolerance
NSC Tetralith

8

HPC vs Big-Data Computing

▪ Both need parallel computing

▪ Same kind of hardware – Clusters of (multicore) servers

▪ Same OS family (Linux)

▪ Different programming models, languages, and tools

HW: Cluster

OS: Linux

Par. programming models:

MPI, OpenMP, …

HW: Cluster

OS: Linux

Par. programming models:

MapReduce, Spark, …

HPC prog. languages:

Fortran, C/C++ (Python)
Big-Data prog. languages:

Java, Scala, Python, …

→ Let us start with the common basis: Parallel computer architecture

Big-data storage/access:

HDFS, …

Scientific computing

libraries: BLAS, …

HPC application Big-Data application

9

Parallel Computer

10

Parallel Computer Architecture Concepts

Classification of parallel computer architectures:

▪ by control structure

▪ by memory organization

▪ in particular, Distributed memory vs. Shared memory

▪ by interconnection network topology

11

Classification by Control Structure

…

vop

op op op op
1 2 3 4

op

12

Classification by Memory Organization

Most common today in HPC and Data centers:

Hybrid Memory System
• Cluster (distributed memory)

of hundreds, thousands of

shared-memory servers

each containing one or several multi-core CPUs

NSC Triolith

e.g. (traditional) HPC cluster e.g. multiprocessor (SMP) or computer

with a standard multicore CPU

NSC Tetralith

(DMS) (SMS)

13

Hybrid (Distributed + Shared) Memory

M M

SC Tetralith

14

Interconnection Networks (1)

▪ Network

= physical interconnection medium (wires, switches)

+ communication protocol

(a) connecting cluster nodes with each other (for DMS)

(b) connecting processors with memory modules (for SMS)

Classification

▪ Direct / static interconnection networks

▪ connecting nodes directly to each other

▪ Hardware routers (communication coprocessors)

can be used to offload processors from most communication work

▪ Switched / dynamic interconnection networks

P R

15

Interconnection Networks (2):

Simple Topologies P

P

P
P

P

Pfully connected

16

Interconnection Networks (3):

Fat-Tree Network

▪ Tree network extended for higher bandwidth (more switches,

more links) closer to the root

▪ avoids bandwidth bottleneck

▪ Example: Infiniband network

(www.mellanox.com)

17

More about Interconnection Networks

▪ Hypercube, Crossbar, Butterfly, Hybrid networks… → TDDC78

▪ Switching and routing algorithms

▪ Discussion of interconnection network properties

▪ Cost (#switches, #lines)

▪ Scalability

(asymptotically, cost grows not much faster than #nodes)

▪ Node degree

▪ Longest path (→ latency)

▪ Accumulated bandwidth

▪ Fault tolerance (worst-case impact of node or switch failure)

▪ …

18

Instruction Level Parallelism (1):

Pipelined Execution Units

19

SIMD computing

with Pipelined Vector Units e.g., vector supercomputers

Cray (1970s, 1980s), Fujitsu, …

20

Instruction-Level Parallelism (2):

VLIW and Superscalar

▪ Multiple functional units in parallel

▪ 2 main paradigms:

▪ VLIW (very large instruction word) architecture ^

▪ Parallelism is explicit, progr./compiler-managed (hard)

▪ Superscalar architecture →

▪ Sequential instruction stream

▪ Hardware-managed dispatch

▪ power + area overhead

▪ ILP in applications is limited

▪ typ. < 3...4 instructions can be issued simultaneously

▪ Due to control and data dependences in applications

▪ Solution: Multithread the application and the processor

21

Hardware Multithreading

PP P P

E.g.,

data

dependence

22

SIMD Instructions

▪ “Single Instruction stream,
Multiple Data streams”

▪ single thread of control flow

▪ restricted form of data parallelism

▪ apply the same primitive operation
(a single instruction) in parallel to
multiple data elements stored contiguously

▪ SIMD units use long “vector registers”

▪ each holding multiple data elements

▪ Common today

▪ MMX, SSE, SSE2, SSE3,…

▪ Altivec, VMX, SPU, …

▪ Performance boost for operations on shorter data types

▪ Area- and energy-efficient

▪ Code to be rewritten (SIMDized) by programmer or compiler

▪ Does not help (much) for memory bandwidth

SIMD unitop

”vector register”

23

The Memory Wall

▪ Performance gap CPU – Memory

▪ Memory hierarchy

▪ Increasing cache sizes shows diminishing returns

▪ Costs power and chip area

▪ GPUs spend the area instead on many simple cores with little memory

▪ Relies on good data locality in the application

▪ What if there is no / little data locality?

▪ Irregular applications,
e.g. sorting, searching, optimization...

▪ Solution: Spread out / overlap memory access delay

▪ Programmer/Compiler: Prefetching, on-chip pipelining,
SW-managed on-chip buffers

▪ Generally: Hardware multithreading, again!

24

Moore’s Law (since 1965)

Exponential increase in transistor density

Data from Kunle Olukotun, Lance Hammond, Herb Sutter,

Burton Smith, Chris Batten, and Krste Asanoviç

25

The Power Issue

▪ Power = Static (leakage) power + Dynamic (switching) power

▪ Dynamic power ~ Voltage2 * Clock frequency

where Clock frequency approx. ~ voltage

→ Dynamic power ~ Frequency3

▪ Total power ~ #processors

26

Moore’s Law vs. Clock Frequency

• #Transistors / mm2 still

growing exponentially

according to Moore’s Law

• Clock speed flattening out

2003

~3GHz

More transistors + Limited frequency

 More cores

27

Solution for CPU Design:

Multicore + Multithreading

▪ Single-thread performance does not improve any more
since ca. 2003

▪ ILP wall

▪ Memory wall

▪ Power wall (end of “Dennard Scaling”)

▪ but thanks to Moore’s Law continuing,
we could still put more cores on a chip

▪ And hardware-multithread the cores
to hide (some) memory latency

▪ All major chip manufacturers produce multicore CPUs today

28

Main features of a multicore system

▪ A parallel computer

▪ There are multiple computational cores on the same CPU chip.

▪ Homogeneous multicore (same core type)

▪ Heterogeneous multicore (different core types)

▪ The cores might have (small) private on-chip memory modules

and/or access to on-chip memory shared by several cores.

▪ The cores have access to a common off-chip main memory

▪ There is a way by which these cores communicate with each

other and/or with the environment.

29

Standard CPU Multicore Designs

▪ Standard desktop/server CPUs have a few ... up to ~32 cores

with shared off-chip main memory

▪ On-chip cache (typ., 3 levels)

▪ L1-cache mostly core-private

▪ L2-cache often shared by

groups of cores, L3 often by all

▪ Memory access interface shared by all or groups of cores

▪ Caching → multiple copies of the same data item

▪ Writing to one copy (only) causes inconsistency

▪ Shared memory coherence mechanism to enforce automatic

updating or invalidation of all copies around

→ More about shared-memory architecture, caches, data locality,

consistency issues and coherence protocols in TDDC78/TDDD56

core core corecore

L1$ L1$ L1$ L1$

L2$ L2$

L3 /

Interconnect / Memory interface

main memory (DRAM)

30

Some early dual-core CPUs (2004/2005)

P0 P1

L1$ D1$ L1$ D1$

L2$

Memory Ctrl

Main memory

L2$

AMD Opteron

Dualcore (2005)

P0 P1

L1$ D1$ L1$

L2$

Memory Ctrl

IBM Power5

(2004)

Main memory

P0 P1

L1$ D1$ L1$ D1$

L2$

Memory Ctrl

Intel Xeon

Dualcore(2005)

Main memory

SMT

D1$

$ = ”cache”

L1$ = ”level-1 instruction cache”

D1$ = ”level-1 data cache”

L2$ = ”level-2 cache” (uniform)

31

SUN/Oracle SPARC T Niagara (8 cores)

P6 P7

L1$ D1$ L1$ D1$

L2$

Memory Ctrl

Niagara T1 (2005):

8 cores, 32 HW threads

Main memory

P4 P5

L1$ D1$ L1$ D1$

P2 P3

L1$ D1$ L1$ D1$

P0 P1

L1$ D1$ L1$ D1$

Memory Ctrl Memory Ctrl Memory Ctrl

Main memory Main memory Main memory

Sun UltraSPARC ”Niagara”

Niagara T1 (2005):

8 cores, 32 HW threads

Niagara T2 (2008):

8 cores, 64 HW threads

Niagara T3 (2010):

16 cores, 128 HW threads

T5 (2012):

16 cores, 128 HW threads

32

SUN / Oracle SPARC-T5 (2012)

28nm process, 16 cores x 8 HW threads, L3 cache on-chip,

On-die accelerators for common encryption algorithms

33

Scaling Up: Network-On-Chip

▪ Cache-coherent shared memory (hardware-controlled) –
does not scale well to many cores

▪ power- and area-hungry

▪ signal latency across whole chip

▪ not well predictable access times

▪ Idea: NCC-NUMA – non-cache-coherent, non-uniform memory
access

▪ Physically distributed on-chip [cache] memory,

▪ on-chip network, connecting PEs or coherent ”tiles” of PEs

▪ global shared address space,

▪ but software responsible
for maintaining coherence

▪ Examples:

▪ STI Cell/B.E.,

▪ Tilera TILE64,

▪ Intel SCC, Kalray MPPA

34

Example: Cell/B.E. (IBM/Sony/Toshiba 2006)

▪ An on-chip network (four parallel unidirectional rings)

interconnect the master core, the slave cores and the main

memory interface

▪ LS = local on-chip memory, PPE = master, SPE = slave

Heterogeneous Multicore!

35

Towards Many-Core CPUs...

▪ For low-power, throughput-oriented computing

▪ Many (today: >100) but small (energy-efficient) CPU cores on

the chip

▪ No longer fully cache coherent

over the entire chip

▪ MPI-like message passing

over 2D mesh network on chip

Source: Intel

36

▪ Tilera TILE64 (2007): 64 cores, 8x8 2D-mesh on-chip network

Towards Many-Core Architectures

1 tile: VLIW-processor

+ cache + router

P C

R

(Image simplified)

Mem-controller

I/O I/O

37

Clustered Many-core CPU:

Kalray MPPA-256

▪ 16 tiles

with 16 VLIW compute cores each

plus 1 control core per tile

▪ Message passing network on chip

▪ Virtually unlimited array extension

by clustering several chips

▪ First version ca. 2012

▪ 28 nm CMOS technology

▪ Low power dissipation, typ. 5 W Image source:

Kalray

38

Intel Xeon Phi

▪ First generation (late 2012):

Up to 61 cores, 244 HW threads, 1.2 Tflops peak performance

▪ Simpler x86 (Pentium) cores (x 4 HW threads),

with 512 bit wide SIMD vector registers (AVX-512)

▪ Could also be used as a coprocessor, instead of a GPU

▪ Last version (2016): x200 ”Knight’s Landing”

(up to 72 cores / 288 HW threads), no longer as coprocessor

39

”General-purpose” GPUs

• Main GPU providers for laptop/desktop
Nvidia, AMD(ATI), Intel

• Example:
NVIDIA’s 10-series GPU (Tesla, 2008)
has 240 cores

• Each core has a
• Floating point / integer unit

• Logic unit

• Move, compare unit

• Branch unit

• Cores managed by thread manager
• Thread manager can spawn

and manage 30,000+ threads

• Zero overhead thread switching

Source: NVidia

Nvidia Tesla C1060:

933 GFlops

(Images removed)

40

Nvidia Fermi (2010): 512 cores
1 ”shared-memory

multiprocessor” (SM)1 Fermi C2050 GPU

SM

L2

I-cache

Scheduler

Dispatch

Register file

32 Streaming

processors

(cores)

Load/Store units

Special function units

64K configurable L1cache/

shared memory

1 Streaming

Processor

(SP)

FPU IntU

41

GPU Architecture Paradigm

▪ Optimized for high throughput

▪ In theory, ~10x to ~100x higher throughput than CPU is

possible

▪ Massive hardware-multithreading hides memory access latency

▪ Massive parallelism

▪ GPUs are good at data-parallel computations

▪ multiple threads executing the same instruction on different

data, preferably located adjacently in memory

42

The future will be heterogeneous!

Need 2 kinds of cores – often on same chip:

▪ For non-parallelizable code:
Parallelism only from running several serial applications
simultaneously on different cores
(e.g. on desktop: word processor, email, virus scanner, …

… not much more)

→ Few (ca. 4-8) ”fat” cores – designed for low latency
(power-hungry, area-costly,
large caches, out-of-order issue / speculation)
for high single-thread performance

▪ For well-parallelizable code:
→ hundreds of simple cores –

designed for high throughput
at low power consumption

(power + area efficient)
(GPU-/SCC-like)

43

Heterogeneous / Hybrid Multi-/Manycore

Key concept: Master-worker parallelism, offloading

▪ General-purpose CPU (master) processor controls execution

of worker processors by submitting tasks to them and

transfering operand data to the workers’ local memory

→Master offloads computation to the slaves

▪ Workers often optimized for heavy throughput computing

▪ Master could do something else while waiting for the result,

or switch to a power-saving mode

▪ Master and worker cores might reside

on the same chip (e.g., Cell/B.E.)

or on different chips (e.g., most GPU-based systems today)

▪ Workers might have access to off-chip main memory (e.g.,

Cell) or not (e.g., today’s GPUs)

44

Heterogeneous / Hybrid Multi-/Manycore Systems

▪ Cell/B.E.

▪ GPU-based system:

CPU

GPU

Offload

heavy

computation

Data

transfer

Device

memory

Main

memory

45

Multi-GPU Systems

▪ Connect one or few general-purpose (CPU) multicore

processors with shared off-chip memory to several GPUs

▪ Increasingly popular in high-performance computing, DNN

▪ Cost and (quite) energy effective if offloaded computation

fits GPU architecture well

Main Memory

(DRAM)

46

Reconfigurable Computing Units

▪ FPGA – Field Programmable Gate Array

"Altera StratixIVGX FPGA" by Altera Corp.
Licensed under CC BY 3.0 via Wikimedia Commons

47

Example: Beowulf-class PC Clusters

with off-the-shelf CPUs

(Xeon, Opteron, …)

48

Example: Tetralith (NSC, 2018/2019)

• Each Tetralith compute node has

2 Intel Xeon Gold 6130 CPUs (2.1 GHz)

each with 16 cores (32 hardware threads)

• 1832 "thin" nodes with 96 GiB of primary

memory (RAM)

• and 60 "fat" nodes with 384 GiB.

→ 1892 nodes, 60544 cores in total

All nodes are interconnected with a 100 Gbps

Intel Omni-Path network (Fat-Tree topology)

49

The Challenge

▪ Today, basically all computers are parallel computers!

▪ Single-thread performance stagnating

▪ Dozens of cores and hundreds of HW threads available per server

▪ May even be heterogeneous (core types, accelerators)

▪ Data locality matters

▪ Large clusters for HPC and Data centers, require message passing

▪ Utilizing more than one CPU core requires thread-level parallelism

▪ One of the biggest software challenges: Exploiting parallelism

▪ Need LOTS of (mostly, independent) tasks to keep cores/HW threads
busy and overlap waiting times (cache misses, I/O accesses)

▪ All application areas, not only traditional HPC

▪ General-purpose, data mining, graphics, games, embedded, DSP, …

▪ Affects HW/SW system architecture, programming languages,
algorithms, data structures …

▪ Parallel programming is more error-prone
(deadlocks, races, further sources of inefficiencies)

▪ And thus more expensive and time-consuming

50

Can’t the compiler fix it for us?

▪ Automatic parallelization?

▪ at compile time:

▪ Requires static analysis – not effective for pointer-based

languages

▪ needs programmer hints / rewriting ...

▪ ok for few benign special cases:

▪ (Fortran) loop SIMDization,

▪ extraction of instruction-level parallelism, …

▪ at run time (e.g. speculative multithreading)

▪ High overheads, not scalable

▪ More about parallelizing compilers in TDDD56 + TDDC78

51

And worse yet,

▪ A lot of variations/choices in hardware

▪ Many will have performance implications

▪ No standard parallel programming model

▪ portability issue

▪ Understanding the hardware will make it easier to make

programs get high performance

▪ Performance-aware programming gets more important

also for single-threaded code

▪ Adaptation leads to portability issue again

▪ How to write future-proof parallel programs?

52

Bread-and-Butter Programming is Not

Sufficient for High-Performance Computing

▪ Resource-Aware Programming can give orders of magnitude in speedup

▪ Exploit multiple levels of parallelism and optimizations

Table source: Turing award lecture by J. Hennessy and D. Patterson, 2018. See also:

J. Hennessy, D. Patterson: A New Golden Age for Computer Architecture.

Communications of the ACM 62(2):48-60, Feb. 2019.

Version Speedup Optimization

Python 1

C 47 Rewrite in a static, compiled

(“native”) progr. language

C with parallel loops 366 Extract multi-core parallelism

(OpenMP)

C with loops and memory optimization 6,727 Loop tiling for data locality

Loop vectorization using Intel AVX

SIMD instructions

62,806 Extract SIMD parallelism

Example:

Matrix-Multiply: relative speedup to a Python version (18 core Intel Xeon CPU)

53

What we had learned so far …

▪ Sequential von-Neumann model

programming, algorithms, data structures, complexity

▪ Sequential / few-threaded languages: C/C++, Java, ...

not designed for exploiting massive parallelism

time

problem size

T(n) = O (n log n)

54

… and what we need now

▪ Parallel programming!

▪ Parallel algorithms and data structures

▪ Analysis / cost model: parallel time, work, cost; scalability;

▪ Performance-awareness: data locality, load balancing, communication

time

problem size

number of

processing

units used

T(n,p) = O ((n log n)/p + log p)

Questions?

