
Example topic 1

 Peer-to-peer

1

P2P file sharing
Notes based on notes by
K.W. Ross, J. Kurose, D.
Rubenstein, and others

P2P: centralized directory

Original “Napster” design

1) When peer connects, it
informs central server:
• IP address

• content

2) Alice queries for “Hey Jude”

3) Alice requests file from Bob

centralized
directory server

peers

Alice

Bob

1

1

1

12

3

4

Napster

File list
and IP
address is
uploaded

1.
napster.com

centralized directory

5

Napster
napster.com

centralized directory

Query
and
results

User
requests
search at
server.

2.

6

Napster

pings
pings

User pings
hosts that
apparently
have data.

Looks for
best transfer
rate.

3.

napster.com

centralized directory

7

Napster
napster.com

centralized directory

Retrieves
file

User chooses
server

4.

Napster’s

centralized

server farm had

difficult time

keeping

up with traffic

P2P: problems with centralized directory

▪ single point of failure

▪ performance bottleneck

▪ copyright infringement:
“target” of lawsuit is
obvious

file transfer is
decentralized, but
locating content is
highly centralized

9

Unstructured P2P: Gnutella

 Focus: decentralized method searching for files
 central directory server no longer the bottleneck

 more difficult to “pull plug”

 Each application instance serves to:
 store selected files

 route queries from and to its neighboring peers

 respond to queries if file stored locally

 serve files

Gnutella: protocol

Query

QueryHit

Query

QueryHit

File transfer:
HTTP▪ Query message sent over existing TCP connections

▪ Peers forward Query message

▪ QueryHit sent over reverse path

Scalability:
limited scope
flooding

11

Distributed Search/Flooding

12

Distributed Search/Flooding

Hierarchical Overlay

 Between centralized index,
query flooding approaches

 Each peer is either a group
leader or assigned to a
group leader
 TCP connection between peer

and its group leader

 TCP connections between
some pairs of group leaders

 Group leader tracks
content in its children

ordinary peer

group-leader peer

neighoring relationships

in overlay network

15

Example: KaZaA Architecture (2)

Nodes that have more connection
bandwidth and are more available are
designated as “supernodes”

 Each supernode acts as a mini-Napster
hub, tracking the content and IP
addresses of its descendants

 Guess@peak: supernodes had (on average)
200-500 descendants; roughly 10,000
supernodes

Also a dedicated user authentication
server and supernode list server

17

Parallel Downloading; Recovery

 If file is found in multiple nodes, user can
select parallel downloading

Most likely HTTP byte-range header used
to request different portions of the file
from different nodes

Automatic recovery when server peer
stops sending file

18

KaZaA Corporate Structure

 Software developed
by FastTrack in
Amsterdam

 FastTrack also deploys
KaZaA service

 FastTrack licenses
software to Music City
(Morpheus) and
Grokster

 Later, FastTrack
terminates license,
leaves only KaZaA with
killer service

 Summer 2001, Sharman
networks, founded in
Vanuatu (small island in
Pacific), acquires
FastTrack
 Board of directors,

investors: secret

 Employees spread
around, hard to locate

 Code in Estonia

19

Lessons learned from KaZaA

 Exploit heterogeneity

 Provide automatic
recovery for
interrupted downloads

 Powerful, intuitive
user interface

Copyright infringement

 International cat-and-
mouse game

 With distributed,
serverless
architecture, can the
plug be pulled?

 Prosecute users?

 Launch DoS attack on
supernodes?

 Pollute?

KaZaA provides powerful

file search and transfer

service without server

infrastructure

P2P Case study: Skype

 Inherently P2P: pairs
of users communicate.

 Proprietary
application-layer
protocol (inferred via
reverse engineering)

 Hierarchical overlay
with Supernodes (SNs)

 Index maps usernames
to IP addresses;
distributed over SNs

Skype clients (SC)

Supernode
(SN)

Skype
login server

Peers as relays

 Problem when both
Alice and Bob are
behind “NATs”.
 NAT prevents an outside

peer from initiating a call
to insider peer

Peers as relays

 Problem when both
Alice and Bob are
behind “NATs”.
 NAT prevents an outside

peer from initiating a call
to insider peer

 Solution:
 Using Alice’s and Bob’s

SNs, Relay is chosen
 Each peer initiates

session with relay.
 Peers can now

communicate through
NATs via relay

Structured p2p systems

23

Distributed Hash Table (DHT)

DHT = distributed P2P database

Database has (key, value) pairs;
 key: ss number; value: human name

 key: content type; value: IP address

 Peers query DB with key
 DB returns values that match the key

 Peers can also insert (key, value) pairs
24

Key Value

00

01

10

11

DHT Identifiers

 Assign integer identifier to each peer in range [0,2n-1]

Each identifier can be represented by n bits.

 Require each key to be an integer in same range.

 To get integer keys, hash original key.

E.g., key = h(“Led Zeppelin IV”)

This is why they call it a distributed “hash” table

25

Key Value

000000

000001

000002

…

ffffff

How to assign keys to peers?

 Central issue:
 Assigning (key, value) pairs to peers.

 Rule: Assign key to the peer that has the
closest ID.

 Convention in lecture: closest is the closest
successor of the key.

 Ex: n=4; peers: 1,3,4,5,8,10,12,14;
 key = 13, then successor peer = 14

 key = 15, then successor peer = 1

26

1

3

4

5

8
10

12

15

Circular DHT (1)

 Each peer only aware of immediate successor
and predecessor.

 “Overlay network”
27

Circle DHT (2)

0001

0011

0100

0101

1000
1010

1100

1111

Who’s
responsible
for key 1110 ?

I am

O(N) messages
on avg to resolve
query, when there
are N peers

1110

1110

1110

1110

1110

1110

Define closest
as closest
successor

28

Circular DHT with Shortcuts

 Each peer keeps track of IP addresses of
predecessor, successor, short cuts.
 E.g., Example above reduced from 6 to 2 messages.

 Possible to design shortcuts so O(log N) neighbors,
O(log N) messages in query

1

3

4

5

8
10

12

15

Who’s
responsible
for key 1110?

29

30

Example: Chord Routing [see paper]
 A node s’s ith neighbor has the ID that is equal to s+2i

or is the next largest ID (mod ID space), i≥0

 To reach the node handling ID t, send the message to
neighbor #log2(t-s)

 Requirement: each node s must know about the next
node that exists clockwise on the Chord (0th neighbor)

 Set of known neighbors called a finger table

32

33

DHT API

application

DHT substrate
API

application

DHT substrate
API

overlay
network

key
responsible
node

each data item (e.g., file or metadata

pointing to file copies) has a key

34

DHT Layered Architecture

TCP/IP

DHT

Network

storage

Event

notification

Internet

P2P substrate

(self-organizing

overlay network)

P2P application layer?

35

BitTorrent-like systems

 File split into many smaller pieces
 Pieces are downloaded from both seeds and downloaders
 Distribution paths are dynamically determined

 Based on data availability

Arrivals

Departures

Downloader

Downloader

Downloader

Downloader

Seed

Seed

Download time

Seed residence

time

Torrent
(x downloaders; y seeds)

36

File distribution: BitTorrent

tracker: tracks peers
participating in torrent

torrent: group of
peers exchanging
chunks of a file

obtain list

of peers

trading
chunks

peer

 P2P file distribution

37

Download using BitTorrent
Background: Incentive mechanism
 Establish connections to large set of peers

 At each time, only upload to a small (changing) set of peers

 Rate-based tit-for-tat policy
 Downloaders give upload preference to the downloaders

that provide the highest download rates

Highest download rates

Optimistic unchoke

Pick top four

Pick one at random

38

Download using BitTorrent
Background: Piece selection

 Rarest first piece selection policy
 Achieves high piece diversity

 Request pieces that
 the uploader has;
 the downloader is interested (wants); and
 is the rarest among this set of pieces

Peer 1:

Peer N :

Peer 2:

……

Pieces in neighbor set:

1 2 3 k K

1 2 3 k K

1 2 3 k K

1 2 3 k K

(1) (2) (1) (2) (2) (3) (2)
……

……

……

from

to

39

Tracker-less torrents

 Combine DHTs and BT …

40

trading
chunks

trading
chunks

trading
chunks

Swarm file 1 Swarm file 2 Swarm file M

…

Tracker-less torrents

 Combine DHTs and BT …

41

trading
chunks

trading
chunks

trading
chunks

Swarm file 1 Swarm file 2 Swarm file M

…

Tracker-less torrents

 Combine DHTs and BT …

42

trading
chunks

trading
chunks

trading
chunks

Swarm file 1 Swarm file 2 Swarm file M

…

Tracker-less torrents

 Combine DHTs and BT …

43

trading
chunks

trading
chunks

trading
chunks

Swarm file 1 Swarm file 2 Swarm file M

…

44

Example topic 2

MapReduce

45

Motivation

 Process lots of data
• Google processed about 24 petabytes of data per day in 2009.

A single machine cannot serve all the data
• You need a distributed system to store and process in parallel

46

MapReduce

MapReduce [OSDI’04] provides
 Automatic parallelization, distribution
 I/O scheduling

• Load balancing

• Network and data transfer optimization

 Fault tolerance
• Handling of machine failures

Need more power: Scale out, not up!
• Large number of commodity servers as opposed to

some high-end specialized servers

47

Apache Hadoop:
Open source implementation of MapReduce

MapReduce workflow

49

Worker

Worker

Worker

Worker

Worker

read

local

write

remote

read,
sort

Output
File 0

Output
File 1

write

Split 0

Split 1

Split 2

Input Data Output Data

Map
extract something

you care about from
each record

Reduce
aggregate,
summarize,
filter, or

transform

MapReduce

51

Hadoop
Program

Master

fork fork fork

assign
map

assign
reduce

Worker

Worker

Worker

Worker

Worker

read

local

write

remote

read,
sort

Split 0

Split 1

Split 2

Input Data

Map Reduce

Output
File 0

Output
File 1

write

Output Data

Transfer
peta-
scale
data

through
network

Failure in MapReduce

 Failures are norm in commodity hardware

Worker failure
 Detect failure via periodic heartbeats
 Re-execute in-progress map/reduce tasks

Master failure
 Single point of failure; Resume from Execution Log

Data stored on multiple nodes
 Robust

 Google’s experience: lost 1600 of 1800 machines
once!, but finished fine

54

55

http://kickstarthadoop.blogspot.ca/2011/04/word-count-hadoop-map-reduce-
example.html

Example: Word Count

MapReduce: map, shuffle, reduce

Map: Each worker applies the map function to local data + writes the output to a temporary
storage. Master ensures only one copy of the redundant input data is processed.

Shuffle: Workers redistribute data based on the output keys (produced by the map
function) such that all data belonging to one key is located on the same worker node

Reduce: Workers process each group of output data, per key, in parallel.

MapReduce: map, shuffle, reduce

Map: Each worker applies the map function to local data + writes the output to a temporary
storage. Master ensures only one copy of the redundant input data is processed.

Shuffle: Workers redistribute data based on the output keys (produced by the map
function) such that all data belonging to one key is located on the same worker node

Reduce: Workers process each group of output data, per key, in parallel.

Summary

MapReduce
 Programming paradigm for data-intensive computing

 Distributed & parallel execution model

 Simple to program

58

