
Large-scale Distributed Systems and
Networks (TDDE35)

Slides by Niklas Carlsson (including slides
based on slides by Carey Williamson)

2

PERFORMANCE EVALUATION

Often in Computer Science you need to:
 demonstrate that a new concept, technique,

or algorithm is feasible

demonstrate that a new method is better
than an existing method

understand the impact of various factors
and parameters on the performance,
scalability, or robustness of a system

3

PERFORMANCE EVALUATION

 There is a whole field of computer science called
computer systems performance evaluation that is
devoted to exactly this

 One classic book is Raj Jain’s “The Art of Computer
Systems Performance Analysis”, Wiley & Sons, 1991

 Much of what is outlined in this presentation is
described in more detail in [Jain 1991]

 The ACM SIG for Performance is ACM
SIGMETRICS (who also have a yearly flag-ship
conference)

4

PERF EVAL: THE BASICS

 There are three main methods used in the design
of performance evaluation studies:

 Analytic approaches
 the use of mathematics, Markov chains, queueing theory,

Petri Nets, abstract models…

 Simulation approaches
 design and use of computer simulations and simplified

models to assess performance

 Experimental approaches
 measurement and use of a real system

5

6

Analytical Example: Queueing Theory

 Queueing theory is a mathematical technique that
specializes in the analysis of queues; e.g.,
 customer arrivals at a bank,

 jobs arriving at CPU,

 I/O requests arriving at a disk subsystem,

 lineup at the cafeteria

 etc. …

7

Queue-based Models

Queueing model represents:
Arrival of jobs (customers) into system

Service time requirements of jobs

Waiting of jobs for service

Departures of jobs from the system

Typical diagram:

Customer

Arrivals Departures

Buffer Server

8

Why Queue-based Models?

 In many cases, the use of a queuing model provides
a quantitative way to assess system performance
 Throughput (e.g., job completions per second)

 Response time (e.g., Web page download time)

 Expected waiting time for service

 Number of buffers required to control loss

 Reveals key system insights (properties)

 Often with efficient, closed-form calculation

9

Caveats and Assumptions

 In many cases, using a queuing model has the
following implicit underlying assumptions:
 Poisson arrival process

1. Exponential interarrival times

2. Independent interarrival times

 Exponential service time distribution

 Single server

 Infinite capacity queue

 First-Come-First-Serve (FCFS) discipline (also known as
FIFO: First-In-First-Out)

 Note: important role of memoryless property!

10

Advanced Queueing Models

There is TONS of published work on
variations of the basic model:
Correlated arrival processes

General (G) service time distributions

Multiple servers

Finite capacity systems

Other scheduling disciplines (non-FIFO)

We will start with the basics!

11

Queue Notation

Queues are concisely described using
the Kendall notation, which specifies:
Arrival process for jobs {M, D, G, …}

Service time distribution {M, D, G, …}

Number of servers {1, n}

Storage capacity (buffers) {B, infinite}

Service discipline {FIFO, PS, SRPT, …}

Examples: M/M/1, M/G/1, M/M/c/c

12

The M/M/1 Queue

Assumes:
Poisson arrival process, exponential service

times, single server, FCFS service discipline,
infinite capacity for storage, with no loss

Notation: M/M/1
Markovian arrival process (Poisson)

Markovian service times (exponential)

Single server (FCFS, infinite capacity)

13

The M/M/1 Queue (cont’d)

 Arrival rate: λ (e.g., customers/sec)
 Inter-arrival times are exponentially distributed

(and independent) with mean 1 / λ

 Service rate: μ (e.g., customers/sec)
 Service times are exponentially distributed

(and independent) with mean 1 / μ

 System load: ρ = λ / μ
0 ≤ ρ ≤ 1 (also known as utilization factor)

 Stability criterion: ρ < 1 (single server systems)

14

Queue Performance Metrics

N: Avg number of customers in system as
a whole, including any in service

Q: Avg number of customers in the queue
(only), excluding any in service

W: Avg waiting time in queue (only)
T: Avg time spent in system as a whole,

including wait time plus service time
Note: Little’s Law: N =  T (on average)

Arrival rate 
Departures

N = T

15

M/M/1 Queue Example

0 1 2 n-1 n n+1… …

Consider system state (# of customers in system)
• If arrival, then move up one state …
• If departure, then move down one state …

16

M/M/1 Queue Example

0 1 2 n-1 n n+1… …

17

M/M/1 Queue Example

0 1 2 n-1 n n+1… …

18

M/M/1 Queue Example

0 1 2 n-1 n n+1… …

19

M/M/1 Queue Example

0 1 2 n-1 n n+1… …

20

M/M/1 Queue Example

0 1 2 n-1 n n+1… …

21

M/M/1 Queue Example

0 1 2 n-1 n n+1… …

22

M/M/1 Queue Example

0 1 2 n-1 n n+1… …

23

M/M/1 Queue Example

0 1 2 n-1 n n+1… …

24

M/M/1 Queue Example

0 1 2 n-1 n n+1… …

25

M/M/1 Queue Example

0 1 2 n-1 n n+1… …

26

M/M/1 Queue Example

0 1 2 n-1 n n+1… …

27

M/M/1 Queue Example

0 1 2 n-1 n n+1… …

28

M/M/1 Queue Example

0 1 2 n-1 n n+1… …

29

M/M/1 Queue Example

0 1 2 n-1 n n+1… …

30

M/M/1 Queue Example

0 1 2 n-1 n n+1… …

31

M/M/1 Queue Example

0 1 2 n-1 n n+1… …

32

M/M/1 Queue Example

0 1 2 n-1 n n+1… …

33

M/M/1 Queue Example

0 1 2 n-1 n n+1… …

34

M/M/1 Queue Example

0 1 2 n-1 n n+1… …

35

M/M/1 Queue Example

0 1 2 n-1 n n+1… …

36

M/M/1 Queue Example

0 1 2 n-1 n n+1… …

37

M/M/1 Queue Example

0 1 2 n-1 n n+1… …

38

M/M/1 Queue Example

0 1 2 n-1 n n+1… …

39

M/M/1 Queue Example

0 1 2 n-1 n n+1… …

40

M/M/1 Queue Results

Average number of customers in the
system: N = ρ / (1 – ρ)

Variance: Var(N) = ρ / (1 - ρ)2

Waiting time: W = ρ / (μ (1 – ρ))

Time in system: T = 1 / (μ (1 – ρ))

Note: Little’s Law: N = λ T

41

The M/D/1 Queue

Assumes:
Poisson arrival process, deterministic
(constant) service times, single server,
FCFS service discipline, infinite capacity
for storage, no loss

Notation: M/D/1
Markovian arrival process (Poisson)

Deterministic service times (constant)

Single server (FCFS, infinite capacity)

42

M/D/1 Queue Results

Average number of customers:
Q = ρ/(1 – ρ) – ρ2 / (2 (1 - ρ))

Waiting time: W = x ρ / (2 (1 – ρ))
where x is the mean service time

Note that lower variance in service
time means less queueing occurs ☺

E.g., M/M/1 has W = (1/μ) ρ / (1 – ρ)

43

Queueing Theory (cont’d)

 These simple models can be cascaded in series and
in parallel to create arbitrarily large complicated
queueing network models

 Two main types:
 closed queueing network model (finite pop.)

 open queueing network model (infinite pop.)

 Software packages exist for solving these types
of models to determine steady-state performance
(e.g., delay, throughput, util.)

44

45

Simulation Example: TCP Throughput

 Can use an existing simulation tool, or design and
build your own custom simulator

 Example: ns-3 network simulator
 A discrete-event simulator with detailed TCP protocol

models

 Configure network topology and workload

 Run simulation using pseudo-random numbers and produce
statistical output

46

OTHER ISSUES

 Simulation run length
 choosing a long enough run time to get statistically

meaningful results (equilibrium)

 Simulation start-up effects and end effects
 deciding how much to “chop off” at the start and end of

simulations to get proper results

 Replications
 ensure repeatability of results, and gain greater

statistical confidence in the results given

47

48

Experimental Example: Benchmarking

 The design of a performance study requires great
care in experimental design and methodology

 Need to identify
 experimental factors to be tested

 levels (settings) for these factors

 performance metrics to be used

 experimental design to be used

49

FACTORS

 Factors are the main “components” that are varied in
an experiment, in order to understand their impact on
performance
 Examples: request rate, request size, read/write ratio, num

concurrent clients

 Need to choose factors properly, since the number of
factors affects size of study

50

LEVELS

 Levels are the precise settings of the factors that
are to be used in an experiment
 Examples: req size S = 1 KB, 10 KB, 1 MB

 Example: num clients C = 10, 20, 30, 40, 50

 Need to choose levels realistically

 Need to cover useful portion of the design space

51

PERFORMANCE METRICS

 Performance metrics specify what you want to
measure in your performance study
 Examples: response time, throughput, pkt loss

 Must choose your metrics properly and instrument
your experiment accordingly

52

EXPERIMENTAL DESIGN

 Experimental design refers to the organizational
structure of your experiment

 Need to methodically go through factors and
levels to get the full range of experimental results
desired

 There are several “classical” approaches to
experimental design

53

EXAMPLES

 One factor at a time
 vary only one factor through its levels to see what the

impact is on performance

 Two factors at a time
 vary two factors to see not only their individual effects,

but also their interaction effects, if any

 Full factorial
 try every possible combination of factors and levels to

see full range of performance results

54

55

SUMMARY

 Computer systems performance evaluation defines
standard methods for designing and conducting
performance studies

 Great care must be taken in experimental design
and methodology if the experiment is to achieve
its goal, and if results are to be fully understood

 Very many examples of these important
methodologies and their applications …

56

Scalability example: Broadcast protocol

57

58

Streaming Popular Content

 Consider a popular media file
 Playback rate: 1 Mbps

 Duration: 90 minutes

 Request rate: once every minute

How can a video server handle such high loads?
 Approach 1: Start a new “stream” for each request

 Allocate server and disk I/O bandwidth for each
request

 Bandwidth required at server= 1 Mbps x 90

59

Streaming Popular Content using Batching

 Approach 2: Leverage the multipoint delivery (e.g.,
multicast/broadcast) capability of modern networks

 Playback rate = 1 Mbps, duration = 90 minutes

60

Streaming Popular Content using Batching

 Approach 2: Leverage the multipoint delivery (e.g.,
multicast/broadcast) capability of modern networks

 Playback rate = 1 Mbps, duration = 90 minutes

 Consider case of high request rate and D=30min…
 Max. start-up delay = 30 minutes

 Group requests in non-overlapping intervals of 30 min

 Bandwidth required = 3 channels = 3 Mbps

0 30 60 90 120 150 180 210 240

Time (minutes)

Channel 1

Channel 2

Channel 3

61

Streaming Popular Content using Batching

 Approach 2: Leverage the multipoint delivery (e.g.,
multicast/broadcast) capability of modern networks

 Playback rate = 1 Mbps, duration = 90 minutes

 An optimal batching protocol (and analysis)???
 Define protocol

 How to evaluate?
• Analytically?

• Simulations?

• Experiments?

N Carlsson, D. Eager, and M. K. Vernon, Multicast Protocols for Scalable
On-demand Download, Performance Evaluation, 2006.

62

Streaming Popular Content using Batching

 Approach 2: Leverage the multipoint delivery (e.g.,
multicast/broadcast) capability of modern networks

 Playback rate = 1 Mbps, duration = 90 minutes

 An optimal batching protocol (and analysis)???
 Define protocol

 How to evaluate?
• Analytically?

• Simulations?

• Experiments?

N Carlsson, D. Eager, and M. K. Vernon, Multicast Protocols for Scalable
On-demand Download, Performance Evaluation, 2006.

time

F
il
e
 d

at
a

D

63

Streaming Popular Content using Batching

 Approach 2: Leverage the multipoint delivery (e.g.,
multicast/broadcast) capability of modern networks

 Playback rate = 1 Mbps, duration = 90 minutes

 An optimal batching protocol (and analysis)???
 Define protocol

 How to evaluate?
• Analytically?

• Simulations?

• Experiments?

N Carlsson, D. Eager, and M. K. Vernon, Multicast Protocols for Scalable
On-demand Download, Performance Evaluation, 2006.

time

F
il
e
 d

at
a

D D

 Optimal batching protocol
 Max delay = D

 Poisson process
 Inter-arrival times (i) exponentially distributed and (ii)

independent

 Memory less arrival process

64
N Carlsson, D. Eager, and M. K. Vernon, Multicast Protocols for Scalable
On-demand Download, Performance Evaluation, 2006.

time

F
il
e
 d

at
a

D D

L L

 Renewal process
 Identify and analyze “renewal periods” (statistically the same)

 B = L / (D+1/)

 Poisson Arrivals See Time Average (PASTA) property
 A = [D(1+D/2)]/[1+D]

65
N Carlsson, D. Eager, and M. K. Vernon, Multicast Protocols for Scalable
On-demand Download, Performance Evaluation, 2006.

time

F
il
e
 d

at
a

D D

L L

 Little’s law
 # in system = (arrival rate into system) x (average time in system)

 Systems considered where
 System = “waiting queue” (for first bit)

• Average time in system = A; Arrival rate = 

• E[# in system] =  [D(1+D/2)]/[1+D]

 System = “queue or being served” (to get all bits)
• Average time in system A+L/r; Arrival rate = 

• E[#in system] =  [D(1+D/2)]/[1+D] + L/r 66

time

F
il
e
 d

at
a

D D

L L

67

More slides …

68

69

Batching Issues

 Bandwidth increases linearly with decrease in
start-up delays

 Can we reduce or eliminate “start-up” delays?
 Periodic Broadcast Protocols

 Stream Merging Protocols

70

Periodic Broadcast Example

 Partition the media file into 2 segments with
relative sizes {1, 2}. For a 90 min. movie:
 Segment 1 = 30 minutes, Segment 2 = 60 minutes

 Advantage:
 Max. start-up delay = 30 minutes

 Bandwidth required = 2 channels = 2 Mbps

 Disadvantage: Requires increased client capabilities

Time (minutes)

1

2

1 11 1 1

2 2

0 30 60 90 120 150 180

Channel 1

Channel 2

71

Skyscraper Broadcasts (SB)

 Divide the file into K segments of increasing size
 Segment size progression: 1, 2, 2, 5, 5, 12, 12, 25, …

 Multicast each segment on a separate channel at
the playback rate

 Aggregate rate to clients: 2 x playback rate

Channel 1

Channel 2

Channel 3

Channel 4

Channel 5

Channel 6

A B

[Hua & Sheu 1997]

72

Comparing Batching and SB

Server

Bandwidth

Start-up Delay

Batching SB

1 Mbps 90 minutes 90 minutes

2 Mbps 45 minutes 30 minutes

6 Mbps 15 minutes 3 minutes

10 Mbps 9 minutes 30 seconds

 Playback rate = 1 Mbps, duration = 90 minutes

 Limitations of Skyscraper:
 Ad hoc segment size progress

 Does not work for low client data rates

73

Reliable Periodic Broadcasts (RPB)

Optimized PB protocols (no packet loss recovery)

 client fully downloads each segment before playing

 required server bandwidth near minimal

 Segment size progression is not ad hoc

 Works for client data rates < 2 x playback rate

 extend for packet loss recovery

 extend for “bursty” packet loss

 extend for client heterogeneity

[Mahanti et al. 2001, 2003, 2004]

74

Reliable Periodic Broadcasts (RPB)

Optimized PB protocols (no packet loss recovery)

 client fully downloads each segment before playing

 required server bandwidth near minimal

 Segment size progression is not ad hoc

 Works for client data rates < 2 x playback rate

 extend for packet loss recovery

 extend for “bursty” packet loss

 extend for client heterogeneity

[Mahanti et al. 2001, 2003, 2004]

75

Optimized Periodic Broadcasts

 Playback rate assumed equal to 1
 r = segment streaming rate
 s = maximum # streams client listens to concurrently
 b = client data rate = s x r

76

Optimized Periodic Broadcasts

 Playback rate assumed equal to 1
 r = segment streaming rate
 s = maximum # streams client listens to concurrently
 b = client data rate = s x r

Channel 1

Channel 2

Channel 3

Channel 4

Channel 5

Channel 6

77

Optimized Periodic Broadcasts

 Playback rate assumed equal to 1
 r = segment streaming rate = 1
 s = maximum # streams client listens to concurrently = 2
 b = client data rate = s x r = 2

 length of first s segments:

 length of segment k  s:


−

=

+=

1

1

1
11

k

j

jk ll
r

l
r


−

−=

=

1
1

k

skj

jk ll
r

Channel 1

Channel 2

Channel 3

Channel 4

Channel 5

Channel 6

Comparison with Skyscraper

78

79

Immediate service:
Hierarchical Stream Merging

80

D. Eager, M. Vernon, and J. Zahorjan, "Minimizing Bandwidth
Requirements for On-Demand Data Delivery”, IEEE TKDE, 2001.

