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PERFORMANCE EVALUATION

Often in Computer Science you need to:
 demonstrate that a new concept, technique, 

or algorithm is feasible

demonstrate that a new method is better 
than an existing method

understand the impact of various factors 
and parameters on the performance, 
scalability, or robustness of a system
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PERFORMANCE EVALUATION

 There is a whole field of computer science called 
computer systems performance evaluation that is 
devoted to exactly this

 One classic book is Raj Jain’s “The Art of Computer 
Systems Performance Analysis”, Wiley & Sons, 1991 

 Much of what is outlined in this presentation is 
described in more detail in [Jain 1991]

 The ACM SIG for Performance is ACM 
SIGMETRICS (who also have a yearly flag-ship 
conference)
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PERF EVAL: THE BASICS

 There are three main methods used in the design 
of performance evaluation studies:

 Analytic approaches
 the use of mathematics, Markov chains, queueing theory, 

Petri Nets, abstract models…

 Simulation approaches
 design and use of computer simulations and simplified 

models to assess performance

 Experimental approaches
 measurement and use of a real system
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Analytical Example: Queueing Theory

 Queueing theory is a mathematical technique that 
specializes in the analysis of queues; e.g., 
 customer arrivals at a bank, 

 jobs arriving at CPU, 

 I/O requests arriving at a disk subsystem, 

 lineup at the cafeteria

 etc. …
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Queue-based Models

Queueing model represents:
Arrival of jobs (customers) into system

Service time requirements of jobs

Waiting of jobs for service

Departures of jobs from the system

Typical diagram:

Customer

Arrivals Departures

Buffer Server
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Why Queue-based Models?

 In many cases, the use of a queuing model provides 
a quantitative way to assess system performance
 Throughput (e.g., job completions per second)

 Response time (e.g., Web page download time)

 Expected waiting time for service

 Number of buffers required to control loss

 Reveals key system insights (properties)

 Often with efficient, closed-form calculation
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Caveats and Assumptions

 In many cases, using a queuing model has the 
following implicit underlying assumptions:
 Poisson arrival process 

1. Exponential interarrival times

2. Independent interarrival times

 Exponential service time distribution

 Single server

 Infinite capacity queue

 First-Come-First-Serve (FCFS) discipline (also known as 
FIFO: First-In-First-Out)

 Note: important role of memoryless property!
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Advanced Queueing Models

There is TONS of published work on 
variations of the basic model:
Correlated arrival processes

General (G) service time distributions

Multiple servers

Finite capacity systems

Other scheduling disciplines (non-FIFO)

We will start with the basics!
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Queue Notation

Queues are concisely described using 
the Kendall notation, which specifies:
Arrival process for jobs {M, D, G, …}

Service time distribution {M, D, G, …}

Number of servers {1, n}

Storage capacity (buffers) {B, infinite}

Service discipline {FIFO, PS, SRPT, …}

Examples: M/M/1, M/G/1, M/M/c/c
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The M/M/1 Queue

Assumes: 
Poisson arrival process, exponential service 

times, single server, FCFS service discipline, 
infinite capacity for storage, with no loss

Notation:    M/M/1
Markovian arrival process (Poisson)

Markovian service times (exponential)

Single server  (FCFS, infinite capacity)
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The M/M/1 Queue (cont’d)

 Arrival rate: λ (e.g., customers/sec)
 Inter-arrival times are exponentially distributed           

(and independent) with mean 1 / λ

 Service rate: μ (e.g., customers/sec)
 Service times are exponentially distributed                  

(and independent) with mean 1 / μ

 System load: ρ = λ / μ
0 ≤ ρ ≤ 1    (also known as utilization factor)

 Stability criterion: ρ < 1    (single server systems)
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Queue Performance Metrics

N: Avg number of customers in system as 
a whole, including any in service

Q: Avg number of customers in the queue 
(only), excluding any in service

W: Avg waiting time in queue (only)
T: Avg time spent in system as a whole, 

including wait time plus service time
Note: Little’s Law: N =  T (on average)

Arrival rate 
Departures

N = T
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M/M/1 Queue Example

0 1 2 n-1 n n+1… …

Consider system state ( # of customers in system)
• If arrival, then move up one state …
• If departure, then move down one state …
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M/M/1 Queue Results

Average number of customers in the 
system:  N =  ρ / (1 – ρ)

Variance: Var(N) = ρ / (1 - ρ)2

Waiting time: W = ρ / (μ (1 – ρ))

Time in system: T = 1 / (μ (1 – ρ))

Note: Little’s Law: N = λ T



41

The M/D/1 Queue

Assumes:
Poisson arrival process, deterministic 
(constant) service times, single server, 
FCFS service discipline, infinite capacity 
for storage,  no loss

Notation:    M/D/1
Markovian arrival process (Poisson)

Deterministic service times (constant)

Single server  (FCFS, infinite capacity)
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M/D/1 Queue Results

Average number of customers:              
Q = ρ/(1 – ρ) – ρ2 / (2 (1 - ρ))

Waiting time: W = x ρ / (2 (1 – ρ)) 
where x is the mean service time

Note that lower variance in service 
time means less queueing occurs    ☺

E.g., M/M/1 has W = (1/μ) ρ / (1 – ρ)
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Queueing Theory (cont’d)

 These simple models can be cascaded in series and 
in parallel to create arbitrarily large complicated 
queueing network models

 Two main types:
 closed queueing network model (finite pop.)

 open queueing network model (infinite pop.)

 Software packages exist for solving these types 
of models to determine steady-state performance 
(e.g., delay, throughput, util.)
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Simulation Example: TCP Throughput

 Can use an existing simulation tool,  or design and 
build your own custom simulator

 Example: ns-3 network simulator
 A discrete-event simulator with detailed TCP protocol 

models

 Configure network topology and workload

 Run simulation using pseudo-random numbers and produce 
statistical output
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OTHER ISSUES

 Simulation run length
 choosing a long enough run time to get statistically 

meaningful results (equilibrium)

 Simulation start-up effects and end effects
 deciding how much to “chop off” at the start and end of 

simulations to get proper results

 Replications
 ensure repeatability of results, and gain greater 

statistical confidence in the results given
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Experimental Example: Benchmarking

 The design of a performance study requires great 
care in experimental design and methodology

 Need to identify
 experimental factors to be tested

 levels (settings) for these factors

 performance metrics to be used

 experimental design to be used
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FACTORS

 Factors are the main “components” that are varied in 
an experiment, in order to understand their impact on 
performance
 Examples: request rate, request size, read/write ratio, num 

concurrent clients

 Need to choose factors properly, since the number of 
factors affects size of study



50

LEVELS

 Levels are the precise settings of the factors that 
are to be used in an experiment
 Examples: req size S = 1 KB, 10 KB, 1 MB

 Example: num clients C = 10, 20, 30, 40, 50

 Need to choose levels realistically

 Need to cover useful portion of the design space



51

PERFORMANCE METRICS

 Performance metrics specify what you want to 
measure in your performance study
 Examples: response time, throughput, pkt loss

 Must choose your metrics properly and instrument 
your experiment accordingly
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EXPERIMENTAL DESIGN

 Experimental design refers to the organizational 
structure of your experiment

 Need to methodically go through factors and 
levels to get the full range of experimental results 
desired

 There are several “classical” approaches to 
experimental design
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EXAMPLES

 One factor at a time
 vary only one factor through its levels to see what the 

impact is on performance

 Two factors at a time
 vary two factors to see not only their individual effects, 

but also their interaction effects, if any

 Full factorial
 try every possible combination of factors and levels to 

see full range of performance results
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SUMMARY

 Computer systems performance evaluation defines 
standard methods for designing and conducting 
performance studies

 Great care must be taken in experimental design 
and methodology if the experiment is to achieve 
its goal, and if results are to be fully understood

 Very many examples of these important 
methodologies and their applications …
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Scalability example: Broadcast protocol

57



58

Streaming Popular Content

 Consider a popular media file
 Playback rate: 1 Mbps

 Duration: 90 minutes

 Request rate: once every minute

How can a video server handle such high loads?
 Approach 1: Start a new “stream” for each request

 Allocate server and disk I/O bandwidth for each 
request

 Bandwidth required at server= 1 Mbps x 90
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Streaming Popular Content using Batching

 Approach 2: Leverage the multipoint delivery (e.g., 
multicast/broadcast) capability of modern networks

 Playback rate = 1 Mbps, duration = 90 minutes
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Streaming Popular Content using Batching

 Approach 2: Leverage the multipoint delivery (e.g., 
multicast/broadcast) capability of modern networks

 Playback rate = 1 Mbps, duration = 90 minutes

 Consider case of high request rate and D=30min…
 Max. start-up delay = 30 minutes 

 Group requests in non-overlapping intervals of 30 min

 Bandwidth required = 3 channels = 3 Mbps

0 30 60 90 120 150 180 210 240

Time (minutes)

Channel 1

Channel 2

Channel 3
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Streaming Popular Content using Batching

 Approach 2: Leverage the multipoint delivery (e.g., 
multicast/broadcast) capability of modern networks

 Playback rate = 1 Mbps, duration = 90 minutes

 An optimal batching protocol (and analysis)???
 Define protocol

 How to evaluate?  
• Analytically?

• Simulations?

• Experiments?

N Carlsson, D. Eager, and M. K. Vernon, Multicast Protocols for Scalable 
On-demand Download, Performance Evaluation, 2006.
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 Optimal batching protocol
 Max delay = D

 Poisson process
 Inter-arrival times (i) exponentially distributed and (ii) 

independent

 Memory less arrival process

64
N Carlsson, D. Eager, and M. K. Vernon, Multicast Protocols for Scalable 
On-demand Download, Performance Evaluation, 2006.
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 Renewal process
 Identify and analyze “renewal periods” (statistically the same)

 B = L / (D+1/)

 Poisson Arrivals See Time Average (PASTA) property
 A = [D(1+D/2)]/[1+D]

65
N Carlsson, D. Eager, and M. K. Vernon, Multicast Protocols for Scalable 
On-demand Download, Performance Evaluation, 2006.
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 Little’s law
 # in system = (arrival rate into system) x (average time in system)

 Systems considered where
 System = “waiting queue” (for first bit)

• Average time in system = A; Arrival rate = 

• E[# in system] =  [D(1+D/2)]/[1+D]  

 System = “queue or being served” (to get all bits)
• Average time in system A+L/r; Arrival rate = 

• E[#in system] =  [D(1+D/2)]/[1+D] + L/r 66
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More slides …
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Batching Issues

 Bandwidth increases linearly with decrease in 
start-up delays

 Can we reduce or eliminate “start-up” delays?
 Periodic Broadcast Protocols

 Stream Merging Protocols
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Periodic Broadcast Example

 Partition the media file into 2 segments with 
relative sizes {1, 2}. For a 90 min. movie: 
 Segment 1 = 30 minutes, Segment 2 = 60 minutes

 Advantage: 
 Max. start-up delay = 30 minutes

 Bandwidth required = 2 channels = 2 Mbps

 Disadvantage: Requires increased client capabilities 

Time (minutes)

1

2

1 11 1 1

2 2

0 30 60 90 120 150 180

Channel 1

Channel 2
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Skyscraper Broadcasts (SB)

 Divide the file into K segments of increasing size
 Segment size progression: 1, 2, 2, 5, 5, 12, 12, 25, …

 Multicast each segment on a separate channel at 
the playback rate

 Aggregate rate to clients: 2 x playback rate
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[Hua & Sheu 1997]
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Comparing Batching and SB

Server

Bandwidth

Start-up Delay

Batching SB

1 Mbps 90 minutes 90 minutes

2 Mbps 45 minutes 30 minutes

6 Mbps 15 minutes 3 minutes

10 Mbps 9 minutes 30 seconds

 Playback rate = 1 Mbps, duration = 90 minutes

 Limitations of Skyscraper:
 Ad hoc segment size progress

 Does not work for low client data rates
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Reliable Periodic Broadcasts (RPB)

Optimized PB protocols (no packet loss recovery)

 client fully downloads each segment before playing

 required server bandwidth near minimal

 Segment size progression is not ad hoc 

 Works for client data rates  < 2 x playback rate

 extend for packet loss recovery

 extend for “bursty” packet loss

 extend for client heterogeneity

[Mahanti et al. 2001, 2003, 2004]
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Optimized Periodic Broadcasts

 Playback rate assumed equal to 1
 r = segment streaming rate
 s = maximum # streams client listens to concurrently
 b = client data rate = s x r
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Optimized Periodic Broadcasts
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Optimized Periodic Broadcasts

 Playback rate assumed equal to 1
 r = segment streaming rate = 1
 s = maximum # streams client listens to concurrently  = 2
 b = client data rate = s x r = 2

 length of first s segments:

 length of segment k  s:  
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Comparison with Skyscraper
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Immediate service:
Hierarchical Stream Merging
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D. Eager, M. Vernon, and J. Zahorjan, "Minimizing Bandwidth 
Requirements for On-Demand Data Delivery”, IEEE TKDE, 2001.


