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1 Introduction

This paper explores one possible way of creating what we call an “interactive intelligent system”.
To achieve this type of system, we combine a set of artificial intelligent techniques in such a
way that enables the system to not only interact with a person, but also to do so in what we
consider an intelligent way. The project that this paper is based on was conducted at Linköping
University as a collaboration between Linköping University’s department of “Artificial intelligent
and interacting computer systems” (AIICS), and the Swedish transport administration.

To consider the system an “interactive intelligent system”, it should be able to perform some
set of actions autonomously, in response to some set of interactions. The following actions are
considered to be indicative to this end:

1. Detect if someone is interacting with the system.

2. Identify who (previously known or unknown) is interacting with the system.

3. Performing certain actions based on the interaction.

To ease the development, the focus was turned towards a more concrete implementation, a
project called the “Autonomous station master”. This system was to be implemented on the
physical TurtleBot 4 robot, with the capabilities to help people at train stations. Implementing
the proposed solution on a physical robot is very time-consuming however, and due to time
constraints, the implementation was done in a simulated environment instead. Nevertheless,
it was concluded that such a system should be able to act a certain way and perform certain
actions, such as:

1. Greeting people interacting with the system, either by name if the person is already known
or more generally if the person is unknown by the system

2. Give answers to common pre-defined questions, such as “Where are the toilets located?”

3. Perform a physical action, such as giving people a tour of the train station, in response to
some interaction

To build the station master with these capabilities, four areas were identified that can be solved
with relevant AI techniques. These areas, and the specific technique used, are as follows:

Decision-making: To implement a system with logic in order to both know what to do and how
to act in certain scenarios, a behavior tree was used [1]. The behavior tree models the scenarios
the system can find itself in and describes how to act in those scenarios.

Detecting and identifying people: In order for the system to detect who it is interacting
with, the technique of facial detection was used. To then identify who it is, and if the detected
face is known to the system, facial identification was implemented.

Understanding questions: For the system to analyze and understand the questions it may
receive, a specific Natural Language Processing (NLP) technique called ”intent recognition” was
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used [2]. An intent recognition model was realized, that takes in a sentence and predicts one of
several pre-defined intents, such as a greeting, a goodbye, or a question.

Performing tasks: Performing tasks such as answering questions or showing people around
was done by communicating through text and driving the robot. To drive the robot, the official
navigation stack for ROS 2, Nav2 was used [3]. Nav2 allows the robot to avoid obstacles and
plan the path between two points.
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2 Methods

This chapter presents the theory and the methods used for the different AI techniques used.

2.1 ROS 2

ROS 2 1 (Robot Operating System 2) is a set of software libraries and tools used to build
different robot applications. It provides a wide range of functionality, including support for
communication between processes, low-level device control, implementation of commonly used
functionality, and much more. To communicate, ROS 2 uses a publish-subscribe model and in
this model, nodes (representing individual processing units) exchange messages with each other
by publishing and subscribing to topics. This allows for flexible and scalable communication
between different parts of a robot system.

2.2 Behavior Tree

A behavior tree is a technique used for strategically making decisions [1]. The tree is traversed
from top to bottom, starting at some root node, followed by its child nodes. Each node in
the tree can either be a leaf node, representing a specific action or decision, or a branch node,
representing a condition or decision point. As the tree is traversed, the agent makes decisions
based on the current state of the system and the available options. The technique allows the
agent to make complex, realistic decisions in real-time, based on the current situation and the
goals of the system. In Figure 1 a sample tree is displayed, where the colors blue, yellow, and
red, display paths in the tree which represent sequence, decision, and action nodes respectively.

Figure 1: A sample behavior tree

1https://www.ros.org
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2.3 Path Planning and Movement

Path planning is an essential task that must be done before navigating in complex environments.
It is the task of calculating the shortest path between an initial position and a goal position.
Furthermore, the planned path should avoid collisions with obstacles. There exist two types of
path planning, global path planning, and local path planning. Global path planning can compute
the shortest path from an initial position to a target position, and is based on the current position
of the robot and its surroundings. The global path planning can be slow and computationally
hard when many dynamic objects occur in the map, since the global path planner needs to re-
calculate a new path. Local path planning is responsible for detecting dynamic obstacles using
available sensors. If a dynamic obstacle would block the planned path, the local path planner
adjust the velocity to avoid these obstacles [4].

Nav2 is the official navigation stack for ROS 2 [3]. In this navigation stack, A-star is used
for global path planning, and for local planning, the successor of Dynamic Window Approach
(DWA), DWB is used [5]. To move the TurtleBot 4, its creators have developed their own
navigator package, which adds functionality such as docking and navigating to a position using
the Nav2 stack.

2.4 Facial Detection and Identification

Today there are a lot of different ways of doing facial identification. One pipeline used to combine
detection and identification is presented in Figure 2, it consists of 4 different stages to first detect
faces, and then potentially linking that face to a known person.

Figure 2: A simple visualization of a face recognition and identification pipeline

The first step in the pipeline is to detect potential faces in the selected image. Many types
of algorithms can be used for this [6], in their paper ”Blazeface: Sub-millisecond neural face
detection on mobile gpus”, Bazarevsky et al. [7] describe one way of using optimized convolutional
neural networks for both detection and identifying 6 different facial key points such as eyes, ears,
mouth nose, and so on, These key points are then used to detect where potential faces in the
image might be located.

To then identify if the person whose face has been found is known to the system or not, one
needs to have a way of comparing whether facial features are similar or not. In order to do
this comparison between faces, the faces must first all be aligned in the same orientation. Vahid
Kazemi and Josephine Sullivan [8] shows that this can be done by finding some facial features
using an ensemble of regression trees. They do this by first warping the images to the mean
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shape and then, for all splits in each regression tree, compare the intensity between two pixel
pairs in order to predict an update vector for the shape parameters. The estimation introduces
a form of geometric invariance which gives more certainty that a feature is detected. Once the
facial features in each image are detected using Vahid and Josephine’s algorithm, the next step
is to apply image transformations called affine transformations, to shear, rotates, and scale the
images in order for all the different facial features to be aligned. Once the faces have been
aligned, the next step in the pipeline is to encode the faces into smaller representations to
make it computationally easier to compare the faces. To do this, a technique described in the
paper ”FaceNet: A Unified Embedding for Face Recognition and Clustering” [9] can be used. It
reduces the faces inside the image all the way down to a single point in a 128-dimension space.
The authors Florian et al. describes that this is successfully done by minimizing a so-called
“triplet loss” to learn how to best represent the face in this smaller space. This way, faces of
different people produce radically different encoding and faces from the same person produce
encoding closer to one another. Or as Florian et al. [9] describes the process “The Triplet
Loss minimizes the distance between an anchor and a positive, both of which have the same
identity, and maximizes the distance between the anchor and a negative of a different identity”.
Lastly, to compare between the faces represented in the 128-dimension encoding space, a simple
SVM-classifier can be used. This produces a confidence-value of how closely this particular face
matches the known faces.

2.5 Natural Language Processing

Natural Language Processing is the task of mapping natural spoken language of humans into some
internal representation that can be understood by machines. This is often done by using a ma-
chine learning model. One of the more prominent types of models is based on transformers, which
transforms natural language input via several layers of encoders and then produces a response
via several layers of decoders using attention [10]. One of the best performing transformer-based
model today is the Bidirectional Encoder Representations from Transformers (BERT) model [11],
which is a pre-trained model that can be fine-tuned for specific tasks, such as intent recognition.

2.5.1 Intent Recognition

Intent recognition is a subfield of NLP, and it is the task of classifying the intent of a sentence.
As an example, take the two sentences:

1. “I am hungry”

2. “I have not eaten in days”

It is easy for humans to understand that the intent behind the two sentences is that a person is
hungry. However, a computer does not understand the intent of different sentences like humans.
The problem is that an intent can be specified in many ways and it can be difficult for a computer
to capture all of them. There has however been some success in this area. Hassan et al. [2]
succeeded in classifying various emotional intents with an overall accuracy of 76% in a study
where they tried to detect if a person was suicidal based on conversations.
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A high performing intent recognition can also be achieved by fine-tuning a BERT model for that
task [12]. In a study by Huggins et al. [13], they create an intent recognition model using BERT
to achieve an accuracy of 94%, using only 25 training examples per intent. These results are
quite promising, as not only does the model achieve state-of-the-art accuracy, but it does so by
training on a minimal amount of training data. This is important, since new training data is
required to train a intent recognition fit for this project, and finding (or creating) enough data
can sometimes be difficult.
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3 Results

The results chapter explains how the different AI techniques were implemented and combined.

3.1 Simulation

The initial plan for the project was to implement all the AI techniques into a physical robot
called TurtleBot 42. But due to some unforeseen off-topic problems, our effort was shifted to
instead work on a simulated version of the robot. For this task, the Ignition Gazebo3 simulator
was used.

Ignition Gazebo is an open-source 3D robotics simulator that supports simulation of sensors and
actuators. It can create a realistic 3D environment and sensors that correctly interacts with the
simulation as if it was in the real world. For this project, Ignition Gazebo was configured to
spawn the TurtleBot 4 in an environment representing a simple storage space, with some crates
and other obstacles lying around.

3.2 System Architecture

To structure the code as to be usable on the TurtleBot 4 both physically and in simulation,
ROS 2 nodes were used. More specifically, to ensure that each part of the system could be
built and tested separately, 6 different ROS 2 nodes were created that all run simultaneously
and communicate via the built-in publish-subscribe model. Figure 3 shows how the different
nodes interact with each other, the figure presents that the ”Behavior tree”-node is central
to the implementation. The other nodes, ”Input”, ”Output”, ”Facial identification”, ”Intent
recognition” and ”Movement” all correspond to different parts of the system that are used by
the behavior tree node to decide what actions to perform in the different scenarios.

Figure 3: The ROS 2 Node structure

2https://www.turtlebot.com/
3https://www.gazebosim.org
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3.3 Movement

When starting the simulation, the robot spawns in the middle of the room, undocks from the
docking station, and navigates to the pre-defined starting position. When the robot is in the
starting position, it is ready to answer commands from persons. The two commands resulting in
movement of the robot are if the person asks for a tour or where the toilets are located. Upon
receiving a request to show where the toilets are located, the robot will plan a path using the
TurtleBot 4 Navigator, and then start moving towards the location. When receiving the tour
command, the robot will move towards three pre-defined goals. After the robot has reached the
goal location, it moves back to the initial position, awaiting new commands.

3.4 Interaction Mediums

For a person to communicate with the system, an input medium in the form of a terminal was
used. The terminal allows the system to be provided with text inputs such as greetings, common
questions, or requests to be shown something. Another terminal was used as an output medium
to output text to a person in order to, for example, answer questions or let them know they have
reached their destination. To simulate a person interacting with the system in the simulator, an
external camera was used.

3.5 Facial Detection and Identification

To implement the different steps in the facial detection and identification pipeline, a set of python
libraries were used. For detecting faces, Google’s ”MediaPipe”4 was utilized, which provides an
API for using the face-detector ”BlazeFace”. BlazeFace was originally created to be used on the
mobile platform and therefore, it also provides very good performance on a PC. For identifying
if the detected person is known by the system, another python library called “face recognition”5

was applied to implement all three of the remaining steps of the pipeline. The library provides
an API for automatically projecting, encoding and comparing a face to a set of reference faces.

To ensure that faces both close, less than a meter, and faces further away could be detected,
two different models from the ”mediapipe.solutions.face detection.FaceDetection” from the Me-
diaPipe library was used on each image. The known faces were saved in a folder containing only
known faces, with the name of the file being the name the person inputted on creation. These
images and names were then imported on initialization of the facial identification node to be
compared against in each frame.

To lower the strain on the system (as to be able to run on a Raspberry Pi in the physical robot),
the facial detection node only has to update the behavior tree with a frequency of about 1Hz.

4https://google.github.io/mediapipe/
5https://github.com/ageitgey/face_recognition
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3.6 Intent Recognition

To give the robot the ability to reply to a user or perform a certain task, the intent recognition
model by Huggins et al. [13] was fine-tuned to classify intents required in this project. To fine-
tune the model for this task, a new dataset was manually created that contained the following 6
intents:

1. Greeting

2. Goodbye

3. The person wants to find the restroom

4. The person wants a tour

5. The person wants to know the time

6. The person wants to be added to the database

In the manually created dataset there are 45 example sentences for each intent, 25 of which were
used for training, 10 for validation, and the remaining 10 for testing. When training the model
with this data, a similar approach to Huggins et al. [13] was adapted, in that different number
of epochs were tested and used to find the best validation- and test accuracy. Table 1 shows the
different number of epochs that were tested: [1,5,10,...,60], and the resulting validation- and test
accuracies. Epochs 20, 30, 35, 50, 60 all achieves the highest validation accuracy of 0.967. These
five models were then evaluated on the test data, and the results shows that the model trained
trained in 20 epoch achieves the highest test accuracy of 0.969.

Number of epochs Validation accuracy Test accuracy
1 0.279 -
5 0.687 -
10 0.835 -
15 0.935 -
20 0.967 0.969
25 0.951 -
30 0.967 0.958
35 0.967 0.958
40 0.951 -
45 0.951 -
50 0.967 0.948
55 0.935 -
60 0.967 0.958

Table 1: Resulting validation- and test accuracy for all the training runs on the intent
recognition model, using different number of epochs.

A feature was also added that allows the model to output an ”unknown intent”, for when the
model is less confident in its prediction. The reason for this is to mitigate the model from giving
the wrong replies, and instead encourage the client to reformulate the question, by answering for
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example: ”Sorry, I did not understand that”. The confidence of the prediction is measured from
the ”logit”-values for each intent that is intially returned from the model. If the highest logit for
all intents does not reach a certain threshold, that means that the model is not very confident
in its answer. So instead of returning the intent that the logit corresponds to, the model returns
the unknown intent.

3.7 Behavior Tree

To combine the different AI techniques in one unified system, a behavior tree was used. Figure 4
contains the root node as well as the individual behaviors that the agent can make, while Figure 5,
Figure 6, and Figure 7 describe the behaviors in more detail.

Since the ROS 2 nodes both communicate and run asynchronously, a state system was imple-
mented that the behavior tree node uses to execute the correct actions according to the behavior
tree. Since the current tree is relatively small, the states only need to be updated by the facial
identification node and the intent recognition node. As shown in Table 2, there exist 3 different
states: ”empty” when there is no face in the image, ”unknown” when there is a face but of whom
is unknown, and ”name” when someone (name) has been recognized in the image.

For the intent recognition node, shown in Table 3, the possible states are ”Greeting”, ”Goodbye”,
”Bathroom”, ”Tour”, ”Question” and ”AddToDb”. The corresponding action that the robot
should perform for each intent is described in the ”Action” column. To then use these different
states and intents in the behavior tree, a simple ”if-statement”-design is used.

State Description
Empty No face in the image

Unknown There is a face, but the person is not known to the system
Name When someone is identified by the system

Table 2: Facial identification states

Intent Action
Greeting Say hello
Goodbye Say goodbye
Bathroom Show directions to the bathroom

Tour Give the person a tour around the building
Question Tell the current time
AddToDb Add the person to the database
Unknown Ask for clarification

Table 3: Intent states
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Figure 4: The start of the behavior tree

Figure 5: ”Give tour” in the behavior tree

Figure 6: ”Show bathrooms” and ”Answer question” in the behavior tree
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Figure 7: ”Add to db” and ”Unknown intent” in the behavior tree

3.8 Example Scenarios

The following are some example scenarios that can occur when a person interacts with the system.
Examples of the interactions are illustrated in Figure 8.

Answers by name: As the system is able to recognize people interacting with it, answers in
the output terminal can be personalized. If a person is detected and known by the system, the
message in the output medium will answer the person by their name. On the contrary, if a
person is not detected or a person is detected but not known by the system, the answers will not
be personalized.

Leading the way: In case the person interacting with the system asks: ”Where are your
bathrooms?” or something similar, indicating that they want to know where the toilets are, the
robot can lead the person to the toilets. During the time the robot navigates to the destination,
nobody is able to communicate with the robot, such as asking common questions. Once the
robot has arrived at the toilets, it outputs some text, and then returns to its initial position.

If a person instead is unfamiliar with the train station, the robot can give a tour of the place.
For each of the stops on the tour, the system will output a message to the output medium letting
the person know where they are. Once the tour is done, the robot returns to its initial position
again.

Add person to the system: If the person interacting with the system is not known, the person
can be added to the database and recognized in the future. If this is desired, the system will ask
for the person’s name and take a picture of the person at the end of a countdown. However, if
the person is already known, the system will recognize this and not add the person.
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Figure 8: Interaction examples

13



4 Discussion

This chapter discusses the implementation, results, and potential future work.

4.1 Simulation and Robot

The final product was a simulated robot that can take commands from a textual prompt and
make an informed decision in the form of actions, such as giving a guided tour, leading the way
to the toilets, or just responding to common questions and greetings. Although for this project
the simulated robot was a better option compared to the physical robot, it too had its problems.
For example, it ran very slowly since we had to run it in a docker container. In the future it
would be interesting to see how the system performs on the physical robot, TurtleBot 4, since
moving away from the simulation should be relatively painless with the current implementation.

4.2 Interaction Mediums

The system currently uses two different terminals as input and output mediums to communicate
with a person. The two mediums are each implemented in their own ROS 2 nodes. Although
this implementation is relatively simple, it allows the possibility of changing the nodes in the
future to, for example, use text-to-speech or speech-to-text as additional interaction mediums.

4.3 Behavior Tree

In this particular implementation, the behavior tree worked well. However, the tree’s structure
could be improved by upgrading from simple ”if-statements” implementation to a more scalable
solution using either a python or ROS 2 package. Although when doing this it’s important
to keep in mind that the system states may not always be 100% up-to-date if the current state
system is still being used, as in the case of the 1Hz facial detection update frequency for example.

4.4 Facial Detection and Identification

Currently, the facial detection and identification models are only updated with a frequency of
1Hz. One reason for this was that the library used for facial identification, ”face recognition”,
takes an exceptionally long time in comparing a new face with known ones. Although it was
noted that a higher frequency than 1Hz did improve interactions between the system and a
human, it is decently an area that could be improved on in future work.

As a webcam was used as input to the facial detection pipeline, this too could be an area of
improvement when working on the physical robot. We tried using a 3D camera that could be
placed on the physical robot, but since it has a very distorted lens as to keep all information in
one image, it did not work very well with the facial identification pipeline. In future work, some
time should be dedicated to figuring out what camera one wants to use and if it requires some
special facial detection models.
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4.5 Intent Recognition

The intent recognition model that was created in this project achieved a validation accuracy
of 0.967 and a test accuracy of 0.969. This is notably higher than the test accuracy of 0.943
achieved by the BERT model for intent recognition by Huggins et al. [13] for 25 training examples.
Although these models cannot be compared as they are trained on different datasets, the reason
for our high accuracy may be that the data used for this project is simply easier to make
predictions on. For example, in their paper, Huggins et al. trains their models on two different
datasets, one containing 7 different intents, and another that contains ”several” intents. One
can imagine that it is more difficult to predict correctly when there are more intents to choose
from. The intent recognition model in this project only used 6 intents, and these were also quite
distinct from each other, which could make them easier to distinguish. This might indicate that
the accuracies achieved during testing cannot be trusted. However, the intent recognition model
has performed well when implemented with the rest of the system.

Finally, the intent recognition model was trained to recognize six intents. Future work could
therefore include more intents to make the robot handle more unique cases, and compare how
more intents would affect the accuracy of the model.
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