
Autonomous housekeeping

Johan Nordling
Linköping University

johno762@student.liu.se

Lukas Olsson
Linköping University

lukol280@student.liu.se

Jonathan Öhrling
Linköping University

jonoh749@student.liu.se

Robin Simonsson
Linköping University

robsi315@student.liu.se

Max Rüdiger
Linköping University

maxru105@student.liu.se

Abedalhkeem Najeeb
Linköping University

abena406@student.liu.se

Abstract

In this project, an autonomous robot was developed us-
ing Turtlebot 4 to build and maintain a useful worldview
of a laboratory environment. The goal of the project was
to demonstrate advanced AI and robotics capabilities and
their potential applications to Trafikverket, the Swedish
transportation agency. To achieve this, the robot was to
be equipped with the ability to create a 3D model of the en-
vironment, detect and classify objects in the environment,
track the location of objects, and patrol the environment.
ORB-SLAM2 and Nav2 were used to map and navigate the
environment, while YOLOv7 was used for real-time object
detection. Object tracking was to be implemented by main-
taining a database of detected objects and their locations,
and updating the database as the robot navigated the en-
vironment. The project assigner did not prepare properly,
so while a method for the project was developed, it was not
implemented on the Turtlebot. Instead, only a smaller proof
of concept code base was created to run on pre-recorded
ros2bags.

1. Introduction

This project aimed to realize an autonomous robot with the
capability to build and maintain a useful worldview of the
lab premises using a Turtlebot 4. The finished project was
expected to be shown to Trafikverket higher-ups to show
them what advanced AI and robotics can do and how it can
be applicable to their use cases. The expected project goals
were the following:

• Build (and maintain) a good 3D model of the lab, that
can be used in for example VR/AR applications.

• Discover if an object has been moved, is missing or
has been added to the environment.

• Be able to find objects as requested by a user, i.e. by
telling where it is or by moving there and showing.

These goals were broken down into a few practical prob-
lems that had to be solved:

• Map the environment in a suitable way for navigation
and localization

• Navigate the environment

• Detect/classify objects and keep track of them in a 3D
space

• Patrol the environment and scan for object

• Generate a textured mesh of the 3D environment

1.1. Possible Solution

1.1.1 Mapping and Navigating the Environment

The first problem that had to be solved was the process of
mapping the environment for navigation and localization.
After conducting research, several solutions to this were
found. And it was concluded that ORB-SLAM2[2] together
with Nav2[6] would be the best solution to this problem.

ORB-SLAM2 is a library used to capture camera trajec-
tories and create a sparse 3D reconstructions of an environ-
ment. It manages loops and relocalization of the camera
in real-time and has tight integration with ROS2 and Nav2.
This is what made us choose ORB-SLAM2 for this project.

Nav2 is a navigation library for ROS2 that can be used in
conjunction with ORB-SLAM2 to navigate while capturing
the environment. This provides us with a well-integrated
system for navigating the environment and thus leading to
the decision to use this library for the project.

ORB-SLAM2 together with Nav2 served as the founda-
tion for this project and was relied upon by the rest of the
system.

1



1.1.2 Real-time Object Detection

The second main problem that had to be solved was detect-
ing 3D objects in the environment. There are several ways
to approach this problem but since this project is limited in
scope, the chosen solution of using a 2D classifier together
with the 3D data given by our navigation and localization
system to mark objects in 3D.

The chosen 2D classifier was YOLOv7 [12]. Our reason-
ing behind this was based on the accuracy and the speed of
the classifier as well as the existence of pre-trained models.
A fast solution with decent accuracy was desired due to the
need for real-time processing, with a focus on the location
of objects rather than nuanced classification.

1.1.3 Dynamic Object Tracking

Object tracking, in the sense of knowing where objects are,
was accomplished by keeping track of what objects have
been detected and what objects were expected to be seen.
The detected objects are stored in a database along with a
timestamp and their 3D position. If a similar result already
exists in the database, based on proximity to the estimated
position, it is assumed to be the same object and is ignored.
As the environment is navigated, it is checked whether the
object is still present. If it is no longer visible, it is removed
from the database, but if it is still visible, the timestamp is
updated.

1.1.4 Textured Environment Mesh

There are several ways to generate a textured 3D mesh of an
environment depending on what the model should be used
for. If the model is intended to be used in VR/AR applica-
tions a good solution to capture an environment would be a
library such as Voxblox.

Another option would be to generate a 3D model based
on the data provided by ORB-SLAM2. However, this seems
to yield results that are worse than Voxblox, which makes
sense since ORB-SLAM2 is meant to capture/calculate the
camera trajectory and a sparse 3D reconstruction of the en-
vironment rather than an accurate 3D model reconstruction.

2. Method

2.1. System and Environment

The hardware used requires the use of a virtual environment
and Docker was chosen for this task. The Docker environ-
ment includes dependencies for development on the Turtle-
Bot 4 platform such as the Robot operating system (ROS)
and tools to help in development. To set up this environ-
ment correctly the tutorial on the Turtlebot website should
be followed. This will also ensure that all the dependencies
needed will be included in the Docker environment.

Figure 1: TurtleBot 4 computer connections

The connection between TurtleBot 4 and user PC should be
configured and set up. The connections between the two
ends are shown in figure 1. Create 3 and Raspberry Pi are
located inside the TurtleBot 4 and connected together via
a USB. The three nodes should be connected to the same
WiFi to allow communications. This procedure is done by
following a tutorial presented in [1].

2.2. ORB-SLAM2

Simultaneous Localization and mapping (SLAM) tech-
niques is used to build a map of an unknown environment
and then localize the camera sensor in that map [9]. SLAM
focuses on real time operations and provides accurate place
recognition. This is important to detect when the sensor
returns to an area that is already mapped and can correct
errors in exploration (close loops). ORB-SLAM2 system
has three main threads: Tracking, local mapping and loop
closing (shown in figure 2). Tracking is used to localize
the camera in the local map, this is done by finding features
that matches the local map and then apply motion-only bun-
dle adjustment(BA) to the re projection error. Local map-
ping manages the local map and does optimizations on it
by performing local BA. Loop closing detects large loops
and corrects the accumulated drift, this is done by preform-
ing a pose-graph optimization. The loop closing thread also
lunches a fourth thread that perform a full BA, this is done
to compute the optimal structure and motion solution.

2.3. Nav2

Nav2:s navigation architecture is based on a behaviour tree
[5] see figure 3 with a logic of left to right. It has a policy
that ticks a global planner action at a rate of 1 Hz. It defaults
to trying to find a path using an A* and planner combina-
tion, if it were to fail it will fall back in the tree and take

2



Figure 2: System Threads and Modules.

Figure 3: Nav2:s Behaviour tree, where ”?” represents a
fallback node and ”→” a sequence node

the next child node where it cleared the global environment
node, this can help resolve potential failures. If that fails it
will traverse up the tree and check the next child node.

To ensure safety for robots moving near humans Nav2 is
built on top of ROS2 to address functional safety standards.
This component will be used in the project for navigating
the environment.

2.4. YOLOv7

The YOLO [4] architecture is based on a fully connected
Neural Network approach. YOLO:s framework has three
core components the backbone, neck, and head. The back-
bone in YOLOv7 [12] is trained on the COCO dataset. The
backbone is set up whit an Extended Efficient Layer Ag-
gregation Network which enables YOLOv7 to enhance the
learning ability of the network. This layer is also one of
the core components in making YOLOv7:s bounding box
predictions a lot more accurate than previous versions. The
head of architecture is responsible for making the predic-

Figure 4: Picture taken by Turtlebot for the process of cali-
brating the camera

tion. YOLOv7 is not limited to only one head and is com-
posed of multiple heads, where a lead head is responsible
for the final prediction. The other auxiliary heads are used
to assist in the training of the middle layers. The weights of
the auxiliary head are changed based on the assistant loss.
The lead head and the label assigner are later combined to
make the final prediction. In simple terms, the label assigner
generates soft labels.

2.5. Object to World Position

Once the YOLOv7 model has computed the label, bounding
box, and prediction score, the data is used to translate it to
the real-world position of the object (global position). The
first step of this process is to calculate the intrinsic matrix
of the camera using the OpenCV calibration method. This
method uses an image of a checkerboard pattern taken by
the camera to measure the parameters of the lens and sen-
sor, see figure 4. These parameters are then placed into the
intrinsic matrix and can then be re-used for all further cal-
culations.

intrinsic matrix =

fx 0 cx
0 fy cy
0 0 0

 (1)

The second step of the process is to create a direction vec-
tor of the point of interest. This is done by using the focal
length and principal point from the intrinsic matrix:

dx =
x− cx
fx

(2)

dy =
y − cy
fy

(3)

dz = 1 (4)

The direction of the target can now be scaled by the distance
to the target, sampled at (x, y), to get a relative position of
the object. This process is illustrated in figure 5.

The relative position, together with the data from ORB-
SLAM2, can be converted to a global position. This is

3



Figure 5: Conversion between 2D point to 3D point at sam-
pled depth

Figure 6: Visualisation of converting between relative and
global positions

done by first applying the robot’s rotation, given by ORB-
SLAM2, to the relative position and then adding the robot’s
position. The result is a vector representing the position
of the object in world space, independently from the robot.
This process is illustrated in figure 6.

The width of an object can be calculated using a tech-
nique similar to the position:

width =
xright − xleft

fx
depth (5)

2.6. Bounding Box Volume

When an image bounding box has been computed, the size
is given in pixel units. To make this information useful, it
must first be converted to world space units using the cam-
era calibration data. This gives an image bounding box in

Figure 7: Visualisation of the bounding box volume

metric units that can be used to estimate the volume of the
object. In order to simplify tracking the volume of objects,
it is assumed that all objects are cylindrical. This allows for
easy tracking as the width of the image bounding box al-
ways corresponds to the diameter of the cylinder. This cre-
ates a planar-symmetrical shape representation of all objects
that is easy to update and boundary check. A visualisation
of the bounding box volume can be seen in figure 7.

2.7. Bookkeeping

The bookkeeping system keep tracks of detected objects.
It stores 3D positions, bounding box volume, labels and
timestamps of all objects.

Each processed frame computes candidate objects rep-
resented by a 3D position, a bounding box volume and a
label. These are then checked against the stored objects to
determine if the object has been seen before. This check is
done by determining if the following conditions are true:

1. The labels match

2. The centre position is within another objects cylindri-
cal bounds

If these conditions are met the system assumes the objects
are the same and update the existing object’s timestamp, av-
erage the positions and sets the diameter of the cylindrical
bounds to the maximum width. If the conditions are not met
the system assumes that it’s a new object or a potentially
moved object and is inserted as a new entry. Only after the
Turtlebot has patrolled the entire environment can an ac-
tual check be performed to see if one object of this kind has
actually been added or changed position. This can be de-
termined by checking the list of registered objects from the
previous scan against the current. If there is, in total, more
new objects, of a specific label, than remove objects the sys-
tem assumes that the object it is a new addition. However, if
the total number of object, of that label, are equal, the object
is assumed to have been moved.

To minimize the number of dynamic objects that could
cause noise in our system a blacklist of certain candidate ob-
jects is checked before they are processed. This is done by

4



checking the computed label of the object against a blacklist
of names that are dynamic objects. Examples of this would
be: a person or a dog.

To determine if an object no longer exists the system uses
the list of timestamps. If a timestamp is older than when the
system first started the scan it can assume that the object has
been moved and will prune it from the system.

This system has a drawback when objects of a specified
label have both been moved and added to the environment.
For example, if there was only one object in the environ-
ment and the next time there are now 2 objects of the same
type and both are in a new location it can never be known
which object has been moved and what has been added.
Therefore, this will be based on which order the robot found
the objects.

3. Problems
3.1. Laboratory and Turtlebot access

The group spent the first three weeks of the project research-
ing and waiting to gain access to the laboratory. Once they
finally gained access, they found that the lab was set up in
such a way that they needed to change passwords every day,
and each computer had to have a different password. This
made it difficult to remember which passwords belonged
to which computer, as they shared the space with multiple
students, and the computers were only sometimes available.
Some group members were limited to using only one or two
computers because of the frequent password changes. After
another two weeks, this problem was finally resolved, but
every computer retained the last password set on it.

3.2. Turtlebot Network Connection

For this project, the group used Turtlebot 4 to collect data
for their pipeline. They gained access to the university’s AI
lab computers, which were set up in containerized Docker
environments. The Turtlebot 4 was configured to send its
data as a UDP multicast. The group spent the following
three weeks debugging the Turtlebot with the help of Liu
network technicians. However, the technicians eventually
stopped responding to the group because they did not have
enough time to provide further assistance.

3.3. The Laptops

The group’s customer, Trafikverket, was kind enough to
purchase a powerful laptop for the Turtlebot 4. This laptop
was finally configured the week after the first examination
period. However, the wrong version of Linux was installed,
and the drivers for the network card were not working. This
meant the laptop could either be connected to the internet
or connected via cable to the Turtlebot, but not both at the
same time. This made working with the laptop very diffi-
cult. The group had root access to the laptop but still had

to use Docker to install the correct version of Linux. At
this point, they realized that UDP multicasting was not sup-
ported in Docker. Fortunately, a Liu technician was able to
help them install the correct version of Linux and fix the
network driver issues, allowing them to at least listen to the
topics that the Turtlebot 4 was sending. However, this was
done on December 8th, and the project was due on Decem-
ber 12th, so the group needed more time to explore this new
opportunity.

3.4. Ros2 Bag

To be able to use any data at all, the group was advised to
record ROS2 bags. One group member managed to install
the correct version of Linux on his personal laptop. From
there, they planned to record data from the Turtlebot 4 as it
drove around the lab. They managed to record a 2-minute
bag using this laptop, but when they later tried to read the
bag, they discovered that it did not contain any image data.
After they figured out how to properly include image topics,
they tried to record again, but the queue filled up, and no
data was collected. The group now believe that the network
connection and the personal laptop need to be stronger to
handle all the data.

3.5. Hotspot

Throughout the project, the group was promised a dedicated
hotspot in the form of a router. While they waited for this,
they used their mobile phones and computers as hotspots.
However, once they realized that the computer they were us-
ing for bagging could not receive the data fast enough, they
concluded that the hotspots needed to be faster to keep up
with sending the data. Unfortunately, they never received
a more powerful hotspot and were unable to collect any
data. Additionally, the Turtlebot was meant to be used with
a 5Ghz network connection. Since our hotspots were only
2.5 GHz, this could have put additional limitations, which
could have contributed to the problem.

3.6. Data Collection Using Ros2bags

As previously mentioned, the group could not obtain any
useful data from the Turtlebot, so they decided to resort to
Plan B, which was to download pre-recorded ROS2 bags.
However, the open-source bags they found were not from
a robot similar to the Turtlebot 4. They also discovered
that the bags only contained raw sensor data that had yet
to be processed through ORB-SLAM2 and Nav2. The bag
they found featured a tall robot, unlike the Turtlebot, which
drives on the floor. This robot could also turn its camera up,
down, left, and right. As a result, the static calculations for
the direction and angle to determine where it was looking
were not as straightforward as for the Turtlebot. This also
made it nearly impossible to test their bookkeeping system,
as the bagged data they found only went around their lab

5



Figure 8: Object detection and localization performed on
the third-party image using YOLOv7.

once. Therefore, they never had a second look at the differ-
ent rooms and could not build up their bookkeeping system
to do anything useful.

3.7. Turtlebot Simulator (Gazebo)

The group could not use the Turtlebot to obtain any use-
ful data; thus they decided to try out the simulator. After
booting up the simulator for the first time, the group no-
ticed it was running very slowly. They determined that this
was because the docker container did not have GPU access.
Because the group was forced to still work within a Docker
container, it wasn’t easy to achieve GPU passthrough, and
the group could not find a working solution. During the
research, they also realized that even if the simulator had
worked, the data that would have been acquired would only
have allowed them to implement the robot’s initial scanning
and patrolling aspects. The environment in the simulator
was a 3D model with very few objects, and the YOLOv7
model that was used was not trained on 3D-modelled boxes
and shelves, so the likelihood of detecting any objects was
very low. Given these drawbacks, it was decided to abandon
this approach to have more time to work on the Turtlebot.

4. Results

4.1. Mapping Environment for Localisation

ORB-SLAM2 and Nav2 ended up working well for the
given situation. The resulting ability to generate a map from
the environment of the Turtlebot was deemed satisfactory.
Given that SLAM can operate in real-time (as mentioned in
2.2), the implemented algorithm could be used in both sim-
ulations and live in the robot with good performance. Us-
ing the ROS-package RViz, the produced map could also be
visualized to see what parts of the environment have been
mapped out, the current location of the robot etc.

4.2. Navigating the Environment

Because of the ability to map out the surrounding environ-
ment, the possibility to also navigate the given environment
was enabled. While navigation was possible, there were
some slight issues with its usability. To begin with, the
Turtlebot does not feature any user interface, so the capa-
bility of navigating the environment with the robot could
have gone through more thorough testing. This navigation
for the robot was possible with both a keyboard and way-
points. However, using the keyboard often got slow, and
trying to use waypoints often did not work. The reason for
it not completely working properly may be because of con-
nectivity issues, as well as the laptop that was used possibly
needing to be faster. This is because the queue kept filling
up, which kept causing out-of-sync errors, this is not fully
confirmed, however, and it is only what is believed to be
the reason for it not completely working. In the simula-
tion, though, the navigation yielded much more promising
results. The robot was able to move to different positions
in a previously mapped environment when it was given the
orders to do so; it was able to do so while also avoiding
existing objects and obstacles.

4.3. Detecting/Classifying Objects

When integrating the YOLOv7 library into the project, one
challenge was that a direct function needed to process a sin-
gle image simultaneously. To overcome this, specific code
from the YOLOv7 library relevant to our needs was modi-
fied and adapted to fit the implementation.

To test the modified code from YOLOv7, the Turtle-
bot 4 camera and third-party image dataset described in [7]
were used. Most testing was done using third-party image
datasets because of the problem described in section 3.6.
Besides, it was essential to evaluate the implementation’s
performance in various environments. The testing data al-
lowed the group to confirm that the modified code was func-
tioning correctly.
In Figure 8, YOLOv7 are tested on the third-party image.
A chair and TV are detected, but there are other objects in
the picture that the YOLOv7 model could not detect. This
may happen since the fastest version of weights is used in
YOLOv7, which is 2.8 ms/image 10. The use of the fastest
version was required to speed up the detection process and
allow time for data transfer between the PC and the Turtle-
bot 4 and other required calculations. That is to say, a trade-
off for increased speed is that the accuracy of the object
detection may be reduced, resulting in some objects be-
ing missed. This version allowed real-time processing of
the frames at 60 frames per second. Another reason why
YOLOv7 may not have detected some objects is that the
model provides a confidence level for each object detection,
indicating how confident it is in its prediction. If the confi-
dence level for a particular object is below the threshold (set

6



Figure 9: Depth map applied to third party image. White
pixels indicate that the corresponding pixels in the image
are farther from the camera, while dark pixels are closer to
the camera.

by the user, in this case, 0.25), the object is removed from
the detection results.

After detecting the objects in an image, the local position
of each object is determined relative to the Turtlebot or the
location from where the picture was taken. This is achieved
by calculating the centre of the bounding box of each de-
tected object and applying a depth map, as shown in Figure
9. This information, together with the camera’s intrinsic
parameters, is used to estimate the local three-dimensional
position of the detected objects.

When the local position has been calculated, the global
position can be retrieved by adding the extrinsic properties
of the camera. In our case, this is the transform position
and rotation. Due to the limitations described in problem
3.6 3.4, part of the system was not accurately tested. How-
ever, using rough estimations, it is observed that the system
seemed to work correctly.

In Figure 9, it is observed that there is a limit to the depth
map. Objects that are too far away or too close become dark,
0 value, since the depth camera cannot estimate depth over
or under a certain distance. This indicates that the results
of the depth map are not always accurate. Thus, any values
exactly 0 are ignored since they can not be trusted.

Accurate calculation of the local position of objects in

our system required a reference point on the object for use
as a basis for depth calculations. However, using the cen-
tre of an object may only sometimes be possible, as some
objects, such as tables, are not solid. In these cases, depth
measurement would be calculated from a point behind the
object and thus lead to an incorrect object position.

To address this issue, several different methods were
considered. These included randomly selecting points
within the bounding box and taking the average, but this ap-
proach is still affected by the non-solidity of certain objects;
taking a diagonal line across the bounding box and averag-
ing the depth values along that line, which also suffers from
the same issue; and selecting the closest point of the object
to the camera, which does not account for the possibility of
other objects being in front of the object in question.

As a final solution, a blacklist approach were imple-
mented in which objects with labels indicating that they
were not solid were excluded, such as chairs, tables, and
people. For the remaining solid objects, centre position is
used as the depth value.

One problem was removing lens distortion from the
robot’s camera images. To do this, it was necessary to find
the camera’s intrinsic parameters, including its focal length
and optical centres. Images with well-defined patterns are
used 4, such as a chessboard. Specific points on the pattern
were identified for which the relative positions were known
and used to solve for the distortion coefficients. Every chess
square on the board was 5,5cm X 6,0cm. That was tested by
taking a picture of a ruler to check that the calibration was
working. As a result, the size of objects was successfully
estimated with an accuracy of +/- 0.2cm.

4.4. Bookkeeping

Only a basic bookkeeping system was ultimately imple-
mented due to several factors. Firstly, time constraints
arose from previously encountered hardware issues. In ad-
dition, the reliance on bagged data, which did not contain
the necessary timestamps for effective bookkeeping, also
contributed to the limited implementation. Furthermore, the
bagged data did not have the robot’s transformation, result-
ing in an inability to determine the view angle of the robot
automatically. As a result, the accurate positioning of ob-
jects in the environment could not be determined. As if the
previously mentioned problems were not enough, the robot
from the bagged data never revisited any of the locations
that it had already been. This meant that the testing of an
eventual bookkeeping system would have been impossible.

4.5. Patrol the Environment and Scan for Objects

The implementation of patrolling was not completed due to
the previously mentioned inability to connect the provided
laptops to the Turtlebot. As a result, only the initial pa-
trol was carried out. The initial patrol was intended to map

7



Figure 10: Performance of different models of YOLOv7
[3].

the environment and detect objects, with subsequent patrols
meant to monitor any detected objects. However, the inabil-
ity to establish a connection with the Turtlebot hindered the
full realization of this plan.

4.6. Generate a Textured Mesh of the 3D Environ-
ment

Generating a 3D representation of the environment was one
of the requested features. Our intended approach to solv-
ing this problem was to use a library called Voxblox [10]
since the existing techniques used, such as ORB-SLAM2,
would contain the information required to create a suffi-
ciently accurate textured environment mesh. However, this
was unfortunately not implemented since Voxblox required
a properly localized transform with a functioning camera
and depth stream.

4.7. Simulator

Parallel to work on the robot, there was an effort to get the
simulator to work. Gazeebo was the simulator that was tried
to be used. However, some problems getting the simulator
to work properly never got fixed. These issues were:

1. GPU pass-through

2. Rvis integration

The first problem mentioned was GPU pass-through. Be-
cause GPU pass-through never worked properly, the simu-
lator ran extremely slow, making it extremely unpleasant to
work with. This is because of the time actions took to per-
form. The actions performed usually took a few seconds to
register and made the program feel very unresponsive. The
second issue with the simulator was the connection to Rvis.
The integration with Rvis and Gazeebo did not work as in-
tended. More precisely the simulator provided no usable
sensor data that could be used for further work. Because of
the issues listed, the decision was made to put more energy

into getting the actual robot to work. This is because, at
the time, it seemed to be the best alternative to get work-
ing results. As the robot gave sensor data, such as camera
footage, that could be used in, and known to work with, the
YOLOv7 implementation.

5. Discussion

5.1. Mapping Environment for Localistion

The mapping functionality worked fine and would not nec-
essarily need a ton of extra work; the current implementa-
tion would not benefit a lot from having more time spent on
it, as it did not seem to have many issues and had a good
performance.

5.2. Navigating the Environment

Given that one of the key components of the project is about
the robot’s ability to navigate around in its environment, as
a stationary robot would not be very useful for the desired
purposes, it is certainly not the greatest situation that the
navigation could not go through much testing. The non-
ideal conditions that had to be worked in (i.e. the previously
mentioned connectivity issues and inability to make use of
the provided laptop and computers) made progressing with
this task difficult and, to an extent, hindered progress on
other tasks that built upon the navigation ability, such as
patrolling the environment and scanning for objects.

5.3. Detecting/Classifying Objects

Because major testing on third-party images was conducted,
some disadvantages could be improved upon. One disad-
vantage is that there was limited control over the objects
that were used in the dataset. This will limit the project to
testing on specific types of objects, which may not satisfy
the project’s needs and limit the objects’ diversity.

Detecting the object and giving it the correct label is es-
sential in this work, which is needed to be improved in this
conducted work. One solution to improve this is to use a
better version of the model in YOLOv7, which may require
additional computational resources. Access to more power-
ful computing resources and a faster router between the bot
and the computer can enable this improvement.

While the blacklist approach implemented as the final
solution represents a significant improvement over the pre-
vious methods in calculating the local position of solid ob-
jects, it has some limitations.

While the centre position approach is effective for solid
objects, it is also sensitive to the possibility of other ob-
jects being in front of the object in question. This could
lead to incorrect depth calculations for objects that are par-
tially occluded. To address this issue, one possible improve-
ment would be to use machine learning techniques to train

8



a model to identify appropriate points to calculate the depth
on.

5.4. Bookkeeping

The implementation of the bookkeeping system highlighted
the importance of having accurate and comprehensive data
when developing such a system. In this case, the lack of
timestamps and transformation information made it difficult
to accurately track the movements and actions of the robot,
which is crucial for effective bookkeeping. It could also be
noted that the inability to test the system due to the lack of
revisited locations hindered the development and evaluation
of the bookkeeping system.

One potential way to address these issues in the future
could be to prioritize the collection of more complete and
accurate data, including timestamps and transformation in-
formation, when developing a bookkeeping system for a
robot. However, as previously mentioned, the project was
plagued with non-working hardware which was the under-
lying cause to all these problems.

5.5. Patrol the environment and scan for objects

The inability to connect the laptops to the Turtlebot had sig-
nificant implications for the successful implementation of
the patrolling task. While the initial patrol was able to map
the environment and detect objects, subsequent patrols were
not able to be carried out as intended. This was a limita-
tion of the project, as monitoring detected objects was a key
component of the patrol plan. This limitation highlights the
importance of ensuring proper hardware setup in order to
successfully carry out robotics tasks.

5.6. Generate a Textured Mesh of the 3D Environ-
ment

Although this feature was not implemented, some potential
issues were identified One of the intended uses of this mesh
was virtual reality (VR), but the mesh itself could poten-
tially require additional processing to be suitable for such
an application. Due to the nature of how the data is col-
lected, Voxblox produces a mesh with holes in it. This is
caused by the limited amount of camera angles that a small
ground-based robot is able to capture. To improve the re-
sults, it would be beneficial to fill in the holes and make
the mesh more consistent with the environment. During the
research, no sufficient method for processing the mesh was
found. One potential approach would have been to run an
edge-loop detection algorithm that simply created new faces
for any edges of the mesh that did not already belong to a
closed face. This would create a closed mesh but would
also create artefact volumes behind objects that from some
angles would look odd and inaccurate.

Using Voxbox would also limit the environment from
containing any dynamic objects during capture since it

would create clear artefacts. In hindsight, a better approach
to explore would perhaps have been point cloud generation,
which is built up over time and become denser. This would
resolve the issue for fast-moving dynamic objects since they
would, hopefully, become noise.

Near the end of the project, another potential method for
creating a 3D environment representation was discovered,
neural radiance fields (NeRf)[8]. This is a rather new way
of representing an environment that is based on over-fitting
a neural network on the camera perspective images. The
initial proposal for NeRFs were based on the assumption
that the scene is static and would likely have similar effects
to that observed by Voxblox. However, a more recent study
has shown that it is possible to create a NeRF that accounts
for dynamic changes[11]. This would have been interest-
ing to explore more since NeRFs have a clear advantage
in visual fidelity over traditional techniques since it is able
to maintain both reflection and refraction. NeRFs are also
quite small in comparison to complex meshes and NVIDIA
has even shown that it is possible to make this a dynamic
property through variable bitrate [13].

5.7. Simulator

As mentioned many times in this project not everything
went as planned, this also reflects the effort when trying to
get the simulator to work. Many of the problems encoun-
tered were partially due to the requirement to use a Docker
environment. GPU pass-through would not have been an is-
sue if it were possible to work outside the Docker environ-
ment. The issues faced were mainly due to the use of the
Docker environment, but it was the only alternative avail-
able because the operating system requirements for running
ROS2 Galactic on the Turtlebots were different from the
operating systems on the available computers. Running the
simulator on personal computers also had issues, mainly re-
lated to windows. Potential improvements to the situation
would have been to run the simulation on a machine that
had the correct operating system and not in a docker con-
tainer. This would remove both the issue with GPU pass-
through, though, in this situation, the problems with the
physical robot would also be solved. But being able to work
in the simulation would have clear benefits like being able
to test code without needing to deal with the robot. There is
also the benefit that more group members could work with
the robot at the same time, something that is hard when you
only have one robot.

6. Conclusions
With an initial anticipation and excitement for the project
the group unfortunately leave this project with a feeling of
wanting to do more. To have to spend hours upon hours
researching why our specifically configured environments
dose not work was not the idea of the project we had an-

9



ticipated. However, this project did teach us how to focus
on what was important and to react and adapt to situations
that were unforeseen. This is of course the reality for many
projects but in this case, it was more so than what we had
previously experienced.

References
[1] Turtlebot 4 - quick start, 2022.
[2] Z. T. A. M. Helen Oleynikova, Marius Fehr and others. Real-

Time SLAM for Monocular, Stereo and RGB-D Cameras,
with Loop Detection and Relocalization Capabilities, 2018.

[3] W. Kin-Yiu. yolov7. https://github.com/
WongKinYiu/yolov7, 2022.

[4] S. R. Kukil. Yolov7 object detection paper explanation and
inference. 2022.

[5] S. Macenski, F. Martin, R. White, and J. G. Clavero. The
marathon 2: A navigation system. In 2020 IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems
(IROS). IEEE, oct 2020.

[6] S. Macenski, F. Martin, R. White, and J. Ginés Clavero. The
marathon 2: A navigation system. In 2020 IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems
(IROS), 2020.

[7] J. Mason and B. Marthi. An object-based semantic world
model for long-term change detection and semantic query-
ing. In 2012 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems, pages 3851–3858. IEEE, 2012.

[8] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Bar-
ron, R. Ramamoorthi, and R. Ng. Nerf: Representing
scenes as neural radiance fields for view synthesis. CoRR,
abs/2003.08934, 2020.

[9] R. Mur-Artal and J. D. Tardós. Orb-slam2: An open-source
slam system for monocular, stereo, and rgb-d cameras. IEEE
transactions on robotics, 33(5):1255–1262, 2017.

[10] H. Oleynikova, Z. Taylor, M. Fehr, R. Siegwart, and J. Nieto.
A library for flexible voxel-based mapping, mainly focusing
on truncated and Euclidean signed distance fields, 2022.

[11] A. Pumarola, E. Corona, G. Pons-Moll, and F. Moreno-
Noguer. D-nerf: Neural radiance fields for dynamic scenes.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 10318–10327, 2021.

[12] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You
only look once: Unified, real-time object detection, 2015.

[13] T. Takikawa, A. Evans, J. Tremblay, T. Müller, M. McGuire,
A. Jacobson, and S. Fidler. Variable bitrate neural fields.
In ACM SIGGRAPH 2022 Conference Proceedings, SIG-
GRAPH ’22, New York, NY, USA, 2022. Association for
Computing Machinery.

10

https://github.com/WongKinYiu/yolov7
https://github.com/WongKinYiu/yolov7

