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1 Introduction

This section introduces the project, describes the background, and outlines
the questions to be investigated.

1.1 Background

The company, Combitech, has tasked the project group to create a model for
recognizing anomalies from video streams. The videos are supposed to be
obtained from drones that patrol the same area every day in an archipelago-
like environment. The recordings are to be compared to determine if the
difference constitutes an anomaly. The overlying purpose of the model is
that it should be able to be included in rescue missions and surveillance.
The goal of this project is to implement a model that can identify if a video
contains an anomaly or not. Classifying the anomalies and understanding
what kind of anomalies are present, is not part of the assignment, the interest
lies in highlighting and locating the anomalies.

This report will investigate and compare two different models: an unsu-
pervised and a weakly-supervised model. The two models will be evaluated
according to their accuracy and ability to identify anomalies. The unsu-
pervised approach will use Autoencoders (AE) and the weakly-supervised
approach will use Multiple Instance Learning (MIL). Due to limited access
to data, the model training data will consist of drone videos in a desert-like
environment for the unsupervised model, and surveillance footage from the
UCF-Crimes dataset for the weakly-supervised model.

1.2 Anomalies

An anomaly in this project is something that deviates from normality and
what is expected. In the newly created datasets, this equates to an environ-
ment without people, cars, boats, and drones. In the UFC-Crimes dataset,
this equates to an environment where no crime is accruing.

1.3 Question statement

The questions to be answered in this project are the following:

• What is the difference between the two solutions?

• What are the pros and cons of each model?

• What have the project members learned during this project?
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1.4 Related Work

Anomaly detection is a classical and widely researched area in computer
vision. Techniques are typically divided into three categories: supervised,
unsupervised, and weakly-supervised. The correct method depends on the
context and available data.

In a study by Waqas et al. [1] they proposed labeling entire videos
instead of individual frames for training a Multiple instance learning model,
making the model weakly-supervised. The model identifies when something
anomalous happens in a surveillance video where an anomalous act is an
illegal activity. In this study, the videos are divided into bags of equal size,
the bags are placed into a positive bag and a negative bag. The positive bag
has a video section from a positively labeled video and the negative bag from
a negatively labeled video. A neural network can then train on these bags,
one negative and one positive at a time, and tries to determine which of the
clips that are positively labeled. The study also introduces a dataset with
128 hours worth of videos from surveillance videos. The proposed method
was found to achieve much higher true positive rates than other methods
used in the study.

In unsupervised learning, Jie Yang et al. [2] divided image-level anomaly
detection into four groups: density estimation, One-class classification, im-
age reconstruction, and self-supervised classification. The density estima-
tion techniques estimate the distribution of normal images and detect if a
newly observed image is abnormal by testing against the established dis-
tribution. Typical methods are Gaussian mixture, Nearest Neighbor, and
kernel density methods. One-class classification methods attempt to con-
struct a boundary between normal and abnormal data in the feature space,
for example, Support Vector Machines. Self-supervised methods attempt to
learn unique and more significant characteristics of normal samples through
self-supervised training. By learning the features of normal samples, the
model can then distinguish abnormal images without the learned character-
istics. Image reconstruction methods compress images to a low dimensional
latent representation and then attempt to reconstruct the image and mini-
mize the reconstruction error. Here typical methods are different variations
of AEs which is also one of the proposed solutions in this report.

1.5 Hypothesis

The expected outcome of the project is two models that can discern if
anomalies are in any given video. The chosen weakly-supervised method is
expected to be better than the chosen unsupervised method when it comes
to accuracy and false positives, because of the labels on the videos.
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2 Method

This section describes the methods used to obtain the results presented in
the report.

2.1 Preprocessing

A training point is a sequence of images taken from videos. These videos are
downscaled from their native 2048p to 124p, then two frames per second are
saved to the image sequence. The videos are manually labeled as anomalies
or without anomalies, this information is also saved for the image sequence.

2.2 Weakly-Supervised

Labeling data can be very time-consuming, especially for video anomaly
detection since deciding what an anomaly is and when it occurs in a video
can be hard to decide. Weak supervision is done by assigning video-level
labels, so instead of certain frames being labeled the entire video is labeled
either normal or anomaly. This makes the labeling easier but instead means
that the model will have to learn how to find the anomalies.

2.2.1 Multiple instance learning

In order to learn from weakly labeled examples, Multiple instance learning
(MIL) is used. For each video, a bag of video segments is created. If a
bag contains a video with an anomaly the entire bag will be labeled as
anomalous, otherwise, the bag will be counted as normal. The goal here is
for the model to find anomalies in videos without being explicitly trained
on where these anomalies occur or what they look like.

2.2.2 MIL for video anomalies

The model is fed batches of bag pairs, one bag with an anomaly, and one
normal bag. Each sample, one normal and one anomalous bag, will be
fed through the model so that each segment gets scored between 0.0 − 1.0,
where 0 is normal and 1 is an anomaly. This creates a series of scores for
each video. The highest score from the normal and anomaly video are used
for a ranking loss, in order to push anomalies closer to 1 and normal videos
closer to 0. Using some prior knowledge about anomalies, they tend to be
rare and should also be continuous in time, therefore, sparsity and temporal
smoothness terms are added to the loss function given by equation 1.
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Figure 1: Network topography for MIL video anomaly detector.
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Ba & Bn in Equation 1 are the anomalies and the normal bag with video
segments, V i is a segment from a bag, f is the scoring model, and λ1&λ2

are constants for the sparsity and temporal smoothness. The MIL ranking
loss was first used by Waqas et al. [1] whose model was used as the base.
Figure 1 shows a diagram of how the model is trained.

2.3 Unsupervised

Aside from the weakly-supervised solution, an unsupervised solution is used.
Unsupervised learning refers to machine learning algorithms that are trained
using unlabeled data. Unsupervised algorithms discover underlying struc-
tures and patterns without human intervention. The ability to discover
similarities and differences in data makes unsupervised learning ideal for ap-
plications such as anomaly detection, because, it can discover unusual data
points [3]. In supervised learning, a data set D consists of M observations
xi that have one label or expected value yi, with i = {1,..., M}. In unsuper-
vised learning, a data set can instead be described as D = {xi|i = 1, ...,M}
[4], where each observation xi is unlabeled.

2.3.1 Autoencoder

An autoencoder (AE) is a special type of neural network, that is primarily
designed to learn a compressed and informative representation of some input.
This is by compressing the input and then reconstructing it back as similarly
as possible. An AE consists of three main components which are: an encoder
A, a decoder B, and a latent feature representation. The problem is to learn
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Figure 2: Autoencoder

the functions A : Rn → Rp and B : Rp → Rn to minimize the reconstruction
loss ∆E, where n is the size of the input, and p is the size of the latent
feature representation [5]. The described AE is depicted in Figure 2.

Training the AE to minimize the reconstruction error means learning the
functions A and B to minimize the difference between the input xi and the
reconstruction x̂i. The reconstruction can be formulated as x̂ = B(A(x)) =
f(x), and the perfect reconstruction would be to learn the identity function
which would not be very informative for this project. Therefore, a bottleneck
is implemented, which is achieved by making the latent feature dimension
much lower than the input dimension [4].

2.3.2 Convolutional Autoencoder

To be able to capture 2D structures in images and videos, the AE can be
adjusted by introducing convolutional layers. The adjusted AE is called the
Convolutional Autoencoder (CAE) and in addition to convolutional layers,
it also has shared weights that preserve spatial locality. The reconstruction
is obtained by using x̂i = Act(

∑
h ∗W + b), where * is a convolution and

h represents a feature map given by h = Act(x ∗W + b) [6].
The training of the CAE is just as for other neural network models done

by using a backpropagation algorithm. A paper by Jonathan et al. [6] pro-
poses a solution that minimizes the mean square error, and in another paper,
Usha and Vamsidhar [7] propose a CAE that uses Binary Cross Entropy as
its loss function instead. To obtain translation-invariant representations,
a max-pooling layer is often introduced. Max-pooling calculates the maxi-
mum value in each patch of each feature map, see Figure 4. The max-pooling
down-samples the data by a constant factor and has been shown to improve
the filter selectivity. In other words, highlighting the most present features
in a patch [6]. Another layer that can be applied to improve the performance
of deep neural networks is Batch Normalization (BN). BN is a technique to
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Figure 3: Anomaly detection with an autoencoder

Figure 4: Convolutional layers and Map Pooling

standardize the inputs to layers and has the effect of stabilizing the learning
process. Wang et al [8] proposed an AE solution that applied a batch nor-
malization layer before the activation functions. This is to generate a stable
distribution of activation values during training and to avoid overfitting.

To classify a video or image as an anomaly, a threshold value is selected.
The value decides how much the output reconstructions are allowed to devi-
ate from the input, see Figure 3. A large threshold means that reconstructed
frames are required to differ significantly from the input to be classified as an
anomaly. A too-large threshold value may lead to anomalies being wrongly
classified as normal. On the other hand, a small threshold means that the
reconstructed frames should be similar to the normal frames, and can result
in classifying normal frames as anomalies. The threshold is selected based
on the average error on a validation set and tuned in such a way that the
model separates the anomaly and the normal frames with high accuracy.

2.4 Evaluation

The problem of identifying anomalies in images or video frames can be seen
as a classification problem. The models will therefore be evaluated based on
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their accuracy in classifying anomalies and normal frames. As anomalies are
generally understood to be rare, the data set will consist of mostly normal
data points, which means that the models are primarily evaluated based on
their ability to separate the classes. With that said, the models will also be
evaluated based on f1-score, precision, and recall.
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3 Results

In this section, the results given of each method will be presented.

3.1 Weakly-supervised

The following section presents the used datasets, the model, the model ar-
chitecture, and performance metrics for the Weakly-supervised method

3.1.1 Dataset

At first, the model was trained with the custom drone footage, however,
the model did not learn well at all, so instead, the UCF-crimes dataset
was used to train and evaluate the weakly-supervised MIL model. The
dataset was created by Waqas et al. [1] and uses stationary footage labeled
into eight different classes, one normal class, and seven anomalous classes:
Burglary, fighting, arrest, abuse, arson, and explosion. The full dataset
contains around 1300 hours of footage, due to computational and memory
limitations, only a subset of all normal and anomalous videos was used.

3.1.2 Model

The MIL model uses a pre-trained 3D-CNN called Seperable 3D CNN for
feature extraction as proposed by Xie et al. [9]. The features are fed into
three fully connected layers to compute the anomaly scores, as seen in Figure
1. Each batch consisted of 30 bag pairs, where each bag was a video that
had been split into 32 clips, these clips were the segments that the model
evaluated and scored.

The score the model gives to five videos of each anomaly type and 35
videos labeled normal can be seen in Figure 5.

3.1.3 Evaluation

Below is the evaluation of the model.

Table 1: Results for weakly supervised

Dataset Accuracy Precision Recall F1-score

UCF-Crimes 78%
Anomaly 87% 57% 69 %
Normal 68 % 91 % 78%
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Figure 5: Shows the temporal scores for the 35 normal and 35 anomaly test
videos.

Table 2: Confusion matrix for UCF-Crimes

Predicted Anomaly Predicted Normal

True Anomaly 20 15

True Normal 3 32

3.2 Unsupervised

The following section presents the used datasets, the model, the model ar-
chitecture, reconstructions, and performance metrics for the unsupervised
method.

3.2.1 Dataset

The evaluation was done on two different created datasets. Dataset 1 was
the original dataset where the anomalies could be in different colors or im-
ages from different environments, see Figure 8. Dataset 2 consisted of 8
videos filmed from the same area from different angles and the training was
performed on all the videos. The anomalies consisted of shorter clips from
the videos where self-produced anomalies were edited in, see Figure 9. The
two datasets consisted of 200-500 images of resolution (124x124). 80% of the
images were assigned to a training set, 10% for a validation set to determine
the threshold, and 10% for final unbiased testing.
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(a) Video of explosion
anomaly.

(b) Video of arson
anomaly.

(c) Normal video of a
parking lot.

Figure 6: Correct prediction

(a) Video of arrest anomaly.
(b) Normal video of an office where

the light is turned off.

Figure 7: Incorrect predictions.

Figure 8: Example images from dataset 1

Figure 9: Example images from dataset 2
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Figure 10: Network Architecture, C=convolution layer, MP=max-pooling,
R=ReLU, L=Linear, CT=Transposed Convolution, BN=Batch Normaliza-
tion, S=Sigmoid

3.2.2 Model

The final CAE model consisted of three convolutional layers, three max-
pooling layers, and three transposed convolutional layers to be able to recon-
struct the data. The network also contained six ReLU activation functions
in both the encoder and the decoder. Since input images were normalized
between (0,1), the network ended with a sigmoid activation function to be
able to calculate the loss. The loss functions tested were MSE and BCE and
it turned out that MSE gave the best results in the experiments. To see
the complete network with the corresponding parameters, see Appendix 1.
Settings that were used were learning rate=0.01, the number of epochs=200,
and batch size=20. As an optimization technique and to train the networks,
the Adam optimizer was chosen which is as a replacement optimizer for
gradient descent.

3.2.3 Evaluation

The calculated metrics when running the model on dataset 1 and dataset
2 are shown in Table 3. The accuracy represents how close the anomaly or
normal classifications were to their true value. Anomaly is seen as the true
positive.

Table 3: Results for unsupervised

Dataset Accuracy Precision Recall F1-score

Dataset 1 78.7% 100% 62.8% 77.2%

Dataset 2 50.9% 66.7% 16.7% 26.7%
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The classification of anomalies and normal images on the test data from
both datasets is shown in Figure 4 and Figure 5.

Table 4: Confusion matrix for dataset 1

Predicted Anomaly Predicted Normal

True Anomaly 22 13

True Normal 0 26

Table 5: Confusion matrix for dataset 2

Predicted Anomaly Predicted Normal

True Anomaly 10 50

True Normal 5 47

3.2.4 Reconstructions

In Figure 11 and Figure 12 the original input are compared with reconstruc-
tions for number of epochs=(0, 10, 20, 200). As the reconstructions are of
the same dimension as the input images, a pixel difference can easily be
calculated. The difference can be used to show where the images differ the
most and to identify anomalies, see Figure 13.

4 Discussion

In this section, the research questions, the results, and future work are
discussed.

4.1 Research questions

The most significant difference between the two models is the weakly-supervised
and unsupervised approaches. One of the models requires labeled data to
some extent and the other does not. If the data needs to be labeled, it
requires someone to do it, which can be time-consuming and tedious. Since
most machine learning models require large amounts of data, labeling can
be a very huge process and can become a large part of a project. In the
context of anomaly detection, the normal is often by far the largest part,
and getting through large data sets to find unusual events can be difficult.

The pros of using AE are especially that they can work in an unsuper-
vised manner and there is no need for labeling data. Autoencoders can have
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Figure 11: Batch of input images from dataset 1 and reconstructions after
0, 10, 20, 200 epochs

Figure 12: Batch of input images from dataset 2 and reconstructions after
0, 10, 20, 200 epochs
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Figure 13: Input images, reconstructed images, and the pixel difference of
an image batch from dataset 2.

different areas of use which make them flexible, but they are not necessar-
ily the best in any area. Autoencoders work well for extracting features as
seen in Figure 11 and Figure 12 where reconstructions are reasonably simi-
lar even though they are reconstructed with significantly fewer dimensions.
The drawbacks are that they require a lot of data, and there are many pa-
rameters to tune where changes may have little or great significance. The
relation between the training data and the test data is strong and if the
different data sets are not representative of each other, strange results can
be obtained. The results of the models can be hard to interpret and can give
you an average of the input, reconstruct the images exactly, or something
in between. Since the dimensions of the input and output are the same,
comparisons can easily be made, which can be beneficial when, for example,
locating deviating pixels. This is shown in Figure 13 where we can see that
e.g. the blue line, the turquoise car, and the dog are clearly captured.

As the MIL model is a weakly-supervised method, it has similar draw-
backs as other supervised methods when it comes to classification. The
model has a difficult time classifying anomalies that are not distinct and do
not have enough training data. Therefore, this method needs a lot of data
in order to be accurate. On the other hand, the model can be trained to
reliably find anomalies, given that the anomalies are well represented in the
dataset. This gives the method a very high rate of true positives and a low
rate of false positives. Besides this, the score given to classify each bag of
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pictures is directly a certainty the model has of the classification, however,
it does not tell where in the picture the anomaly lies.

During the course of the project, the group members have learned and
experienced working with a real AI and machine learning project. The
project group was divided into two parts and from that, the members learned
and tested different techniques. We have realized and learned that access to
data can be complicated and that you may need to create your own datasets.
We have learned how to create an image dataset using movies, that can then
be used to train and test different models. We have also learned that you
cannot always expect your customer to provide the data that is needed for
your solutions.

The group that worked with AE has learned about its use cases which
are not only anomaly detection. AE can also be used for data denoising,
dimensionality reduction, data generation, data compression, and feature
extraction.

The group that worked with Multiple instance learning learned that
while a method usually is used for traditional supervised classification of
data, it may have more uses, for example in this project, where MIL is used
to classify videos through weakly supervised data.

4.2 Results

In this section, the results for both of the models are discussed. The differ-
ence between results from papers, why there is a difference, and what can
be done next to improve the results are also discussed.

4.2.1 Weakly-supervised

As seen in figure 5 the model was especially good at classifying arson and
explosion, while fighting and abuse were only classified correctly two out
of five times. This is likely because arson and explosion are quite distinct
compared to other anomalies and the normal video, as they are the only
ones that contain fire or smoke. Fighting and abuse on the other hand
are both less distinct, involving shorter disputes such as a single punch
toward a person or pet. This makes it much more difficult for the model to
differentiate these anomalies from the normally labeled video. In order for
the model to better classify these anomalies there would likely need to be
even more data of this type.

Overall, the model performs well when classifying the UCF-dataset, as
seen in Table 1 and Table 2. Potential improvements would be more to
use more data, trying out different backbones for feature extraction, and
trying different model configurations for the linear classifier. Due to time
constraints, there was almost no hyperparameter tuning. Different lengths
of the clips fed to the 3D-CNN, different learning rates, and trying different
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λ values for the smoothness and sparsity could possibly give better perfor-
mance. Since the 3D-CNN weights were frozen, all the features were com-
puted beforehand for faster training, however, testing an unfrozen network
could possibly allow for better results.

From doing some basic analysis of the results, it seems that the model
performed best when there were distinct and colorful anomalies, like fires or
smoke as seen in figure 6a or 6b. The model also seemed sensitive to abrupt
scene changes like what occurs in 7b where someone turns off the light. The
transition from light to dark triggers the anomaly score to spike which it
should not do.

4.2.2 Unsupervised

The results in Table 3 are not terrible but they are not good either. It
turned out that the result differed between the two datasets where the f1-
score obtained for Dataset 2 was really low in comparison to Dataset 1.
One problem with the results is that they varied a lot from experiment to
experiment. This is probably because the results are dependent on how the
data is distributed between training, validation, and testing. A reason for
this behavior is probably because the data set is too small. A more reliable
result could have been given if a larger and more qualitative dataset was
available. Available movies found were limited and the movies could only
be sampled to a certain limit to not overfit. It was also difficult to store too
many videos and images due to the availability of data memory.

The results in Table 4 and 5 shows that for true normal frames, it was
unlikely that the model would predict wrong. This could mean that the
model is very adapted to the training data, which is the normal environment.
It is not necessarily bad because the most important thing for the model
is to be able to separate normal and anomaly frames and not reconstruct
frames perfectly. It was more difficult to predict anomalies as the model
could reconstruct most parts of images except the anomaly in a good way,
which gave a small reconstruction loss.

The objective of the project was to recognize anomalies in video streams,
but for the unsupervised approach, the project has rather become for images.
First, movies are framed to be able to create image sets, then the models
can be trained on these images. The models do not accept a continuous
flow of images, first, videos must be preprocessed. For the AE, support was
first implemented for images where the training data consisted of randomly
selected images from the normal environment. This was done to first see if
it was possible to extract characteristics from a certain environment. Then,
support was implemented to take 10 images in a sequence to resemble a
movie. The first approach gave better results and the second approach was
significantly slower.
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4.2.3 Future work and improvements

We believe that the CAE results we obtained were reasonably consistent
with our expectations when it comes to reconstructing frames and extracting
important features. Some results were a little disappointing but it is hard
to say if that depends on the model or the dataset. To improve the results
further, the AE solution could have been made more advanced by adding
components, for example, M. Zaighan et al. [10] proposed a solution with
an AE as a generator in a generator/discriminator network and not as the
complete solution. Another solution could be to use Elvan and Osmans
solution [11], to use optical flow along with the CAE, which was proved to
outperform CAE by 14.3 percentage points.

5 Contributions

• Ludvig - Implemented the unsupervised model, contributed largely to
the unsupervised method, and the unsupervised results, and created
all images, figures, and tables used for unsupervised. Was in part
responsible for the unsupervised approach.

• Felix - Implemented the weakly-supervised model, contributed to cre-
ated all images, figures and tables used for the weakly-supervised re-
sults. Was in part responsible for the weakly-supervised approach.

• Peter - Contributed in the form of planning, gathering video material
for dataset, taking part in creation of the weakly-supervised model,
and writing part of report, pertaining to the weakly-supervised model.
Was in part responsible for the weakly-supervised approach.

• Hannes - Contributed by creating data-sets, taking part of creating
the unsupervised model, testing different loss functions, writing parts
the report with a lot of focus on the method chapter. Was in part
responsible for the unsupervised approach.
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6 Appendix 1

Component In channel Out channel Kernel Stride Padding Dim

Input - - - - - (124x124)
Conv2d 3 15 (3,3) (1,1) (1,1) (124x124)
MaxPool2d - - (2,2) - 0 (62x62)
ReLU - - - - - (62x62)
Conv2d 15 30 (3,3) (1,1) (1,1) (62x62)
MaxPool2d - - (3,3) (1,1) (1,1) (31x31)
ReLU - - - - - (31x31)
Conv2d 30 60 (3,3) (1,1) (1,1) (31x31)
MaxPool2d - - (3,3) (1,1) (1,1) (15x15)
ReLU - - - - - (15x15)
Flatten - - - - - 15*15*60
Linear - - - - - 15*15
Linear - - - - - 15*15
Unflatten - - - - - (15x15)
ConvTranspose2d 60 30 (3,3) (2,2) 0 (31x31)
ReLU - - - - - (31x31)
BatchNorm2d 30 30 - - - (31x31)
ConvTranspose2d 30 15 (3,3) (2,2) 1 (61x61)
ReLU - - - - - (61x61)
BatchNorm2d 15 15 0 3 8 (61x61)
ConvTranspose2d 15 3 (3,3) (2,2) output 1 (124x124)
ReLU - - - - - (124x124)
BatchNorm2d 3 3 0 2 10 (124x124)
Sigmoid - - - - - (124x124)


