
Anomaly detection from video streams in reconnaissance missions

Group 3

December 22, 2022

1 Introduction

This chapter will give an introduction to the domain of
the problem. Additionally, it will provide an explicit
description of the problem including delimitation and
possible solutions.

1.1 Problem domain

The customer Combitech works with the project
WARA Public Safety (PS) which is a project within
Wallenberg Autonomous Systems and Software Pro-
gram (WASP). The objective of the project is to pro-
vide a research arena for public safety, enabling large
scale demonstration environments. In terms of the re-
search areas, there is quite a large diversity including
(but not limited to) [20]:

1. Image processing.

2. 3D-tracking.

3. Video compression.

One application of importance, which is related to all
of the research areas above, is autonomous search-and-
rescue for usage close to the sea. Due to the diverse na-
ture of the task, there is a need for cross-functionality
of the tool used to solve it. One of the solutions is by
the usage of drones, in principle, the drones are used to
monitor an area (for example an archipelago) by mak-
ing periodic autonomous flights, and upon the discovery
of an anomaly (for example a missing person) it reports
to some central unit that sends out a manned mission
to investigate. It is the task of anomaly detection from
drone footage that is to be investigated.

1.2 Problem description

Combitech has tasked us with providing one or more
AI models that may be used to detect anomalies in
video streams. In particular, the video streams will be
provided from drone footage of a coastal region with
an almost exclusively native environment (for example
Gränsö in Västervik), generated from the monitoring
missions performed by the drones. The definition of
an anomaly for this purpose is very contextual, that is,
something which changes from one observation to an-
other. However, since the environment is exclusively
native, any man-made objects are to be considered
anomalies in this instance, therefore a list of possible

anomalies will include: a person, a car, a balloon, and
other man-made objects. However, data labeled with
such anomalies does not exist and thus creating such
data is considered part of the problem.

1.3 Delimitation

The task of anomaly detection, especially for video, is
not trivial and in order to make it feasible for this
project, some delimitions needs to be done. Firstly,
in accordance with the directions of Combitech, it has
been chosen to start by considering anomaly detection
for images, as this can (with a fair bit of work) be fur-
ther developed into videos in a natural manner. Sec-
ondly, due to a lack of data, the data used for the model
is not restricted to drone footage of the archipelago in
Västervik.

1.4 Possible solutions

When considering possible solutions for the problem of
anomaly detection in video streams, the main aspects
for consideration were:

1. Performance.

2. Complexity of implementation.

3. Data requirements.

4. Existing literature.

Judging from the above mentioned aspects, the follow-
ing methods were investigated further.

1.4.1 CNN and outlier detection algorithm

Note: Outlier/Anomaly is used as synonyms in this
text and represents the same thing.

For the problem of anomaly detection in images, a com-
bination of deep feature extraction and an unsuper-
vised classification method could be used. For this a
pretrained Convolutional Neural Network (CNN) could
be used for feature extraction and an outlier detec-
tion algorithm, like One-Class Support Vector Machine
(OCSVM), for unsupervised classification [3].

1.4.2 Transformers

A transformer in machine learning is in general a model
which maps sequences-to-sequences, and was firstly
used in natural language processing. However, due to

1



the temporal nature of videos, they can be applied for
this purpose as well. In particular, tubelets (which is
a fixed region of a set of overlapping images within a
video sequence) can be used as input to the transformer
in order to capture long-term spatial-temporal depen-
dencies (eg. anomalies contextualised by time) [12].

1.4.3 Autoencoder

An autoencoder is a neural network which learns to
recreate the input by learning a representation of the
underlying set of data the input was taken from.
Anomaly detection can be performed by combination of
comparing the input and output of the neural network
as well by finding the probability that the input was
drawn from the learned representation (which should
be as close to the real underlying set of data as possi-
ble) [1].

1.5 Chosen solutions

From the possible solutions two were selected for fur-
ther exploration.

1. CNN and an outlier detection algorithm was se-
lected, since the problem domain is comparable to
the problem domain described in [3] which uses a
CNN and OCSVM, and because the results pre-
sented in [3] show good results.

2. Transformers was not selected despite good per-
formance [12] since the complexity was thought
to become a hindrance to development.

3. Autoencoders was selected, since the experimen-
tal results show good performance, and because
the model complexity seemed simple when com-
pared to anomaly detection with transformers [1].

1.6 Hypothesis

The use of a pretrained CNN and a outlier detection
algorithm is expected to produce good results for the
problem of anomaly detection in images. However it is
expected that given a pretrained CNN used for feature
extraction, some anomalies may be missed due to the
CNN not being trained to extract features that capture
the difference between anomalies and non-anomalies
well.

Autoencoders appears more complex than the CNN
and OCSVM method and thus is expected to require
more development. Nevertheless it is expected to per-
form good on the task of anomaly detection in images.

2 Method

This chapter gives an introduction to both the datasets
used, as well as the algorithms used for solving the prob-
lem. Additionally, it will provide the necessary context
needed to understand the algorithms on a fundamental
level.

2.1 Datasets

The datasets used were constructed based on a dataset
acquired from University of California San Diego
(UCSD). The dataset provided by UCSD contains
video-sequences from a stationary camera overlooking
a pedestrian walkway. In order to use the dataset for
anomaly detection in images, the video-sequences were
partitioned into sets of images. UCSD provides images
from two different perspectives and the dataset is thus
partitioned into two subsets, Peds1 and Peds2, each
containing images from a specific perspective [19].

Figure 1: Image from the pedestrian dataset (Peds1
subset).

Figure 2: Image from the pedestrian dataset (Peds2
subset).

As the stationary cameras are located at an elevation
towards the walkway, they provide a good alternative
to videos captured by a drone. As to be expected, the
walkways mostly contains pedestrians, thus a pedes-
trian on the walkway does not classify as an anomaly.
The anomalies are instead all other objects, such as
bikers and vehicles. Since anomalies are not defined in
advance, the contextual definition of an anomaly is sat-
isfied. Examples of anomalies in the datasets are shown
below.

2



(a) Anomaly (bike) from the pedestrian dataset.

(b) Anomaly (van) from the pedestrian dataset.

Figure 3: Anomalies

Based on the dataset obtained from UCSD two new
datasets were created as follows:

• UCSD Baseline: Training images are com-
prised of training images from the Peds1 subset,
these do not contain any anomalies. For testing
and validation, images containing large anomalies
(cars and vans) were manually selected from the
Peds1 subset. Testing and validation also require
some normal images and these are selected from
the Peds1 subset as well. This dataset provides
a good baseline for anomaly detection in images
and is therefore used to test model performance.

• UCSD Combined: This dataset is an extension
to the UCSD Baseline dataset and thus contains
all the images that the UCSD Baseline dataset
contains. This dataset further provides all the
training images from the Peds2 subset. Testing
and validation images from the Peds2 subset were
also added to this dataset with no restriction on
the size or type of anomaly. This dataset provides
a framework for testing the generalization prop-
erties of the model as the dataset contains images
from multiple angles.

2.2 Preliminary

Some background knowledge of neural networks is as-
sumed from the reader, however, in order to fully grasp
how neural networks are used in this context, there is
a need for additional knowledge.

2.2.1 Function Approximation

Neural networks can be used in the context of function
approximation, and a motivation for this is given by
theorem 1 of [11], which is shown below.

Theorem 2.1.
Let (Rn,M, µ) be a measure space. It holds that for ev-
ery ϵ > 0 and every f ∈ Lp(Rn,Rm), where p ∈ [1,∞),
there exists a neural network F , with ReLU as the ac-
tivation function, such that∫

Rn

∥f(x)− F (x)∥pdµ(x) < ϵ

In conclusion of Theorem 2.1, any function of practi-
cal use can be modelled using a neural network with a
ReLU activation function.

2.2.2 Conditional Distribution

Neural networks can also be used in the context of re-
gression (or classification). Disregarding dimensions of
the components, consider a sample of predictors (xi)i∈I

and corresponding responses (yi)i∈I , where it is as-
sumed that

yi = F (xi;W ) + ε

for some weights W and error ε ∼ N(0, σ2). Under the
assumption that the neural network is trained (thus W
being fixed), the responses are stochastic, and have the
following conditional distribution

Y | X,W ∼ N(F (X;W ), σ2)

Under this probabilistic framework, the objective is
to maximize the likelihood P[X,Y | W ], which corre-
sponds to minimizing the following expression [2]

1

2

∑
i∈I

∥F (xi;W )− yi∥2

2.3 CNN and outlier detection algo-
rithm

This method uses a Convolutional Neural Network
(CNN) together with a outlier detection algorithm. The
CNN is used for feature extraction whilst the outlier
detection algorithm is used to classify an image as con-
taining an anomaly or not.

2.3.1 CNN

A CNN is a neural network that specializes in machine
learning that analyze images.

A CNN generally contains convolutions layers and pool-
ing layers. Shortly explained, a convolutional layer uses
a kernel which ”sweeps” over the input image and per-
form convolutions which it will send the results of to
the next layer.

3



A pooling layer summarizes information by e.g. tak-
ing the maximum of four values to represent those four
values in the next layers.

The last layers of a CNN are usually fully dense lay-
ers where the CNN uses the features it has learned to
return values that can be used for prediction.

2.3.2 GoogLeNet

”GoogLeNet” is a variant of an Inception network which
is a type of CNN architecture that uses inception lay-
ers. An inception layer is a layer in a CNN where mul-
tiple different types of convolutions are done and also
pooling. The idea is that instead of having to choose
one specific convolution or to do pooling, all is done
and then the network can learn how to best handle the
resulting information which is concatinated as output
from the layer. For feature extraction, a pre-trained
GoogLeNet is used. GoogLeNet has 1024 features in
the last feature layer, which are extracted and used in
the next step [16].

2.3.3 Normalization

After the CNN and before the outlier detection algo-
rithm, the normalized features are extracted from the
CNN using min-max normalization, which can be de-
scribed by

xi,norm =
xi −max(x)

max(x)−min(x)
(1)

2.3.4 EfficientNet

EfficientNet is a CNN model that proposes scaling up
the architecture in an efficient way [17]. The upscaling
process is often done by increasing the network horizon-
tally or vertically to increase precision [5], [6]. It is also
possible to increase the image size for better precision
[15], [7], [9]. EfficientNet makes use of a technique that
is called compound coefficient to scale up the model in
an efficient way. This is done by scaling up every di-
mension of the network and the image based on a set
of scaling coefficients. There exist seven models of Ef-
ficientNet, where Efficientnet B7 is the version that is
most up-scaled and has the highest accuracy and train-
ing time [17].

Efficientnet V2 is a more updated version of Efficient-
Net and is both faster and makes more efficient use of
its parameters than its predecessor [18]. This is possible
by using a combination of training-aware neural archi-
tecture search (NAS) and scaling. NAS is an automatic
way to design a neural network [22]. Efficientnet V2
shows state-of-the art performance in comparison to
other models on ImageNet ILSVRC2012 1. Efficient-
net V2 m/l are more up-scaled versions than Efficient-
net V2 s [18].

2.3.5 Outlier detection algorithms

An outlier/anomaly detection algorithm is used to de-
tect outliers in data. To find the best possible model,
three different outlier detection algorithms were used
and evaluated. Even though some of the models can
be trained with both anomaly and non-anomaly data
points, only non-anomaly data was used in order to
not make the models biased towards certain kinds of
anomalies.

2.3.6 One-class support vector machine

One-class support vector machine (OCSVM) is a outlier
detection algorithm. An OCSVM specializes in novelty
detection. It only trains on data that is considered
”normal” and will then classify data as either belong-
ing to the ”normal” kind of data or being abnormal.
In this case, the OCSVM will classify the normalized
feature vector extracted from GoogLeNet as abnormal
or normal. A OCSVM works by finding a boundary to
enclose non-outliers and then, if a new point is inside
this boundary, it is considered as a non-outlier and if it
is outside, it is conisdered an outlier [13].

2.3.7 Isolation Forest

The Isolation forest algorithm works by building a mul-
tiple isolation trees[10]. For each tree, the training data
gets partitioned until each data sample is isolated and
the main idea is that when using the tree on an outlier,
the path should be much shorter since outliers are few
and more distinguishable than non-outliers [10].

2.3.8 Local Outlier Factor

Local outlier factor (LOF) finds outliers by finding what
data points has a significantly lower density than it’s
neighbors. So in simple terms, the algorithm calculates
a density for each data point and then compares this
density to the k nearest neighbors. Any data point
that has a significantly lower density than its neighbors
is considered an outlier [4].

2.3.9 Evaluation Metrics

To compare different model architectures the F1-metric
was used. The F1-metric is the harmonic mean of the
Recall and Precision [21].

The following terminology is used. A True positive
(TP) is a correctly classified anomaly, true negative
(TN) is a correctly classified non-anomaly image.

Precision =
TP

TP + FP

Recall =
TP

TP + FN

(2)

F1 = 2 · Precision ·Recall

Precision+Recall
(3)

1https://www.image-net.org/challenges/LSVRC/2012/

4



2.4 Deep Autoencoder

2.4.1 Image Representation

An image Xi can be represented by a (real-valued) vec-
tor, composed of the following elements:

1. Zw - Pixel-value in the width-dimension.

2. Zh - Pixel-value in the height-dimension.

thus Xi ∈ Zw × Zh (for simplicity it is assumed that
the image is gray-scale).

2.4.2 Deep Autoencoder

Let (Xi)i∈I be a collection of vectors representing a
sample of images (all assumed to be drawn from the
same distribution, or more informally all assumed to
have the same underlying features). On a fundamen-
tal level, the objective of the autoencoder is to find a
representation of the underlying distribution of the im-
ages, this representation is found using a combination
of two approaches: Image Recreation and Latent Den-
sity Estimation. Before the approaches can be properly
explained, the architecture of the network must be pre-
sented.

2.4.3 Architecture

Figure 4 shows a sketch of networks architecture.

Figure 4: Network Architecture

Note that both the Encoder (blue) and the Decoder
(red) are actually dense neural networks. Furthermore,
the latent vector Z is d-dimensional. Using the previous
notation and from Figure 4, the following holds.

Z = f(X; θf )

Y = g(Z; θg)

where θf and θg corresponds to weights in the encoder
and decoder respectively.

2.4.4 Encoder

The encoder is a CNN that performs regression, the
response are the latent variables (green in Figure 4).
Figure 5 shows the encoder structure. The encoder
starts by expanding the image channels via convolu-
tion, then a downsampling block [1] is used to reduce
the image size; downsampling is repeated three times.

The downsampled image is then flattened and passed
to a fully-connected dense neural network that outputs
latent variables. In Figure 5 the sizes of the different
layers are shown and the values marked with an under-
score show tuneable hyperparameters. The tuneable
hyperparameter in the middle of the figure is know as
L1 size and determines the size of the whole network,
the last tuneable hyperparameter is latent size and thus
defines the number of latent variables.

Figure 5: Encoder Architecture. Layer sizes are shown
and tuneable hyperparameters are marked with an un-
derscore.

2.4.5 Latent

The latent layer is a lower-dimensional representation
of the original image. Under the assumptions that the
sample images are drawn from a distribution, the rep-
resentation is a random vector. In section 2.2.8 it will
be further elaborated on how the latent random vector
is utilized.

2.4.6 Decoder

The decoder is the inverse of the encoder structure
presented in Section 2.4.4. The decoder is therefore
a CNN with the same architecture as the encoder but
with the order reversed. It starts with a fully-connected
dense neural network taking latent variables as input,
it is then connected to three upsampling blocks [1] and
lastly a convolution to reverse the channel expansion
in the encoder structure. However, in order to reverse
convolutions, transposed convolutions need to be used.

2.4.7 Image Recreation

Feeding an image through the network, the image can
be used as both the regressor and response, thus al-
lowing optimization of the weights in the network to
be done by classical back-propagation. By only train-
ing the network using images without anomalies, the
network will learn to recreate these.

2.4.8 Density Estimation

In general, density estimation is the process of find-
ing the probability distribution of a random variable.
In this particular case, the density of the latent vector
Z is of interest. One common approach for this is to
assume a given distribution, such as Z ∼ Nd(·, ·). How-
ever, in this context this assumption is not preferable
and a more flexible alternative is needed. One such al-
ternative is a neural network as proposed in [1]. From
now on, this neural network will be denoted h and is

5



parameterized by θh. The overall objective of the net-
work is that, given a sample Z, be a able to estimate
the probability P[Z ∈ Z], assuming that

P[Z ∈ Z] = h(Z; θh).

More specifically, in [1] an autoregressive neural net-
work (ANN) was used. The key principle of an ANN is
the autoregressive part, which implies that it uses pre-
vious values to model current values. In this context,
previous and current values correspond to components
of a vector (ordered by the index). For Z ∈ Rd, an
ANN models the distribution of the second component
Z2 using the conditional distribution

P[Z2 ∈ Z2 | Z1] = h(Z1, Z2; θh).

More practically the autoregressive part was accom-
plished by applying a mask to a fully connected net-
work, ensuring that the predicted variable only depends
on the relevant input. To capture the probability of
component n of sample Z the network has multiple
outputs called bins. The network uses 100 bins per
variable, where each bin is denoted by BZn

i , where i is
the bin index and n is the component of the vector. The
bin indexes corresponds to the interval the bin covers,
expressed as [ i

B , i+1
B ] where B is the number of bins

and i is an integer in the interval [0, B − 1].

Each bin represents the probability of a value for a vari-
able and the sum of all bins (for a latent variable) is
1. The distribution of the latent variables is captured
by the weights through backpropagation. To assign a
probability to a (component of a) sample Zn, the value
of the bin corresponding to the interval containing Zn

is used.

A high value implies that the value for Zn is part of the
estimated distribution and therefore a normal input. A
low value implies that it is not part of the estimated
distribution and therefore an anomaly. So for example
since 100 bins are used, a value Z1 = 0.068 would mean
that the bin BZ1

7 would be chosen and the value in the
bin represents how well this latent variable matches the
distribution. The architecture for the density estimator
can be seen in figure 6.

Figure 6: Density estimator architecture

2.4.9 Loss function

Since the model consists of both a neural network and a
density model, both needs to be optimized during train-
ing. In [1], the following loss function was minimized

during training.

L(X,Y,Z; θf , θg, θh) = E[∥X−Y∥2 + λ log(h(Z; θh))]

where E is the expectation-operator and λ ∈ R is a
hyper-parameter. It can be noted that this loss function
corresponds to minimizing the Kullback-Leibler diver-
gence between the density model and the (true) latent
distribution. However, instead of using the combined
error, each of the error metrics was used separately.
These were defined as the following.

L1(X,Y; θf , θg) = E[∥X−Y∥2]
L2(Z; θh) = E[h(Z; θh)]

2.4.10 Training

The training and validation parts of the dataset were
used for model training. At the start of training, only
the autoencoder was trained using L1 as the loss func-
tion. After that, the trained autoencoder was used to
generate latent variables for the density estimator to
train on, using L2 as the loss function. The following
method was used for training both the autoencoder and
the density estimator.

First we decided a batch size, the number of training
samples that will be used in a forward and backward
pass. The training set was then split up into batches of
the predetermined size. Running all batches is called a
epoch. After a batch was run the weights of the model
were updated. To decide if the weight update was an
improvement of the model a validation test was per-
formed. For the validation test we used two different
approaches, No Ratio and Use Ratio described below.

No Ratio
This approach only uses normal images from the val-
idation data to compute the loss for the part of the
model being trained. A lower score implied a better
model so if the current score was lower than the previ-
ous best then the weights were saved and the best score
updated.

Use Ratio
This approach uses both normal images and images
containing anomalies from the validation data to com-
pute the loss for the part of the model being trained.

The score was defined as the loss value for the anomaly
images divided by the loss value for the normal images.
Here a score value implied a better model so if the cur-
rent score was higher than the previous best the weights
were saved and the best score updated.

2.4.11 Classification

Let θ = (θf , θg, θh)
T be the final weights after training,

and let (Xi)i∈I be a set of validation images. For each
sample, a reconstruction Yi = g(f(Xi; θf ); θg) is gener-
ated, and the density Zi = h(Xi, θh). For each sample
in the validation set, both the reconstruction- and the
density estimation-error can now be determined. Using

6



this information, an optimal partition of the space is
found using Quadratic Discriminant Analysis (QDA).

2.4.12 Quadratic Discriminant Analysis

Under the assumption that the respective errors are
drawn from a class specific (bivariate) normal distri-
bution, where anomalies and non-anomalies have their
own respective mean and covariance [8] (thus each is
forming a cluster in a sense). More formally, let the
(bivariate) error be defined as

Ei = (L1(Xi, Yi; θf , θg),L2(Zi; θh))
T

and C being the random variable corresponding if the
sample is an anomaly or not. Then, for i ∈ I it is
assumed that

Ei | C, µC ,ΣC ∼ N2(µC ,ΣC)

The classification is performed by estimating µC , ΣC

and C from the data, and then classifying a sample
based on the maximum posterior probability [14]

max
c∈{A,N}

P[C = c | Ei, µC ,ΣC ]

2.4.13 Classification, continued

In contrast to the regular use of QDA, the classification
is performed using a threshold for the posterior prob-
ability, instead of maximizing it. This provides addi-
tional resistance to outliers. The threshold is set by a
grid search during model validation. Tie breaks were
solved by selecting the smallest threshold, this provides
a model bias towards anomaly classification which is
preferred.

3 Results

3.1 CNN + Outlier detection algorithm

3.1.1 Separate- and cross-validation

The following table shows the F1-score and accuracy of
different outlier detection algorithms using either cross-
validation or a separate validation set for the tuning of
hyperparameters. This is further discussed in the dis-
cussion chapter. All of the following results is from
using the GoogLeNet CNN and testing on the baseline
dataset.

Outlier detection algorithm CV F1 Accuracy
OCSVM No 0.8353 0.8818
OCSVM Yes 0.5684 0.7637
LOF No 0.8536 0.8991
LOF Yes 0.8755 0.9049
iForest No 0.8924 0.9222
iForest Yes 0.8376 0.8905

Table 1: Results from using either CV or a seperate
validation set on different outlier detection algorithms.

3.1.2 Different combinations of CNN and out-
lier detection algorithm

The following table present the result when testing
two different CNN architectures other than GoogLeNet
combined with the three outlier detection algorithms.
The outlier detection algorithms were all tuned using a
separate validation set and tested on the test set. The
dataset used for these results was the baseline dataset.

Outlier detection algorithm CNN F1 Accuracy
OCSVM Efficientnet v2 s 0.9783 0.9827
OCSVM Efficientnet v2 m 0.9189 0.9308
iForest Efficientnet v2 s 1.0000 1.0000
iForest Efficientnet v2 m 0.9429 0.9539
LOF Efficientnet v2 s 1.0000 1.0000
LOF Efficientnet v2 m 0.9603 0.9683

Table 2: Results from using Efficientnet as a cnn model.

3.1.3 Results on combined dataset

From the results in the previous section it can be noted
that both iForest and LOF performed the same when
used with the Efficientnet v2 s CNN. To further evalu-
ate these and the confirm that Efficientnet v2 s works
better than Efficientnet v2 m additional tests were per-
formed on the combined dataset. The results can be see
below.

Outlier detection algorithm CNN F1 Accuracy
LOF Efficientnet v2 s 0.8417 0.9323
LOF Efficientnet v2 m 0.7302 0.8878
iForest Efficientnet v2 s 0.8123 0.8993
iForest Efficientnet v2 m 0.6770 0.8284

Table 3: Results from combined dataset.

3.2 Deep autoencoder

3.2.1 Baseline Quantitative

Results on the baseline dataset using the two autoen-
coder training methods is presented in tables below.
The results show that apart from some outliers, both
methods and most parameters seem to create well per-
forming models. It is clear that performance on valida-
tion data is not sufficient for model comparison using
this dataset and therefore a qualitative analysis is ap-
propriate.

7



Parameters Validation Test
Ratio L1 Size LR Latent Size Accuracy F1-score Accuracy F1-score
No 512 1e-2 64 1.0 1.0 0.9914 0.9891
No 512 1e-2 32 0.9812 0.9799 0.9827 0.9784
No 512 1e-2 16 1.0 1.0 0.9942 0.9927
No 512 1e-3 64 1.0 1.0 0.9971 0.9963
No 512 1e-3 32 1.0 1.0 0.9856 0.9819
No 512 1e-3 16 1.0 1.0 0.9942 0.9927
No 512 1e-4 64 1.0 1.0 1.0 1.0
No 512 1e-4 32 0.925 0.9104 0.9741 0.9663
No 512 1e-4 16 1.0 1.0 0.9827 0.9784

No 256 1e-2 64 1.0 1.0 1.0 1.0
No 256 1e-2 32 1.0 1.0 1.0 1.0
No 256 1e-2 16 0.8688 0.8712 0.8905 0.8766
No 256 1e-3 64 1.0 1.0 0.9971 0.9963
No 256 1e-3 32 0.9812 0.9799 0.9798 0.9749
No 256 1e-3 16 1.0 1.0 0.9856 0.9819
No 256 1e-4 64 1.0 1.0 0.9971 0.9963
No 256 1e-4 32 0.9938 0.9932 0.9769 0.9710
No 256 1e-4 16 1.0 1.0 0.9971 0.9963

No 128 1e-2 64 0.975 0.9733 0.9452 0.9324
No 128 1e-2 32 0.9875 0.9863 0.9769 0.9704
No 128 1e-2 16 1.0 1.0 1.0 1.0
No 128 1e-3 64 1.0 1.0 0.9971 0.9963
No 128 1e-3 32 1.0 1.0 0.9971 0.9963
No 128 1e-3 16 0.9938 0.9931 1.0 1.0
No 128 1e-4 64 1.0 1.0 0.9885 0.9855
No 128 1e-4 32 1.0 1.0 0.9971 0.9963
No 128 1e-4 16 0.9938 0.9932 0.9971 0.9963

Table 4: Results from baseline dataset not using ratio

Parameters Validation Test
Ratio L1 Size LR Latent Size Accuracy F1-score Accuracy F1-score
Yes 512 1e-2 64 0.9938 0.9932 0.9827 0.9776
Yes 512 1e-2 32 0.85 0.8481 0.8415 0.8297
Yes 512 1e-2 16 1.0 1.0 0.9971 0.9963
Yes 512 1e-3 64 1.0 1.0 0.9971 0.9963
Yes 512 1e-3 32 0.975 0.9733 0.9654 0.9577
Yes 512 1e-3 16 1.0 1.0 1.0 1.0
Yes 512 1e-4 64 1.0 1.0 0.9942 0.9927
Yes 512 1e-4 32 1.0 1.0 0.9942 0.9927
Yes 512 1e-4 16 1.0 1.0 0.9914 0.9891

Yes 256 1e-2 64 1.0 1.0 0.9971 0.9963
Yes 256 1e-2 32 1.0 1.0 0.9827 0.9783
Yes 256 1e-2 16 0.9812 0.9793 0.9769 0.9704
Yes 256 1e-3 64 1.0 1.0 1.0 1.0
Yes 256 1e-3 32 0.9938 0.9932 0.9885 0.9854
Yes 256 1e-3 16 0.9562 0.9504 0.9366 0.9134
Yes 256 1e-4 64 1.0 1.0 0.9914 0.9891
Yes 256 1e-4 32 1.0 1.0 1.0 1.0
Yes 256 1e-4 16 1.0 1.0 0.9914 0.9891

Yes 128 1e-2 64 0.95 0.9481 0.9424 0.931
Yes 128 1e-2 32 1.0 1.0 1.0 1.0
Yes 128 1e-2 16 1.0 1.0 0.9971 0.9963
Yes 128 1e-3 64 1.0 1.0 1.0 1.0
Yes 128 1e-3 32 0.9875 0.9865 0.9798 0.9749
Yes 128 1e-3 16 0.6875 0.6875 0.7032 0.6997
Yes 128 1e-4 64 0.9938 0.9932 0.9798 0.9744
Yes 128 1e-4 32 1.0 1.0 0.9942 0.9927
Yes 128 1e-4 16 1.0 1.0 1.0 1.0

Table 5: Results from baseline dataset using ratio

3.2.2 Baseline Qualitative

Since the values were very high for most models a qual-
itative analysis was performed where the L1 and L2

values were plotted for validation data along with the
trained classification boundary. These plots were then
evaluated based on the separation of the two dataclasses
and the simplicity of classification. From these plots it
could be concluded that the best performing models
seemed to be the ones using an L1 size of 256, a latent
size of 64 and a learning rate of 10−4; this patterns was
concluded for both training methods.

For the autoencoder portion of the model it is possible
to calculate pixelwise L1 loss, it is therefore possible to
create a heatmap of where the image reconstruction is

incorrect. Such a heatmap is shown in Figure 7. This
figure shows that the model is able to detect and locate
the anomaly but it also shows that people are viewed
by the autoencoder as anomalies, this is not intended.

Figure 7: Heatmap of pixelwise L1 loss in image con-
taining anomaly. Model parameters: (Ratio: No, L1
Size: 256, LR: 10−4, Latent Size: 64)

3.2.3 Combined Quantitative

Results on the combined dataset are shown in the ta-
ble 6. The results indicate good generalization per-
formance for the models tested and show that there
may be a slight difference between the training meth-
ods used. For the smaller L1 size tested, the training
method using both normal and anomaly images during
model selection seems to perform better but this does
not hold for the larger L1 size. Therefore, a qualitative
analysis was also justified for this dataset as the models
performance is very similar between the models.

Parameters Test
Ratio L1 Size LR Latent Size Accuracy F1-score
No 512 1e-4 64 0.8482 0.8598
No 256 1e-4 64 0.7838 0.7911
Yes 512 1e-4 64 0.8465 0.8584
Yes 256 1e-4 64 0.8382 0.8492

Table 6: Results from combined dataset

3.2.4 Combined Qualitative

Similar to the process for the baseline dataset, L1 and
L2 values were plotted for validation data along with
the trained classification boundary. From these plots it
was concluded that the method using both normal and
anomaly images during model selection was preferred
as it produced a plot were normal images contained
smaller L2 errors which is preferred.

4 Discussion

4.1 CNN and Outlier Detection

This chapter will provide the discussion of the model
using a CNN and outlier detection algorithms.

4.1.1 Outlier detection algorithms

The first step of evaluating the outlier detection algo-
rithms was to choose how to tune the hyperparameters
of the different algorithms. This was done using both
cross-validation and using a separate validation set.

8



One significant difference in these two methods is that
cross-validation uses the same data as the model uses
for training for evaluation, which in this case means
that only normal data points are used. When using a
separate validation set, anomalies were included. The
hypothesis was that the separate validation set would
make the model generalize better since it would actually
configure it’s hyperparameters with regard to anoma-
lies and not only normal samples. It was assumed that
when using CV, the model might tune the parameters
in favor of classifying a data point as normal since that
would always be the correct classification when doing
evaluation with CV. The downside of a separate vali-
dation set with anomalies is that the model might only
configure to the specific anomalies that in the valida-
tion set and fail to detect anomalies that are vastly
different.

As can be seen in the results, it does seem that the
recall got significantly worse in two out of three algo-
rithms when using CV, which in words translate to the
model not detecting a lot of the anomalies present in
the test set. When testing the Local Outlier Factor
algorithm it does however perform a bit better when
using cross-validation. Since it does seem to perform
better most of the time with a separate validation set,
it was chosen to be the primary method for tuning the
hyperparameters when comparing the different models
with different CNN:s.

When comparing CV to a separate validation set, all
test runs used the GoogLeNet CNN. This was chosen
due to the paper which the architecture was based on
used GoogLeNet. Due to the time-constraint it was not
feasible to test all different combinations of CNN and
outlier detection algorithm in order to choose a method
for parameters tuning.

4.1.2 Efficientnet v2 s

The results when using the Efficientnet v2 s CNN and
either the LOF or iForest outlier detection algorithms
shows the surprisingly good results of 1.0 F1-score
(meaning 0 miss-classifications) on the baseline dataset.
This is most likely because the baseline dataset used
is rather simple compared to most datasets and con-
tains rather big anomalies. All images being taken
from the same camera and angle is also a factor that
might show results that look ”too good”. Neverthe-
less the results show that most likely the use of Effi-
cientnet v2 s is more beneficial than using GoogLeNet
since the results show that using Efficientnet v2 s gives
better results than GoogLeNet no matter which of the
three outlier detection algorithms were used. It is to be
expected that both EfficientNet models perform better
than the GoogLeNet model. This is due to the fact that
EfficientNet-V2 is the latest state-of-the art model from
the CNN architecture family and has shown better clas-
sification results on the ImageNet-1K dataset 2 3. The

results also shows that the small version of Efficient-
net gives better results than the medium-sized version
(Efficientnet v2 m). That Efficientnet v2 s shows bet-
ter results than Efficientnet v2 m is unexpected as the
latter mentioned is a more up-scaled version than the
earlier one. As Efficientnet v2 m is larger, it should be
better at extracting relevant features and thereby show
higher classification results. One reason for this behav-
ior could be that Efficientnet v2 m is better at gener-
alizing as it has more parameters. Therefore, it could
perform better if the anomalous images contained more
fine grained anomalies compared to the vehicles that are
used in this experiment. Another reason could be due
to randomness, which in just this particular dataset Ef-
ficientnet v2 s showed better classification results. As
well, it could be a combination of these two reasons.
In order to get a more trustworthy answer about which
architecture that performs best, a variety of different
datasets would have to be tested. Some further on the
combined dataset were performed, and which showed
that the small version of Efficientnet is the best per-
forming version.

4.1.3 Comparison to paper

The paper by Chriki et al. [3], which this architecture
was based on, showed very promising results of 0.93
F1-score. It is however not very informative to make a
direct comparison to the results obtained by our mod-
els, since the paper used a completely different dataset.

4.1.4 Further work

For further work, the main focus should be to test the
model with different datasets. Due to the very limited
dataset, it is hard to say how well the model generalize
to different environments. It is also hard to know how
many different environments it could be trained on at
the same time.

Further work should also try to use this method to de-
tect anomalies in videos. In the original paper [3], they
for example classify a video sequence as an anomaly if
40% of the frames are classified as outliers.

4.2 Deep Autoencoder

This chapter will provide the discussion of the model
using a deep autoencoder.

4.2.1 Reconstruction

From the results presented it is clear that for the task of
anomaly detection in images the model is good. How-
ever, the heatmap shown in Figure 7 indicates that the
autoencoder may not solve the problem in the intended
way. The heatmap shows that anything that is not
background has a large L1 loss and will therefore per-
haps be considered an anomaly. This means that peo-
ple in general are considered anomalies which is not the

2https://pytorch.org/vision/stable/models.html
3https://image-net.org

9



intended outcome, as people are considered normal in
the datasets used. What this means for classification
is that an image containing a sufficient amount of peo-
ple may be considered an anomaly, due to people being
considered anomalies and increasing the L1 loss. It is
unclear whether this effect is reduced by the L2 loss
factor, because it is not possible to extract pixelwise
L2 loss. Further research is needed to determine the
impact the L2 loss has on the model and extract some
metric for image area specific L2 loss.

4.2.2 Classification

The main deviation of the autoencoder compared to the
model by Abati et al. [1] were the choice to use QDA
on the space of errors separately (instead of adding the
errors and using a scalar as a threshold). This pro-
vided significantly better performance compared to the
proposed method. However, it is not certain that the
generalization of the chosen approach is better, as it is
possible that the assumptions of QDA (each class has a
normal distribution) are too strong. This is to be con-
sidered for further evaluation, for example when using
video sequences as the dataset.

4.2.3 Comparison to paper

Since the foundations of the deep autoencoder were in-
spired by Abati et al. [1], it provides a suitable com-
parison for discussion. However, the authors used AU-
ROC for evaluating their model, and the results for the
model are only given by the classification accuracy and
F1-score. The reason for the used metrics is due to
the direct applicability to the problem description, as
it provides an indicator of both the direct classification
error, but also an insight into the misclassification of
the model. Additionally the authors in [1] used video
sequences for anomaly detection in the UCSD Peds
dataset, which also impairs the comparison. However,
for this particular task, the accuracy is more important,
it can be noted that the accuracy for the model and the
AUROC for the model in [1] are similar.

4.2.4 Further work

For further work, the main challenge is to develop sup-
port for anomaly detection in video sequences instead
of images. Not only would this provide a better suited
solution for the problem at hand, but it may also en-
able better results, as video sequences inherently has
more information due to the spatio-temporal relations.
Furthermore using colors for images (and also video se-
quences) may also be useful in terms of accuracy, as
these also contains more information. Another aspect
to consider for further study is the memory and time
complexity of the model as these metrics are crucial for
the real-life application.

4.3 Comparison

It can be noted that both models provide a very good
accuracy and F1-score for both the baseline and com-
bined datasets. Thus it is hard to conclude the model
which is to prefer for the task at hand from the as-
pect of accuracy. For further study it would therefore
be useful to evaluate both models using videos, as this
would provide a better comparison of the generalization
of the models and thus allow for more differentiation of
the properties for each model. It would also be use-
ful to evaluate the models on other datasets, since this
might show which one of the models generalizes better.
It might also show that one model works better than
the other in different environments. Another aspect to
consider for further study is the complexity in terms of
both memory and time.

References

[1] Davide Abati, Angelo Porrello, Simone Calderara,
and Rita Cucchiara. Latent space autoregression
for novelty detection. arXiv, 2018.

[2] Christopher M. Bishop. Pattern Recognition
and Machine Learning (Information Science and
Statistics). Springer, 1 edition, 2007.

[3] Amira Chriki, Haifa Touati, Hichem Snoussi, and
Farouk Kamoun. Uav-based surveillance system:
an anomaly detection approach. In 2020 IEEE
Symposium on Computers and Communications
(ISCC), pages 1–6, 2020.

[4] Wikipedia contributors. Local outlier factor,
November 2022. [Online; accessed 17-November-
2022].

[5] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and
Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages
770–778, 2016.

[6] Andrew G Howard, Menglong Zhu, Bo Chen,
Dmitry Kalenichenko, Weijun Wang, Tobias
Weyand, Marco Andreetto, and Hartwig Adam.
Mobilenets: Efficient convolutional neural net-
works for mobile vision applications. arXiv
preprint arXiv:1704.04861, 2017.

[7] Yanping Huang, Youlong Cheng, Ankur Bapna,
Orhan Firat, Dehao Chen, Mia Chen, HyoukJoong
Lee, Jiquan Ngiam, Quoc V Le, Yonghui Wu, et al.
Gpipe: Efficient training of giant neural networks
using pipeline parallelism. Advances in neural in-
formation processing systems, 32, 2019.

[8] Gareth James, Daniela Witten, Trevor Hastie, and
Robert Tibshirani. An Introduction to Statistical
Learning: with Applications in R. Springer, 2013.

[9] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaim-
ing He, Bharath Hariharan, and Serge Belongie.

10



Feature pyramid networks for object detection. In
Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 2117–2125,
2017.

[10] Fei Tony Liu, Kai Ting, and Zhi-Hua Zhou. Isola-
tion forest. pages 413 – 422, 01 2009.

[11] Sejun Park, Chulhee Yun, Jaeho Lee, and Jinwoo
Shin. Minimum width for universal approximation.
CoRR, abs/2006.08859, 2020.

[12] Jin Pu, Mou Lichao, Xia Gui-Song, and Zhu Xiao.
Anomaly detection in aerial videos with transform-
ers. In IEEE Transactions on Geoscience and Re-
mote Sensing, pages 1–13, 2022.

[13] Bernhard Schölkopf, Robert C Williamson, Alex
Smola, John Shawe-Taylor, and John Platt. Sup-
port vector method for novelty detection. In
S. Solla, T. Leen, and K. Müller, editors, Ad-
vances in Neural Information Processing Systems,
volume 12. MIT Press, 1999.

[14] Oleg Sysoev. Lecture notes in machine learning,
October 2020.

[15] Christian Szegedy, Sergey Ioffe, Vincent Van-
houcke, and Alexander A Alemi. Inception-v4,
inception-resnet and the impact of residual connec-
tions on learning. In Thirty-first AAAI conference
on artificial intelligence, 2017.

[16] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre
Sermanet, Scott Reed, Dragomir Anguelov, Du-
mitru Erhan, Vincent Vanhoucke, and Andrew Ra-
binovich. Going deeper with convolutions, 2014.

[17] Mingxing Tan and Quoc Le. Efficientnet: Re-
thinking model scaling for convolutional neural
networks. In International conference on machine
learning, pages 6105–6114. PMLR, 2019.

[18] Mingxing Tan and Quoc Le. Efficientnetv2:
Smaller models and faster training. In Inter-
national Conference on Machine Learning, pages
10096–10106. PMLR, 2021.

[19] V. Bhalodia V. Mahadevan, W. Li and N. Vas-
concelos. Anomaly detection in crowded scenes.
In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), San Francisco, CA,
2010.

[20] Wallenberg. WASP Research Arena - public safety,
2022.

[21] Wikipedia contributors. F-score — Wikipedia,
the free encyclopedia, 2022. [Online; accessed 1-
December-2022].

[22] Barret Zoph and Quoc V Le. Neural architecture
search with reinforcement learning. arXiv preprint
arXiv:1611.01578, 2016.

11


