
A Comparison of Reactive Obstacle Avoidance Algorithms for a Ground Vehicle

Simon Hermansson Marcus Gandal Kevin Bärudde Hugo Axandersson

Daniel Covarrubias Gillin

Abstract

This project evaluates if the methods DDPG and MPC can
be used for the problem of reactive collision avoidance
for unmanned ground vehicles. These methods are com-
pared against a baseline method, DWA, which is already
implemented in ROS. This paper concludes that while
DDPG and MPC were not able to reach the performance of
DWA, both methods can still be used for reactive collision
avoidance. It is also noted that future improvement in the
implementation of both methods is possible.

Git: https://gitlab.liu.se/tdde19-2022-2

1. Introduction

The goal of this project was to investigate reactive obsta-
cle avoidance algorithms for an Unmanned Ground Vehicle
(UGV); specifically, the Clearpath Husky, which can be seen
in figure 1. The Husky is a large robot, and thus it must have
the ability to safely navigate complex terrain without dam-
aging expensive equipment or humans. To aid the Husky
in understanding the world, it is equipped with a LiDAR,
which generates 3D point clouds describing the environ-
ment.

Figure 1: The Clearpath Husky.

1.1. Problem

Two methods are intended for the implementation, Model-
Predictive Control (MPC) and Deep Deterministic Policy
Gradient (DDPG). These methods should both allow for
collision-free navigation. The methods should, given a goal
coordinate and the current sensor readings, compute trajec-
tories for the Husky until it reaches the goal state. The
performances of the methods are compared against each
other, and also against a baseline method, the Dynamic
Window Approach (DWA), which is already implemented
in the Robot Operating System (ROS). A program, Gazebo,
will be used to simulate an environment for the Husky.

1.2. Assumptions

This paper does not explore the problem of building maps
of the environment, therefore, it is assumed that the ground
vehicle is always aware of its position in the world; as if it
was equipped with a GPS. The ground is assumed to be flat
and the obstacles are assumed to be static.

2. Theory
The theory behind the methods that will be used is presented
in this chapter.

2.1. Dynamic Window Approach

The Dynamic Window Approach (DWA) is a common reac-
tive collision avoidance method for autonomous ground ve-
hicles; the method was presented by Fox et al. [2] in 1997.
The dynamic window is the search space of velocities reach-
able within a short specified time interval. A combination of
translational and rotational velocities is chosen by maximiz-
ing an objective function that can be seen in equation 1. In
equation 1, h is a heading measure that is maximized when
the robot moves directly towards the target, d is the distance
to the nearest obstacle, and v is the forward velocity of the
robot. v and w are translational and rotational velocities re-
spectively, and σ smoothes the weighted sum which results
in more side-clearance from the obstacle. Only admissible
velocities, yielding trajectories in which the robot can stop
safely before it reaches the closest obstacle are considered.

1

https://gitlab.liu.se/tdde19-2022-2

Maximization is done by first discretizing the search space
down to the admissible linear and angular velocities, and
then selecting the optimal velocities that maximize the ob-
jective function.

G(v, w) = σ(α · h(v, w) + β · d(v, w) + γ · v(v, w) (1)

DWA is already implemented within ROS, and it can there-
fore be used as a baseline when comparing against the other
two methods.

2.2. Model-Predictive Control

Model-Predictive Control (MPC) is a control engineering
method that is iterative, where a solution is generated each
time step by optimizing a finite future of predictions [7].
MPC contains two parts, the controller and the plant, see
figure 2. The controller takes a reference for the target state
and feedback from the world and then returns manipulation
variables that control the system. Inside the controller, there
is a plant module and an optimizer. The plant module pre-
dicts future timesteps, while the optimizer selects a set of
parameters to test and uses the result from the plant module
to select the preferred manipulated variables based on the
system constraints and a cost function. The plant part of the
system is the actual robot. The system uses the modification
variables to steer, and sensors are used to get feedback from
the robot to the controller.

Figure 2: MPC.

Bayesian Policy Optimization Model-Predictive Control
(BPO-MPC) is a real-time method for collision avoidance
proposed by Andersson et al. [1]. They use an MPC con-
troller of the form in equation 2, where x ∈ Rn is a state
vector, and u ∈ Rm is a control vector. Equation 3 de-
fines the transition dynamics, where θdyn is a simple linear
model learned from data using maximum likelihood. Equa-
tion 4 defines the convex task constraints, and equation 5
defines the geometric obstacle constraints, which are con-
cave. m(θ, xt) is a parametric safety margin given by a pol-
icy parameter vector θ that is learned using policy search.
pr,t is a subspace of xt, and po,t are constants in the opti-
mization. Equation 6 defines penalty terms for violation of
elastic constraints.

arg min
u0...uT−1,x1...xT ,ϵ1...T

E

[
T∑

t=1

c(xt,ut−1)

]
(2)

subject to
xt = f(xt−1,ut−1; θdyn), (3)

gtask(xt,ut−1) ≥ −w−1taskϵt,task, (4)

E
[
dist(pr,t,po,t)

]
−m(θ, xt) ≥ w−1obstϵt,obst, (5)

ϵt ≥ 0, where t = 1, ..., T (6)

Andersson et al. have done work with BPO-MPC together
with a drone. This research will be adapted to the ground
robot, the Husky, which is used in this paper.

2.3. Reinforcement Learning with DDPG

Lillicrap et al. [6] present an actor-critic deep reinforcement
learning method called Deep Deterministic Policy Gradient
(DDPG), designed for high-dimensional, continuous action
spaces. In their paper, they present the results from apply-
ing this algorithm on over 20 simulated physics tasks with
varying complexity, including a self-driving car. The algo-
rithm can be seen in algorithm 1. For details, we refer to the
original authors’ paper [6]; however, the core components
are explained briefly in this section.

2.3.1 Replay Buffer

The replay buffer stores previous transitions that the agent
has taken which are used as training data for the networks.
The idea of the replay buffer was proposed in a paper by
Mnih et al. [8]. A transition is of the following form:
(st, at, rt, st+1), where st is the initial state at time t, and
at is the action taken from this state to the new state st+1,
resulting in the reward rt.

2.3.2 The Four Networks

The actor network is trained to predict the optimal action
to take given a state, and the critic is trained to predict how
good the action taken was. It is analogous to the classi-
cal reinforcement learning paradigm in the way that the ac-
tor represents the policy and the critic represents the value
function [3]. The policy is deterministic in the sense that the
action will always be the same given a state [6]. The actor
and critic are neural networks trained together to learn the
parameters of the optimal policy and value function.
During each time step, a mini-batch consisting of a user-
defined number of transitions is sampled from the replay
buffer to perform one training iteration of the networks (for-
ward and backward propagation). Details can be found in
algorithm 1. The critic network is updated using the tem-
poral difference between the target value yi and the current

2

value Q(si, ai|θQ). The temporal difference is minimized
using the Mean-Square-Error (MSE) loss function. Further-
more, the user-defined discount factor γ is used to regulate
the importance of future rewards. The actor is updated using
the policy gradient. The actor loss is defined by the gradi-
ent of the critic value with respect to the parameters of the
actor network θµ. Finally, the target networks are updated
at a slower rate compared to the ordinary networks, which
can be set by the user-defined parameter τ , to stabilize the
learning.

2.3.3 Exploration Noise

The exploration noise, denoted by N , is used to encourage
the exploration of new actions and states. In classical rein-
forcement learning algorithms, the exploration-exploitation
dilemma is defined as the balance between taking the best
currently known action in a given state or to explore new
paths that can potentially result in higher rewards. The
epsilon-greedy policy first proposed by Watkins [11] is a
popular strategy to address this. When working with con-
tinuous action spaces, one way of implementing exploration
is to sample some random noise from a random process
and add that to the predicted action by the actor [6]. The
proposed random process by the authors of DDPG is the
Ornstein-Uhlenbeck process [10].

2.3.4 Related Work

Tai et al. [9] present a paper in which they successfully
implement DDPG to solve the problem of continuous con-
trol of a TurtleBot3 for map-less navigation. In their work,
a learning-based map-less motion planner is implemented
that takes 10-dimensional range findings and the target posi-
tion as inputs and returns the continuous steering commands
for the linear and angular velocities; an illustration of this
concept can be seen in figure 3. Once trained, the planner
was applied to new, previously unseen environments. The
actor and critic network structures proposed in their work
can be seen in figure 4.
Following the work of Tai et al., Jesus et al. [5] present a
paper in which they demonstrate the effectiveness of mobile
robot navigation with DDPG in simulated Gazebo environ-
ments using a TurtleBot3. Their robot manages to reach its
goal in multiple environments, whilst successfully avoid-
ing both static and dynamic objects along its path. In their
work, they apply the same design concept as proposed by
Tai et al., shown in figure 3, and the same network struc-
tures for the actor and critic networks, shown in figure 4.

3. Methodology
The implementation of the suggested methods is described
in this chapter.

Figure 3: System overview.

Figure 4: Actor-Critic networks.

Algorithm 1 The DDPG algorithm.
Random initialize critic Q(s, a|θQ) and actor µ(s|θµ) networks with weights
θQ and θµ

Initialize target network Q′ and µ′ with weights θQ′
← θQ, θµ′

← θµ

Initialize replay buffer R
for episode = 1, M do

Initialize a random processN for action exploration
Receive initial observation state s1
for t = 1, T do

Select action at = µ(st|θµ) +Nt

Execute action at and observe reward rt and observe new state st+1

Store transition (st, at, rt, st+1) from R

Set yi = ri + γQ′(si+1, µ
′(si+1|θµ′

)|θQ′
)

Update critic by minimizing the loss:
L = 1

N

∑
i(yi −Q(si, ai|θQ))2

Update the actor policy using the sampled policy gradient:
∇θµJ ≈ ∇θµQ(s, a|θQ)|s=si,a=µ(si|θµ)

Update the target networks:
θQ′
← τθQ + (1− τ)θQ′

θµ′
← τθµ + (1− τ)θµ′

end for
end for

3

3.1. DWA

For DWA, the husky navigation ROS package was used to
gather baseline data. For input data, the LMS1XX LiDAR
was used instead of the Velodyne VLP-16 LiDAR that was
used for MPC, since it was already preconfigured.

3.2. Model-Predictive Control

The MPC planner was implemented with the help of the
ACADO toolkit [4], which among many functionalities, of-
fers support for generating MPC solvers. To be able to gen-
erate an MPC solver, the characteristics of the UGV had to
be defined. DIFFERENTIALSTATE variables were used to
define values such as the UGV position, velocity, and accel-
eration. How these values were connected to each other was
then specified by, for example, stating that the differential of
the heading was equal to the angular velocity.
To include obstacle avoidance into the MPC problem defini-
tion, the VLP-16 LiDAR sensor readings for the UGV were
flattened into a 2D plane using the pointcloud to laserscan
ROS package, and then divided into 10 sectors. Within each
of these sectors, the position of the closest object was cal-
culated and later used in the MPC problem definition. ON-
LINEDATA and INTERMEDIATESTATE variables were used
to save the positions and proximities to the obstacles respec-
tively. These variables can be continually updated during
execution.

3.2.1 Cost Function

The MPC problem definition can be divided into two parts,
the cost function, and the constraints. The cost function
contains a linear combination of the following values:

1. The UGV position relative to the target, to encourage it
to move towards the target.

2. The angle of the UGV relative to the target angle to-
wards the target position, to encourage it to turn to-
wards the target.

3. The UGV forward velocity and acceleration, to discour-
age it from moving too fast.

4. The UGV angular velocity and acceleration, to discour-
age it from turning too fast.

5. A value for the general proximity to obstacles around
the UGV (GP as defined in equation 7), to discourage
it from moving too close to obstacles.

Most of the weights of the cost function were set to 1; the
exceptions being the weights for the position and the gen-
eral proximity, which were set to 10 and 0.1 respectively.
The distance from a variable to its target state is not nor-
malized. Therefore, a variable such as the positional vari-
able, which can be quite far away from its target value, is

naturally already weighed more than the acceleration vari-
ables, which take on quite small values. The cost function
is finally minimized using least squares minimization.
The value for the general proximity used in the cost function
is defined in equation 7 where m is a set margin, currently
set at 1 meter, and di is the distance to the closest object
within sector i.

GP =

10∑
i=1

e2m−di (7)

The reasoning for using an exponential for the definition of
the GP was that the cost function should care very little
when obstacles are far away and care very much when they
are within 2 meters.

3.2.2 Constraint Function

Along with the cost function, constraints were also defined
for the MPC problem. The constraints were primarily used
to describe the limitations of the UGV movement, such as
velocity and acceleration constraints; the exception being
the constraint in equation 8 which was used to keep the UGV
a margins distance away from obstacles.

pi ≥ m ∀i ∈ [1, 10] (8)

The cost function and the constraints, along with sensor
data, were then used by ACADO to generate a control sig-
nal that the UGV could act upon.

3.3. DDPG

An overview of the system can be seen in figure 3. The
system receives as input a state consisting of 15 values.
It included 11 evenly distributed laser readings from the
LMS1XX LiDAR ranging from -90 degrees to +90 degrees
relative to the robot’s heading. The maximum range consid-
ered was 10 meters. The state also included the linear and
angular velocities of the robot and the distance and heading
relative to the target. The distance to the target was nor-
malized by the diagonal length of the environment and the
heading relative to the target was normalized by 2π.
The network architectures used can be seen in figure 4. The
actor network received a state as input and returned as out-
put the new linear and angular velocities of the robot con-
strained to the intervals [0.0, 0.7] m/s and [-0.5, 0.5] rad/s
respectively. The critic also received the state as input and
the action predicted by the actor network. As exploration
noise, values sampled from a uniform distribution in the in-
tervals [0.0, 1.0] for linear velocity and [-0.5, 0.5] for angu-
lar velocity were used.

4

3.3.1 Training

The robot was trained in the Gazebo simulation environ-
ment in a total of two different environments. The first en-
vironment was a straight 10-meter corridor with the goal
placed at the end, see figure 5. This environment in-
cluded random spawns for the robot at the beginning of
each episode. The second environment was a 20x20-meter
map filled with various obstacles, see figure 6. Both random
spawns and random goal positions were used when training
the robot in this environment.

Figure 5: Corridor training map.

Figure 6: Playpen training map.

The first environment was only used for pre-training the net-
works. The pre-training was implemented to address the
problem of the robot learning to spin around in circles indef-
initely. For the pre-training, 5000 transitions from the first
environment were collected and saved in the replay buffer
using random actions sampled from a uniform distribution.
The networks were then trained for 1000 iterations on this
data. After the pre-training phase, the robot was moved
to the advanced environment where it was further trained
for 700 episodes. During this training phase, the proposed
DDPG algorithm was used, see algorithm 1, the only differ-

R =

120 when reaching the goal
−100 when colliding with an obstacle
500 ∗ (St−1 − St) otherwise

Figure 7: DDPG reward function.

ence being that the replay buffer was not empty at the start
of the algorithm and the network weights had already been
pre-trained. Each episode lasted a maximum of 90 actions
and each action was taken for exactly 1 second.
The robot received rewards given in figure 7, where St is the
distance of the robot from the goal at iteration t. The reward
function motivated the robot to move towards the goal while
avoiding obstacles along its path. Other reward values were
tested but it was concluded that the ones presented yielded
the best results. To determine if a collision had happened,
the minimum range value was compared against a threshold
of 0.5 meters. Similarly, the robot was considered to have
reached the goal if it was within 2.0 meters of it. All the
user-defined parameters involved for the reinforcement part
are presented in table 1.

Parameter Value
Actor learning rate 0.001
Critic learning rate 0.001

Target actor/critic learning rates 0.001
Discount factor 0.99

Table 1: DDPG parameters.

4. Results

The results of the methods are presented in this chapter.

4.1. DWA

The baseline results from DWA are shown in figures 8, 9,
and 10. The robot can avoid obstacles, even obstacles with
concave shapes. The robot manages to find a path to the
goal even when that path moves away from the goal. Some
limitations of DWA are noted, where the method can make
the UGV move very close to obstacles when it would result
in being closer to the goal. This also results in the robot
slowing down, examples of the UGV moving very close to
obstacles are shown in figures 9b and 10c. The results also
show that while it can move around the concave obstacles
in figure 8c, the robot can easily get stuck when trying to
move around the obstacle, due to not having a large enough
safety margin.

5

(a) Start position. (b) The Husky drives inside the obstacle. (c) Gets slightly stuck on the way out.

Figure 8: DWA: Concave obstacle map.

(a) Starting position. (b) The Husky hugs the corner. (c) The Husky reaches the goal.

Figure 9: DWA: U-shaped map.

(a) Starting position. (b) The Husky hugs the cone. (c) The Husky reaches the goal.

Figure 10: DWA: Multiple obstacles.

4.2. Model-Predictive Control

The results from the MPC system are displayed in figures
12, 11 and 13. The robot manages to reach the end of the
multiple obstacles map in figure 11c while keeping a safe
distance from the obstacles. The robot does not manage
to escape the concave obstacle in figure 12b when moving
inside it, and it also cannot find the path to the goal in the
U-shaped map in figure 13.

4.3. DDPG

The results for DDPG are presented in figures 14, 15 and 16.
The robot reaches the goal in the U-shaped map in figure
14c and the multiple obstacles map in figure 15c. However,
the robot is not able to reach the goal in the concave map
and gets stuck on the way to the target, as seen in figure

16b. It can be noted that the robot in many of the paths
took very small margins by navigating very closely to the
obstacles, see figures 15b and 15c.

5. Discussion
A discussion of the results obtained from the methods is
presented in this chapter.

5.1. Model-Predictive Control

The results show that MPC can be used for collision avoid-
ance. But it has its downsides compared to the DWA method.
One downside is that it cannot explore the environment to
find the goal as well. This could likely be fixed by making
the robot value the goal state less, or by predicting more
future timesteps. However, there are problems with predict-

6

(a) Starting position. (b) The Husky avoided the cones. (c) Reaches the goal state.

Figure 11: MPC: Multiple obstacle map.

(a) Starting position. (b) The Husky gets stuck.

Figure 12: MPC: Concave obstacle map.

Figure 13: MPC: Stuck in U-shaped map.

ing additional timesteps. One problem is that it requires
additional computational resources, and the 20 timesteps
spaced 0.3 seconds apart that were used, were already push-
ing the maximum possible. Another problem is that pre-
dicting many timesteps requires a very good model of the
system; a model that also takes into account any potential
disturbances in the environment. This was not possible due
to time limitations, and limitations of the simulation envi-
ronment used, which could not recreate the real world ac-
curately enough.

Much time was spent trying to optimize the parameters of
the model, and it took a great deal of time to find reason-
ably stable parameters. Still, many fluctuations in the pre-
dictions between iterations can be noted when running the
solver. Given more resources spent on accurately modeling
disturbances, it is reasonable to think that the solver would
be able to predict more stable solutions, which in turn would
increase performance greatly.

5.2. DDPG

The results indicate that although it is possible to apply the
DDPG algorithm for robot navigation in simulated environ-
ments, it comes with its limitations. To start with, the robot
was difficult to train. It took a lot of trial and error before the
robot started to act as expected. The DDPG algorithm may
be sensitive to divergence as the actor network frequently
learned to output 0.0 in linear velocity and 1.0 in angular
velocity, which meant that it kept driving around in circles.
One possible explanation is that the networks overfitted on
the few transitions in the replay buffer, which indicates that
starting the DDPG algorithm with an empty memory buffer
might impact the performance negatively. It could also have
been that the reward function used did not correctly reflect
the problem which we wanted to model and that the robot
learned to accumulate positive rewards through a mean that
was not intended. In this project, these problems were ad-
dressed by pre-training the networks as mentioned in sec-

7

(a) Starting position. (b) The Husky hugs the corner. (c) Reaches the goal state.

Figure 14: DDPG: U-shaped map.

(a) Starting position. (b) The Husky gets close to a cone. (c) Collides with the edge of the wall.

Figure 15: DDPG: Multiple obstacle map.

(a) Starting position. (b) The Husky gets stuck.

Figure 16: DDPG: Concave obstacle map.

tion 3.3.1.
For the environments where the robot did not successfully
navigate to the target, as in figure 16b, some possible solu-
tions can be conceived. One possible solution could be to
tune the rewards so that a more appropriate balance between
reaching the goal and avoiding obstacles could be achieved.
Another way could be to let the robot train for longer.
Another point worth discussing is velocity. The robot often
chooses to move at low velocity, and this is after considering
its velocity constraints. It is likely easier to control the robot
if it moves at a lower speed, which likely is why the agent
learned to act this way. One possible solution to this could
be to introduce a reward based on the number of time steps
taken per episode, where fewer time steps taken per episode
grants a higher reward. This type of reward could encourage
the robot to move faster.
Finally, it is worth discussing the impact of the number of
training episodes. During training, the moving average re-

ward of the past 40 episodes was tracked. It was observed
that the agent frequently became worse than it had been in
the past; it seemed to forget what it has previously learned.
Usually, it recovered from it and became better over a longer
period of time. This speaks for the instability of the DDPG
algorithm which the target networks were designed to com-
bat, however, they do not seem to solve the problem entirely.
Due to this instability and unpredictability, the training was
concluded when the robot was deemed good enough, but it
may have achieved better performance if given more train-
ing episodes.

6. Conclusions and Future Work

The experiments conducted in this project conclude that
both DDPG and MPC can be used for reactive collision
avoidance in a simulated environment, although not cur-
rently as well as DWA.

8

The DDPG method can adapt to new environments using
knowledge learned from other environments, and it man-
ages to both avoid obstacles and reach its destination. How-
ever, it does have its limitations, the DDPG proved to be
unpredictable at times and difficult to train. DDPG did not
achieve the same level of performance as DWA, however,
its performance could likely be improved by extending the
training time.
The MPC method, unlike DDPG, does not need to be trained.
It seems to be more reactive, and fails more often when
faced with large obstacles compared to both DWA and
DDPG. However, the method still has potential, as the pa-
rameters reached were most likely not the optimal ones; bet-
ter performance could likely be achieved by modeling the
robot and the disturbances better.

References
[1] O. Andersson, M. Wzorek, P. Rudol, and P. Doherty. Model-

predictive control with stochastic collision avoidance us-
ing bayesian policy optimization. In 2016 IEEE Inter-
national Conference on Robotics and Automation (ICRA),
pages 4597–4604. IEEE, 2016.

[2] D. Fox, W. Burgard, and S. Thrun. The dynamic window ap-
proach to collision avoidance. IEEE Robotics & Automation
Magazine, 4(1):23–33, 1997.

[3] I. Grondman, L. Busoniu, G. A. Lopes, and R. Babuska. A
survey of actor-critic reinforcement learning: Standard and
natural policy gradients. IEEE Transactions on Systems,
Man, and Cybernetics, Part C (Applications and Reviews),
42(6):1291–1307, 2012.

[4] B. Houska, H. Ferreau, and M. Diehl. ACADO Toolkit
– An Open Source Framework for Automatic Control and
Dynamic Optimization. Optimal Control Applications and
Methods, 32(3):298–312, 2011.

[5] J. C. Jesus, J. A. Bottega, M. A. Cuadros, and D. F. Gamarra.
Deep deterministic policy gradient for navigation of mobile
robots in simulated environments. In 2019 19th International
Conference on Advanced Robotics (ICAR), pages 362–367.
IEEE, 2019.

[6] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez,
Y. Tassa, D. Silver, and D. Wierstra. Continuous con-
trol with deep reinforcement learning. arXiv preprint
arXiv:1509.02971, 2015.

[7] D. Mayne, J. Rawlings, C. Rao, and P. Scokaert. Constrained
model predictive control: Stability and optimality. Automat-
ica, 36(6):789–814, 2000.

[8] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves,
I. Antonoglou, D. Wierstra, and M. Riedmiller. Playing atari
with deep reinforcement learning, 2013.

[9] L. Tai, G. Paolo, and M. Liu. Virtual-to-real deep reinforce-
ment learning: Continuous control of mobile robots for map-
less navigation. In 2017 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS), pages 31–36.
IEEE, 2017.

[10] G. E. Uhlenbeck and L. S. Ornstein. On the theory of the
brownian motion. Phys. Rev., 36:823–841, Sep 1930.

[11] C. J. C. H. Watkins. Learning from delayed rewards. PhD
thesis, King’s College, Cambridge United Kingdom, 1989.

9

