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Abstract—Grammar error correction is the process of correct-
ing grammatical errors in natural language. Much research exists
within the area but most often focuses on English, as there is a lot
of data available in a desirable format. This research focuses on
how well-known techniques can be applied to a Swedish dataset
artificially generated for this research. The Swedish Culturomics
Gigaword Corpus was used as a source, and then multiple
types of artificial errors were introduced to produce the training
examples. Two machine translation methods were evaluated; the
pre-trained Swedish BERT model and an LSTM model with
pre-trained Swedish embeddings. Both models were trained on
grammatically incorrect sentences, and the goal was to transform
those into their correct representations. As the LSTM model
had converged, adversarial training was also applied to increase
the performance even further. There were multiple evaluation
metrics, but the BERT model outperformed the LSTM model in
all aspects. The adversarial training increased the performance
of the LSTM model marginally, probably due to the already poor
performance.

I. INTRODUCTION

Natural language processing (NLP) is an emerging area
that refers to human language processing with computer
algorithms. Grammar Error Correction (GEC) is a field within
NLP that concerns detecting and correcting grammatical errors
in human language. Much research and many solutions exist
for GEC, but often on English datasets with English GEC
models. In this project, we aim to test the performance of
different promising GEC solutions originally developed for
English on Swedish data.

Naturally, the amount of Swedish training data available
will be less than what can be found for English. This project
will investigate how much Swedish training data is available
and how much is required. Also, the format requirements of
the training data will be investigated. Some of the research
done in English can utilize the available datasets containing
sentences with actual grammar errors by humans and the
correct counterpart. There are no available datasets containing
sentences with incorrect to correct grammar in Swedish. This
is the type of dataset required to train any GEC model,
so we had to generate this dataset. There are some larger
datasets with Swedish texts where the grammar could be
considered reasonable and correct. These datasets are used and

transformed to the desired dataset format by inserting artificial
errors into the sentences. This is challenging as it is hard
to reproduce human-like errors artificially. The model results
will be highly dependent on the quality of this transformation
process, so it must be done thoughtfully.

There are mainly three different methods that have been
used to perform GEC successfully; rule-based, classification-
based, and machine translation [1]. The Rule-based approach
is based on a predefined number of grammatical rules that
sentences must follow. This approach is relatively simple to
implement, and the performance is rather good for easier
grammatical corrections. For more complex cases, it performs
worse, as it is not reasonable to generalize the solution to
all possible situations. The classification-based approach is
a machine learning method that is driven by data to make
its corrections compared to the Rule-based method. In this
method, all words/replacements are treated as classes, and the
goal of the algorithm is to learn which replacement is the
best fitting for each word. The last and most recent approach
is machine translation, which is built on an encoder-decoder
mechanism. The encoder will encode the sentence into a
vector, and then the goal of the decoder is to decode this
vector to the desired output, which in this case should be the
grammatically correct sentence. Most state-of-the-art models
within the area are based on this approach, and hence it will
also be used in this project.

Within machine translation, there are multiple different
techniques one could use. Some of the recent advancements
within the NLP area are by the BERT model, which is pre-
trained on huge amounts of data. A Swedish BERT version
recently was released, which we believe could potentially
perform great at the task at hand. Another technique that is
often used for various NLP tasks is based on LSTM networks.
This is a less complex model, and hopefully, it can achieve
pretty good results. By combining LSTM networks with pre-
trained Swedish embeddings, the training times might also
be reduced. We believe that using adversarial training on the
LSTM model could improve the performance even further,
as research has shown on English datasets, and as the data
in Swedish is somewhat limited. Overall the BERT model



probably has the most potential, but training times might be
very long.

II. METHOD

A. Dataset Generation

There is no dataset containing Swedish grammatical errors.
Thus, it had to be created for evaluating the different grammar
error correction methods. The dataset called the Swedish Cul-
turomics Gigaword Corpus was used from Språkbanken which
was provided by the department of Swedish at university of
Gothenburg [2]. This dataset contains one billion Swedish
word split into 60 million sentences from 1950 and onward.
The dataset contains sentences tagged with their source: news,
government, socialmedia, fiction, or science. For the purpose
of the project the dataset was preprocessed to only use
sentences between the years 1990-2015 and sentences from
social media were removed. Additionally sentences with any
characters except: {A-Ö,.?} were removed and only sentence
with 3-50 words were kept. For the task of grammar error
correction a sentence pair of incorrect-, correct-sentences is
required, the obtained sentences were used as the correct ones,
the incorrect sentences had to be created based on the correct
ones in a rule based manner.

1) Grammar Errors: There is no golden rule of how to
create a Swedish grammatical error and therefor the group
had to be creative when creating different kind of spelling
errors. This included swapping two neighbouring words, re-
placing commonly confused words (e.g. ”en” with ”ett” and
”de” with ”dom” and the opposite). By using Swedish verbs
from wikipedia 1, it was possible to swap verb tense and
creating an error that occurs when using the wrong verb tense.
Furthermore, a vocabulary of 30000 most common words
was extracted from the previously downloaded dataset and, so
called, write apart and write together errors were introduced.
Write apart error implementation, while iterating through the
sentence, checked if a word is in the extracted vocabulary and
with the probability p = 0.5 the word was split into two words
if they also were valid words included in the vocabulary. Write
together implementation checked two consecutive words; if
their merged version was included in the vocabulary, the error
was injected with the probability p = 0.5.

The final dataset consisted of approximately 24 million
sentences, out of which 72% contain an error, that is the
incorrect and correct sentences differ.

B. BERT

BERT stands for Bidirectional Encoder Representations
from Transformers and was introduced by the researchers at
Google AI Language [3]. The transformers in BERT includes
an encoder and an attention mechanism. The encoder reads the
entire input sentence of words at once and the encoder creates
predictions on a specific task. The attention mechanism makes
it possible for the model to learn dependent relations between
words. Traditionally directional models usually reads an input

1https://en.wiktionary.org/wiki/Appendix:Swedish verbs

Fig. 1. Description on how the input is processed in BERT [3].

from left to right or right to left, as BERT reads the entire
sentence at once, it makes it bidirectional. Instead of knowing
the context of a word from the left side or the right side as
in a directional model, BERT have the context of word from
both sides.

1) Input Process: As the model takes the entire sentence of
word as an input, it needs help to determine when a sentence
starts and ends. To indicate the start, we use the CLS token
which stands for classification and at the end of the sentence
there is an SEP token which stands for separation. The token
embeddings translate the words to their vocabulary IDs. The
segment embeddings is a numeric class which helps to identify
the sentences (for example in Figure 1, what belongs to
sentence A and sentence B). The position embeddings specify
the position for each word in a sentence [3].

2) Model description: In this project a Grammar Error
Correction Tag: Not Rewrite (GECToR) system developed
by Omelianchuk et al. was used [4]. As the original system
was developed for English grammar correction it has been
adapted to Swedish language by series of updates as well as
contributions to the base code. GECToR is a sequence-to-label
system where custom token-level transformations are to be
predicted instead of usual sequence-to-sequence where entire
sentence is to be predicted. Omelianchuk et al. have shown
that such a configuration increases the number of grammar
error corrections while decreasing vocabulary size used when
training.

In this project a pre-trained BERT model (on 200M sen-
tences consisting of around 3000M tokens coming from
Swedish books, news, government publications, wikipedia,
and internet forums) from HuggingFace was used [5]. The
Swedish BERT is trained with the same parameters as a
base model described in Devlin et al. where 110M parameter
and whole word masking is used [3]. Word representations
of the model are then forwarded to two linear layers with
softmax layers. These two linear layers are responsible for
detecting the error and tagging the error respectively. When
performing error detection, one of four different tags can
be predicted; CORRECT, INCORRECT, @@UNKNOWN@@,
@@PADDING@@. When performing error tagging, a tag can
be chosen among vocabulary that, in this project, consisted of
10000 tags or it can be labeled as @@UNKNOWN@@, or
@@PADDING@@.

3) Preprocessing: In order to train GECToR a data must be
preprocessed in a certain way. Source and target, where source
are errorful sentences and target are error-free sentences,

https://en.wiktionary.org/wiki/Appendix:Swedish_verbs


must be compared. While comparing those two sets, a file
with transformations from source to target is created. There
are two types of transformations used in GECToR: basic
transformations and g-transformations.

Basic transformations:
• $KEEP: token is preserved from source to target, mean-

ing no changes to the token are made
• $DELETE: token from the source is deleted and does

not occur in the sequence anymore
• $APPEND t1: an entirely new token t1 is appended next

to some token xi in the target sequence.
• $REPLACE t2: some token xi from the source sequence

is replaced by token t2 in the target sequence
G-transformations:
• $CASE suffix: a token casing is changed depending on

the suffix e.g., $CASE LOWER, $CASE CAPITAL 1.
• $MERGE: two consecutive tokens are merged into one

token
• $SPLIT: a token from source sequence is split into two

separate tokens in target sentence
• $VERB form1 form2: a token that is a verb is trans-

formed from form1 is source sequence to form2 in the
target sequence, where form1 and form2 are tense tags
of that verb.

GECToR needs a list of verbs in order to make use of
$VERB form1 form2 tag. From the verbs scraped from
Wikipedia a list consisting of 19420 verb transformations of
form1 form2:tag1 tag2 form was created, where form1

and form2 are verbs and tag1 and tag2 are tense representa-
tions of these verbs. Possible forms and tags are following:

• infinitive (tag = V B)
• present indicative singular (tag = V BG)
• past indicative singular (tag = V BD)
• past indicative plural 1st and 3rd person (tag = V BZ)
• supine (tag = V BP )
• past participle (tag = V BN )

The list consisting of all possible transformation pairs is saved
and used while preprocessing, training, and predicting.

4) Training: For the training a cased pre-trained Swedish
BERT model2 in its base configuration was used. As an
already pre-trained model was used, the stage of training
was considered as fine-tuning this model as well as training
the classifier layers responsible for error detection and error
tagging.

The dataset was split 98/2% for training and validation sets.
When training, the model was saved to a file after each epoch.
The validation set was used to determine what model of those
saved models performed best and also to determine if training
should be stopped as GECToR was already equipped with the
implementation of an early stopping mechanism. There were
five models trained on different amount of data in total, and
combinations of freezing and unfreezing the pre-trained word
embeddings were tested. While freezing the word embeddings,

2https://huggingface.co/KB/bert-base-swedish-cased

TABLE I
SPECIFICATION OF TRAINING FIVE DIFFERENT MODELS

No. of sentences No. of epochs
Fine-tuned
word
embeddings

10k 10 YES

1M 6 YES

2M 8 NO

2M 6 YES

4M 2 YES

only classification layers were trained, and the training process
was two-fold faster. A complete set of training scenarios can
be seen in Table I.

5) Tagging and Predicting: In order to perform grammar
error correction, a file of raw erroful sentences must be fed
into GECToR’s predictor. For each sentence a set of token
transformations, described in subsubsection II-B3 is predicted.
The transformations are applied to the sentence and an output
file with corrected sentences is produced as an output of the
predictor. Prediction of the transformations is paralleled for
each sentence; that could be influencing the transformations if
the output of the predictor was treated as an input in future
iterations. Therefore a default value of five iterations is used
when correcting sentences and predicted sentences are built
iteratively.

C. LSTM

The Long short-term memory (LSTM) [6] is a type of
recurrent neural network (RNN) architecture. RNNs have been
successfully used in NLP thanks to their ability to learn long-
distance dependencies in input sequences - for example long-
distance dependencies between words at different positions in
a sentence. Furthermore, the LSTM was designed to solve
one of the problems with RNNs that can occur during training:
vanishing and exploding gradients when performing backprop-
agation through time.

LSTMs can be used to implement an encoder-decoder archi-
tecture; suitable when working with a sequence to sequence
learning problem such as machine translation [7]. A model
based on the encoder-decoder architecture takes as input a
sequence of variable length (e.g., a sentence) which is fed
through the encoder. The encoder - consisting of an LSTM
of specified number of layers - produces, at each time step, a
hidden state and a cell state and takes as input the embedding
of the current word and the previous hidden and cell state.
When the end of an input sequence is reached, a final hidden
and cell state have been produced by the encoder and are used
as the initial hidden and cell state of the decoder (also LSTM).
The decoder also takes the previous hidden and cell state as
input at each time step, together with an embedded word.
This word is either the correct output word as per the ground
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truth output sequence, or the previously predicted output word,
depending on if teacher forcing is activated. At each time step,
the states produced by the decoder can be sent through a linear
layer to produce output words predictions.

1) Beam search: Beam search is a heuristic search algo-
rithm that expands the best x number of nodes (beam width)
at each level of the search tree using breadth first-search,
while all other nodes are removed from consideration. In
the context of a sequence-to-sequence model the encoder-
decoder structure produces a probability for each word in the
output vocabulary each iteration. Beam search can be used
to determine the most likely words and be used to guide the
decoding and determine the most likely final sentence.

2) Implementation: A sequence-to-sequence model was
implemented based on a model developed by Sutskever et al.
[8]. The model implements an encoder-decoder architecture
where the encoder and the decoder both consist of multi-
layered LSTMs. Beam search was implemented on the output
of the model to predict the final sentence.

In Figure 2 an overview of the implemented model can
be seen. The input to the model is a vector consisting of
integers representing words. The input vector is pre-processed
to start with a beginning of sequence token (BOS-token),
end with an end of sequence token (EOS-token), and only
the 30,000 most common words (vocabulary) are allowed in
sentences - otherwise the word is replaced with an unknown
token (UNK-token). During training, the model is trained on
batches of sentences, requiring the sentences to be of the same
length. This is accomplished by sorting the sentences based
on length and adding padding tokens (PAD-token) to the end
of sentences shorter than the longest sentence in the batch.

During training, the pre-processed sentences are fed to the
encoder which consists of an embedding layer and a multi-
layer LSTM. The output of the encoder is given to the decoder
where the previous predicted word (or BOS-token, if the first
iteration) is given to the LSTM and the next word is predicted.
Teacher forcing is used with a probability of 0.5 for each
word in the sentence, meaning that the previous token is either
the correct previous word or the predicted one. The output of
the LSTM is fed through a linear layer and for each index
of the output sentence the probability of each word in the
vocabulary is predicted. This is then, combined with the true
correct sentence, used to update the weights of the model using
an optimizer.

When using the model, for example during evaluation, beam
search is used to choose the best sentence. Sentences are
scored by multiplying the probabilities of each word in the
sentence based on previous words and dividing with the length
of the sentence.

In the embedding layers of the model, frozen pre-trained
weights 3 were used in order to speed up the training time.

Additionally there are a number of hyperparameters that
were kept static during all of the experiments:

• Source/target vocabulary size: 30,000

3https://www.ida.liu.se/divisions/hcs/nlplab/swectors/

• Embedding dimension: 300, pre-trained and frozen
• Batch size: 80
• Hidden dimension: 512
• Learning rate: 1e-3

D. Generative Adversarial Training

Generative Adversarial training is a class of machine learn-
ing where two models are trained simultaneously, a generator
and a discriminator. The models are ”pitted” against each other
where the discriminator attempts to determine if a sample
is from the generator or from the data set. The generator is
then updated based on if the discriminator successfully could
determine if the data points were from the generator or not.

The LSTM model, described in subsection II-C, is used
as the generator model and a new model is designed and
implemented for the discriminator. The implementation of the
disicriminator and the combined training was based on the
implementation by Raheja and Alikaniotis [9], that showed
significant improvements on generative models for GEC using
adversarial training. The rest of this section will detail how
data was generated for training, how the discriminator was im-
plemented, and how the combined training was implemented.

1) Discriminator Model: The discriminator is a binary
classification model that attempts to predict if a “correct”
sentence is from the dataset, and therefor actually correct,
or if it is from the generator. As input to the discriminator
the model takes a pair of sentences, one incorrect sentence
and one correct sentence. While usually the discriminator
in a GAN setup only takes only one input, the generated
or real data value, in this case the discriminator takes both
sentences [10]. This is both to make the task easier and to
make it possible for the discriminator to separate a generated
sentence that follows the distribution of our correct sentence
data but does not properly represent the information in the
incorrect sentence and a correct sentence from data. The output
is a single value representing the probability that the correct
sentence is real. The discriminator model consists of a GRU
layer with hidden size 128 , a feed-forward (FF) network with
one hidden layer of size 128 with ReLU as activation function,
and a Sigmoid activation function for the output value to
get probabilities out. On a forward pass both the incorrect
sentence and correct sentence are sent through the same GRU
layer separately, and the last hidden states are concatenated
and then sent through the FF network. The discriminator was
pre-trained before being used for the combined training. The
training was done with mini-batching, binary cross entropy as
the loss function, and Adam [11] as the optimizer. After each
epoch the validation loss and the accuracy on the validation
data was used to evaluate the model.

2) Dataset for the discriminator: The discriminator is pre-
trained before the combined training. And in order to pre-
train the discriminator, the discriminator needs a dataset with
both sentences from the dataset and sentences generated by the
generator. So the first task is to generate data based on ground
truth data from subsection II-A and a pre-trained generator
from subsection II-C. For each sentences pair <incorrect

https://www.ida.liu.se/divisions/hcs/nlplab/swectors/


Fig. 2. LSTM-model overview

sentence, correct sentence> in ground truth data, the incorrect
sentence is fed into the generator. The generator generate
a corrected sentence, with greedy decoding without teacher
forcing, that is used in the dataset. Note that the pre-trained
generator used to create the dataset is exactly the same as
the generator used in the combined training. For each pair
of sentences in ground truth data, two pairs of training data
sentences will be generated for discriminator training:

1) <incorrect sentence, corrected sentence> with target 0.
2) <incorrect sentence, corrected sentence> with target 1.
The target for each sentence pair indicates whether the

correct sentence is from ground truth or the generator.
3) Combined Training: The combined training procedure

between the generator and discriminator is often volatile [9].
In order to stabilize this training, both models need to be
pre-trained before the combined adversarial training. Firstly,
the generator model must be pre-trained on the ground truth
data; in our case, the LSTM model must be trained on the
incorrect to correct sentences, as described in subsection II-C.
This training must be conducted until convergence in order
for the combined training to be more stable, faster and to
ensure convergence. The pre-training of the discriminator, on
the other hand, is not as straightforward. The discriminator
should be pre-trained on a generated dataset, as describe
in subsubsection II-D2. The combined training is heavily
dependent on the relation between the performances of the
two models, and as the discriminator often converges faster
than the generator, the optimal performance relationship is
pretty hard to predict beforehand. Raheja and Alikaniotis
[9] conducted several combined training with discriminator
models with accuracies between 60 % and 90 % and found
the most optimal initial accuracy of the discriminator to be
75 %, but anywhere in between 65 % and 85 % showed
good performances as well. At convergence of the combined
training, the discriminator should not be able to distinguish

between ground truth data and data generated by the generator,
yielding an accuracy of around 50 % [12].

The actual combined training is based on using the generator
to create a correct sentence from an incorrect sample, and the
discriminator will be used to predict the probability of the
current sample being from the generator, which is used to
calculate the loss for the generator [9]. If the probability from
the discriminator is high, the error for the generator will be
amplified, and if the probability is instead low, the loss will
be minimized. This way, the generator will learn to trick the
discriminator, hopefully improving its general performance on
the GEC task. More details can be seen in Algorithm 1.

E. Evaluation

To evaluate the performance of all the models, precision (see
Equation 1), recall (see Equation 2), f-score (see Equation 3),
and accuracy (see Equation 4) were implemented and used to
compare the models:

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)

Fscore =
(1 + β2) · precision · recall
(β2 · precision) + recall

(3)

Accuracy =
TP + TN

TP + TN + FP + FN
(4)

To be able to calculate above metrics, notions of true
positives (TP), true negatives (TN), false positives (FP), and
false negatives (FN) predictions had to be defined. Definitions
of those are the following:

• TP: correction was performed and predicted sentence is
the same as ground truth sentence



Algorithm 1 Adversarial Training
1: G,D ← pretrain(G), pretrain(D)
2: while not converged do
3: # train generator
4: y′, y′prob ← G(xi, teacher force = 0)
5: prob generated← D(xi, y

′)
6: if random() < 0.4 then
7: reward← loge(prob generated)
8: reward← reward−AvgRewLast100Runs
9: Gloss ← loge(y

′
prob) ∗ rewards

10: else
11: y′, y′prob ← G(xi, teacher force = 1)
12: Gloss ← CrossEntropy(y′, y)

13:
14: # train discriminator
15: prob y generated← D(xi, y)
16: all probs← cat(prob generated, prob y generated)
17: targets← cat(0, 1)
18: Dloss ← BinaryCrossEntropy(all probs, targets)
19:
20: # update weights
21: Gθ ← Gθ − α ∗Gloss

22: Dθ ← Dθ − α ∗Dloss

• TN: correction was not performed and predicted sentence
is the same as ground truth sentence

• FP: correction was performed and predicted sentence is
not the same as ground truth sentence

• FN: correction was not performed and predicted sentence
is not the same as ground truth sentence

In this project only F-score for β = 0.5 and beta = 1 was
used.

Furthermore, to know how a sentence length influences
the model performance, the above evaluation metrics were
calculated separately for sentences with: 0-10 words, 10-20
words, 20-30 words, 30-40 words, 40-50 words, as well as for
all the sentences in total to see the overall scores.

III. RESULTS

A. BERT

The BERT models were trained on different amount of
sentences, in table II it is noticeable that the model trained
on 4 million (M) sentences had the best overall performance.
However, in shorter sentences with length 0-10 the model
trained on 1M was the best. In total there were 5 models and
1 of these was trained with frozen embeddings. After seeing
no gain from frozen embeddings, the others was trained with
unfrozen embeddings. One can remark that all the models
performed poorly on correcting long sentences, this will be
discussed further in the discussion section.

B. LSTM

Three different LSTM models were trained where different
amount of training data and number of layers in the LSTMS
were used:

Fig. 3. Validation and training loss of lstm models

• LSTM 1: 1 million sentences used during training 2
layers in each LSTM

• LSTM 2: 1 million sentences used during training 4
layers in each LSTM

• LSTM 3: 2 million sentences used during training 2
layers in each LSTM

The result of the training can be seen in Figure 3. The result
of the evaluation can be seen in Table III. In addition, the effect
of using different beam width were evaluated and can be seen
in Table IV.

C. Generative Adversarial

As previously mentioned, before the combined training
the discriminator was pre-trained to a certain accuracy. A
pre-trained accuracy of 70% was selected for the combined
training. The combined training converged after only two
epochs and both the discriminator and the generator validation
loss started increasing quickly. Especially the discriminator
loss doubled from the second to third epoch. The resulting
generator had a validation loss almost 10% lower than before
the combined training. This decrease however is not repre-
sented in the evaluation metrics, in Table V we can see the
metrics for the generator model after combined training and
the results are identical before and after combined training.

IV. DISCUSSION

A. Dataset Generation

The dataset contains synthetic data and therefore the models
should not reflect normal grammar errors. The fact that syn-
thetic data were used also means that models trained on it can
not be compared with models trained on real datasets since the
error distribution and the types of errors is not comparable.
When generating errors, there is no context of what have
been change and multiple changes can happened to the same
sentence and word. An example of this that were found, is
the following: “uppenbar” → “uppen bar” → “uppen bär”. In
the first split, the generator splits the word and in the second
step it changes the verb form on the second word. As one can
notice, it’s hard for the average person to notice this error as



TABLE II
RESULTS FROM BERT MODELS WHERE THE TOP DESCRIBES SENTENCE LENGTH AND * DENOTES MODELS TRAINED WITH FROZEN WORD EMBEDDINGS

[0-10] [10-20] [20-30]
% Sentences P R F0.5 F1 A P R F0.5 F1 A P R F0.5 F1 A
10 k 0,52 0,745 0,553 0,612 0,699 0,322 0,719 0,362 0,445 0,409 0,187 0.737 0.22 0.298 0.218
1 M 0,591 0,93 0,637 0,723 0,749 0,472 0,967 0,526 0,634 0,539 0,375 0,985 0,428 0,543 0,397
2 M 0,565 0,932 0,614 0,703 0,728 0,472 0,967 0,526 0,635 0,539 0,386 0,984 0,44 0,555 0,408
2 M* 0.442 0.508 0.454 0.473 0.633 0.285 0.511 0.313 0.366 0.36 0.152 0.524 0.177 0.236 0.179
4 M 0,582 0,927 0,629 0,715 0,739 0,476 0,966 0,53 0,638 0,539 0,39 0,985 0,444 0,559 0,411

[30-40] [40-50] Total
% Sentences P R F0.5 F1 A P R F0.5 F1 A P R F0.5 F1 A
10 k 0,1 0.729 0.121 0.176 0.11 0.055 0.676 0.067 0.102 0.06 0.335 0.731 0.376 0.459 0.478
1 M 0,275 0,991 0,321 0,339 0,281 0,204 0,996 0,339 0,243 0,206 0,447 0,957 0,53 0,637 0,587
2 M 0,291 0,992 0,339 0,45 0,298 0,207 0,994 0,246 0,343 0,209 0,473 0,958 0,527 0,634 0,581
2 M* 0.076 0.511 0.092 0.132 0.084 0.043 0.478 0.053 0.079 0.046 0.282 0.511 0.31 0.363 0.425
4 M 0,304 0,993 0,353 0,465 0,31 0,215 0,996 0,255 0,354 0,217 0,481 0,956 0,534 0,64 0,586

TABLE III
RESULTS FROM LSTM MODELS WITH GREEDY SEARCH DECODING, WHERE THE TOP DESCRIBES SENTENCE LENGTH, NOTE THAT DIFFERENT LENGTH

FOR SENTENCES WERE NOT EVALUATED FOR LSTM 1

[0-10] [10-20] [20-30]
Model P R F0.5 F1 A P R F0.5 F1 A P R F0.5 F1 A

LSTM 1 - - - - - - - - - - - - - - -
LSTM 2 0.131 0.943 0.159 0.231 0.280 0.004 0.978 0.005 0.008 0.005 0.000 0.000 0.000 0.000 0.000
LSTM 3 0.140 0.942 0.169 0.244 0.295 0.000 0.953 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

[30-40] [40-50] Total
Model P R F0.5 F1 A P R F0.5 F1 A P R F0.5 F1 A

LSTM 1 - - - - - - - - - - 0.041 0.938 0.051 0.079 0.102
LSTM 2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.045 0.944 0.056 0.086 0.107
LSTM 3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.046 0.942 0.057 0.087 0.110

it’s not a normal grammar error. The are no limit on how many
changes a sentence can contain, thus it’s more likely for long
sentences to contain many errors. Which can be noticeable
in the result since many of the models have lower score on
long sentences compared to short. Another problem to note is
that when splitting the data into training- and test-dataset, no
statistical evaluation were conducted to verify that they have
the same properties.

B. BERT

When evaluating the BERT models, there were a lot of FNs
which necessarily does not mean that the corrected sentences
were wrong. As there are many ways to correct a grammar
error and this project only checked if it was corrected to
the original sentence. As expected, the model trained on 10k
performed poorly. This is probably due to the fact of too
little data and the performance comes mostly from the fact
that the model is pre-trained. After doing experiments with
the different models, it is observable that when using frozen
embedding (see 2M* in the table), the gain over computational
cost for performance is poorly and clearly not worth it in this
case. Although the models with more training data performed
better, as can be seen in table II, using more data gave
diminishing returns on performance compared to the increase
in computation time. When having short sentences, there is
no need for a model trained on a lot of data. However, when
a sentence becomes longer it is better to use a model trained

more data. The group did not have any measure on the dataset
and therefor it is hard to tell whether BERT becomes better
with more training or if it is the fact that the data contains more
long sentences after a certain amount of data. With that said,
the dataset is not sorted on sentence length so one needs to
have in mind of randomness when evaluating different models.
BERT performed good overall and the fact that all errors that
have been generated in the scope of GECToR makes it a
little bit unfair against the other methods. After having no
knowledge about creating grammar errors, a lot of inspiration
was taking from their paper. Which makes the fact that BERT
should performed good an obvious reason.

C. LSTM

As can bee seen in Table III, the LSTM model performed
quite poorly with the best configuration only obtaining a total
accuracy of 0.110. There are multiple factors that could have
contributed to these results. Firstly, training the different model
configurations took quite a bit of time (approximately 61
hours) which made hyperparameter tuning impractical. For
example, the hyperparameter vocabulary size was limited to
30,000. Had the vocabulary size been larger, the number of
predicted sentences containing UNK-tokens could have been
decreased, which would have led to fewer sentences being
automatically evaluated as incorrect irregardless of the model’s
ability to correct grammar. This is potentially influenced
further by the dataset which among other things contains



TABLE IV
RESULTS FROM LSTM MODELS DEPENDING ON BEAM WIDTH FOR LSTM 3

Beam width P R F0.5 F1 A
1 0.046 0.942 0.057 0.087 0.110
2 0.047 0.942 0.058 0.089 0.111
4 0.047 0.942 0.058 0.089 0.112

TABLE V
RESULTS FROM LSTM MODEL AFTER COMBINED TRAINING WITH GREEDY SEARCH DECODING WHERE THE TOP DESCRIBES SENTENCE LENGTH.

[0-10] [10-20] [20-30]
Model P R F0.5 F1 A P R F0.5 F1 A P R F0.5 F1 A

Best Adversarial 0.122 0.936 0.148 0.216 0.269 0.003 0.985 0.004 0.006 0.004 0.000 0.000 0.000 0.000 0.000
[30-40] [40-50] Total

Model P R F0.5 F1 A P R F0.5 F1 A P R F0.5 F1 A
Best Adversarial 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.041 0.938 0.051 0.079 0.102

news articles’ text which often contains uncommon words
like names and places. Secondly, since pre-trained embeddings
were used, a word in the vocabulary without a pre-trained
embedding was initialized randomly. And since the embed-
dings were frozen, the random initialization values were kept
throughout training and likely had a negative effect on the
performance.

All model configurations perform considerably better on
short sentences than long. This might be due to the LSTM
not being able to preserve the context as the sentence gets
longer. It might also be due to a sentence being more likely to
contain errors and UNK-tokens the longer it is and therefore
also harder to correct.

Increasing the beam width during the beam search improved
the performance of the models (as can be seen in Table IV),
although the increase was quite small. This might be due to the
overall bad performance of the model and the binary nature of
the evaluation correction; with a larger beam width, the model
may predict a more correct sentence but not a completely
correct one and therefore not increase the performance.

D. Generative Adversarial Training

When first implementing the discriminator model the same
hyperparameters were used as Raheja and Alikaniotis [9] used
in their discriminator. When pre-training however this showed
to be a too complex model and even after multiple epochs
of training the discriminator had not improved at all, so the
complexity had to be lowered. Since the generator model
did not achieve results comparable with that of Raheja and
Alikaniotis model, the lower complexity discriminator was
still able to achieve good results and after only a few epochs
the discriminator achieved as high accuracy as needed. So the
lower complexity did not limit the discriminator; however, we
expect that our discriminator would not preform well given a
better generator, e.g., the BERT model.

As previously mentioned, the combined training is quite
volatile. If the discriminator is too good/bad compared to
the generator when starting training, the training will not be
stable, and if one of the models improve a lot quicker during

the combined training the training will also not be stable. To
get stable training there are multiple parameters that can be
changed, the learning rate of the generator and discriminator
model can be set individually and we can tune how often
teacher forcing MLE is used to update the generator to try and
stabilize the training. So, there are multiple parameters that can
be changed to get the best results, or even to get stable training
at all. Because of this grid search or random search would
be suitable to find a good set of parameters. However, the
computational-, and time limitations during the project meant
that we could not optimize the parameters, and this most likely
heavily affected the results of the combined training. It is also
especially hard to estimate good parameters because they are
very dependent on the performance and complexity of both
the discriminator model and the generator model. Comparing
parameters with e.g. Raheja and Alikaniotis is not very useful
because our generator have a lot worse performance and our
discriminator has a lot lower complexity.

It is also worth mentioning that the combined training is
used as a fine-tuning training, since the generator model is
already trained to convergence before the combined training.
And it might be the case that the performance of the LSTM
model is not good enough for the combined training to be
efficient, and that a better model whose output better predicts
the target output is needed for the combined training to
work. However, without properly testing parameters for the
combined training it is hard to say what is stopping the
combined training for improving the generator.

V. CONCLUSION

In conclusion when comparing the performance of the
different models it can been seen that the BERT model is
considerably better than the LSTM model, this might indicate
that a model based on error tagging is more suited for grammar
error correction than a sequence to sequence based model
since it avoids the problem of out of vocabulary errors.
Using adversarial training did not result in improvements of
the LSTM model in the metrics but if the LSTM model
would have been better the adversarial training might have



have yielded better results. It is noteworthy that a model
trained from scratch (e.g. the LSTM-model) means longer
training times is required then for a pre-trained model (e.g.
the BERT model), in a context where computational and/or
time resources is limited it is therefore more suitable to use a
pre-trained model.

It can also be concluded that all the models is better at
correcting short sequences which might be due to longer se-
quences having more errors as well as an increased opportunity
of multiple errors happening to the same words, completely
changing the meaning of a sentence.

Synthetic data has been used during the project which means
the results is not comparable with existing related research
since the types of errors and their distribution might not match
with real ones.

In the future it might be interesting to investigate the
difference in performance when using synthetic data and real
data for training. Another interesting future research direction
could be to evaluate models on a per error type basis.
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