
Colorization of grey-scale images

Alexander Olsson
aleol711@student.liu.se

Erik Berglund
eribe627@student.liu.se

Erik Kronberg
erikr271@student.liu.se

Joar Måhlén
joama595@student.liu.se

Lovisa Stålebrink
lovst419@student.liu.se

Ludvig Fors
ludfo119@student.liu.se

1. Introduction

This project takes on the challenge of colorizing black-
and-white images. Film and image colorization is an old
concept that has existed since the early 20th century. His-
torically this practice has been done by hand. Modern tech-
nology has today expanded the possibilities around what is
achievable dramatically.

Image colorization is a difficult area often studied within
the field of Computer Vision. Modern approaches to this
problem include deep learning models trained for this spe-
cific task, to colorize black-and-white images. Deep learn-
ing models are typically trained to colorize images by utiliz-
ing typical semantic meanings often found in images. For
example, generally the sky is blue, a strawberry is red and
grass is green. However the semantics does not apply in all
situations, for instance a rose might typically be red but in
reality its color can vary a lot. Also there are many colors
that share the same grey scale value, meaning that a grey
scale image could therefore be colored in various ways. For
these reasons image colorization is considered to be an un-
determined problem.

To handle this problem the goal of image colorization is
not necessarily to recover the ground truth color of the im-
age. Often the goal is instead considered to be to colorize
an image with possible colors that could possibly fool a hu-
man. In order to evaluate the result of a colorization model
a Turing test is a common practice. In the Turing test human
participants are shown two images, one having ground truth
colors and the other has been colorized. The participants
task is then to guess which the fake image is.

There are several different techniques that can be uti-
lized to solve the image colorization problem. According
to the paper Review on Different Methods of Image Col-
orization all the solutions to the colorization problem can be
generally categorized as one of the following, Manual ap-
proach, Scribble based approach, Example-based approach
and Learning-based approach [7]. Furthermore, the paper
states that most of the solutions today are in a fully auto-
matic manner using deep learning methods. This paper will

dive deeper and examine two different methods to colorize
the images, where both methods have a learning-based ap-
proach. The first one uses a Conditional Generative Adver-
sarial Network, cGAN, and the other method using a Con-
volutional Neural Network, CNN. Both of the previously
mentioned solutions to this problem are well researched and
many good examples of both CNN and cGAN models exist
that generate very realistic colorized images [4][9].
With the evidence from the previously mentioned papers,
it is expected that both models will have the possibility of
generating realistic colorized images from black and white
images.

2. Methods
This section will give a more in-depth description of two

methods used in solving the specified task of colorizing im-
ages. Both methods utilize neural networks to solve the task
and the project uses TensorFlow [1] for building the models.

2.1. Conditional Generative Adversarial Network

One of the methods that were implemented in order to
colorize the images was Conditional Generative Adversar-
ial Network, or cGAN for short.

2.1.1 cGAN - Theory

Generative Adversarial Networks was first introduced in
2014 by Goodfellow in the paper Generative Adversarial
Networks [5]. The architecture describes two neural net-
works training together to generate new images, the Gen-
erator and the Discriminator. Given random noise z the
Generator G generates an image G(z) and the Discrimina-
tor D classifies images x as real from the data set or fake,
generated by the Generator, D(x) see figure 1.

In order to train the model a value function that utilizes
both networks and can be optimized is needed. Since D
outputs a single scalar representing the probability that the
input image is from the real data set, the model is trained to
maximize D(x) when x comes from the data set. Simulta-

1



Figure 1: Illustration of the GAN architecture.

neously G will be trained to maximize D(G(z)). That way
generated images will be trained to look like real images.
Which is described in Goodfellow value function [5].

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)]+

Ez∼pz(z)[log(1−D(G(z)))]. (1)

The value function in equation 1 is used as the loss func-
tion in the training.

The GAN structure is not enough. This projects ambition
is to colorize a given image. Therefore the Generator G
needs more than random noise z as input, it also needs to
use a grey-scaled image to generate colors on. Which is
were a conditional GAN (cGAN) can be used.

Conditional Generative Adversarial Networks was intro-
duced in 2014 by M. Mizra in the paper Conditional Gener-
ative Adversarial Nets [10]. Mizra expanded Goodfellows
GAN idea to enable both the Generator G and Discrimina-
tor D to be conditioned by some type of extra information
y. The conditioning is done by feeding the information y
to both G and D resulting in the following modified value
function.

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x|y)]+

Ez∼pz(z)[log(1−D(G(z|y)))]. (2)

In this project the color space used is the YUV-format
which consists of three channels (filters) where the Y-
channel is the gray-scale image and the U and V channel
describes the colours [11], and equation 2 is used as the
loss function with the following representation:

• y grey-scaled image, light channel (Y).

• x the two color channels (UV) in a YUV color repre-
sentation.

• z random noise with same dimensions as y.

Clarified in figure 2.

Figure 2: Illustration of this project cGAN model.

Figure 3: Illustration of the generator architecture. Credit
to [4].

2.1.2 cGAN - Architecture

The architectures of the generator G and the discriminator
D are mainly inspired by the paper [4].

The generator G has the architecture as in Figure 3. The
network inputs a gray-scale image y of size 64x64 and a
noise vector z of dimension 100. Both y and z contain nor-
malized values between -1 and 1. The noise vector is first
mapped to a 64x64 image Z via a fully connected layer
which combined with the y forms the input to the next lay-
ers. The network consists of multiple blocks. Each block
(except the last one) consists of a Convolution [3], Batch-
Normalization [6] and ReLU [2] layer with the output shape
64x64. During execution, the blocks output a predefined
number of filters that also includes y and/or Z which are
added as extra filters at the end of the block. For example:
The first block has 130 filters including both y and Z so the
number of channels that should be predicted from the Conv-
BatchNorm-ReLU layers in the block is 128. The last block
only consists of two layers. A convolutional layer and an
tanh activation function that scales the input to values be-
tween -1 and 1. After denormalization, the output of the last
block is a colorized image in YUV-format.

The discriminator D has the architecture as in Figure 4.
The input is represented in YUV-format, the same as the
output of the generator. The blocks of the discriminator
have a similar structure as the blocks in the generator. The
only difference is that the strides of the convolution lay-
ers are set to 2 which down-scales the input in each block
and that the activation function is changed from ReLU to
LeakyReLU [12] with α set to 0.2. The output of the last

2



Figure 4: Illustration of the discriminator architecture.
Credit to [4].

block, with 512 filters of size 4x4, is reshaped into a sin-
gle column vector. This vector is then fed into a fully con-
nected dense layer with a sigmoid activation function to get
a value between 0 and 1.

2.1.3 cGAN - Algorithm

Algorithm 1 cGAN algorithm

1: function TRAIN DISCRIMINATOR
2: Generate random minibatch of m sampled

noise {z1, ..., zm} each of size sz .

3: Sample minibatch of m gray-scale images
{y1, ..., ym} each of shape [s, s, 1].

4: Get coresponding minibatch of m real color
images {x1, ..., xm} from data distribution
pdata(x).

5: Optimize discriminator by minimizing:

∇θd

m∑
i=1

[logD(x(i)) + log(1−D(G(y(i), z(i))))]

(3)

6: function TRAIN GENERATOR
7: Generate random minibatch of m sampled

noise {z1, ..., zm} each of size sz .

8: Sample minibatch of m gray-scale images
{y1, ..., ym}

9: Optimize generator by minimizing:

∇θg

m∑
i=1

log(1−D(G(y(i), z(i)))) (4)

10: function MAIN
11: Initialize the generator and discriminator networks
12: for number of epochs do
13: goto train discriminator.
14: goto train generator.

The cGAN algorithm used is described by Algorithm 1.

The optimizer used during training is the Adam optimizer
[8] with learning rates αG and αD. Hyperparameters for
the algorithm can be found in Table 1.

Info Parameter Value
Generator learning rate αG 0.00005
Discriminator learning rate αD 0.00005
Batch size m 64
Noise vector dim sz 100

Table 1: Hyperparameters for cGAN.

2.2. Modified VGG16

The second method that was implemented is a modified
VGG16 network and was introduced by Zhang, et al. in
Colorful Image Colorization [14].

2.2.1 Modified VGG16 - Theory

The model requires pictures in the CIE Lab color space
which consists of three channels L, a and b. The L channel
reflects the intensity of a pixel where 0 is equal to black and
100 is equal to white. The a channel represents the red and
green colors in the image, while the b channel represents
the blue and yellow. Both channels have a value between
−128 ≤ a, b ≤ 127. Figure 6 gives a good understanding
of the color space.

Figure 5: Lab color space. Credit to [9].

Given the L channel, X, the objective is to learn a map-
ping, Ŷ = F (X), to the associated color channels a and
b. This can be seen as either a regression or a multinomial

3



classification problem. Both problems can be solved by us-
ing a CNN, Ẑ = G(X). The regression approach is a fully
end-to-end trainable solution, which predicts a pixel value
for each pixel in the image. The mapping to be learnt here
F (X) is therefore equal to G(X). The L channel is then
added to the predicted ab channels, to construct the final
output image. This model is used as a baseline for the sec-
ond approach, where a probability distribution is predicted
instead. A function H(Ẑ) is then used to map the predicted
distribution Ẑ to a point estimate Ŷ in the associated color
space. This mapping is done outside of the CNN, which
makes this solution not end-to-end trainable. The mapping
F (X) can then be said to be a composition of the CNN G,
which produces a predicted distribution over all pixels, and
the operation H , which generates a final prediction.

The regression approach CNN is evaluated with a L2-
norm loss defined as:

Ll2(Ŷ,Y) =
∑
h,w

(Yh,w − Ŷh,w)
2

The loss function like the Euclidean loss is in this case
inadequate. It is not robust to the inherent ambiguity and
multimodal nature. In color prediction, this averaging ef-
fect of the set of distinct ab values will generate desaturated
results, which can result in brownish output images. There-
fore, it is better to treat the problem as a multinomial clas-
sification. The second approach which is a combination of
a CNN and a multinomial classification is evaluated with a
multinomial cross-entropy loss. This loss is defined accord-
ingly:

Lcl(Ẑ,Z) = −
∑
h,w

∑
q

Zh,w,q log(Ẑh,w,q).

In figure 6 the ab color space can be seen divided into
313 squares. These squares are called bins and this repre-
sentation of the colour space is needed to be able to treat the
problem as a classification problem. The amount of bins af-
fects the result and 313 was chosen since Zhang, et al.[14]
used it in their experiments. The authors described their
choice of 313 bins as it gives a quite large amount of dif-
ferent colours while keeping the limits of each bins quite
simple. No experiments with other values was presented,
however. As stated before, the model will favour colours in
the middle of the spectrum if an euclidean loss is used since
those colours are quite close to all other colours. This can
be seen in figure 7 which shows the probability distribution
of colours in the data set used by Zhang, et al [14].

In the final stage of the classification approach, the bin
with the highest probability for a specific index is used to
colorize the corresponding pixel. This can be represented
by the following equation

H(Zh,w) = argmax
q∈Q

Zh,w,

Figure 6: Colors in ab space discretized. Credit to [14].

Figure 7: Probabilities of ab color space in log scale. Credit
to [14].

where Zh,w is a vector containing the probabilities for each
bin. The output is thus an index which in the next step is
transformed to the corresponding a and b values. As for
the regression approach, the L channel is then added to the
predicted ab channels.

2.2.2 Modiefied VGG16 - Architecture

The CNN that is used in the regression model is illustrated
in figure 8. It takes a black and white image (the L channel
of a CEI Lab image) as its input and then sends it through
multiple convolutional layers, illustrated with a block in the
figure. These blocks contains 2 or 3 convolutional layers
with a Rectified Linear Unit (ReLU) as its activation func-
tion, followed by a batch normalization. The network does
not contain any pooling so all spatial resampling is done
between the different blocks.

In the article by Zhang, et al.[14], only the classification
architecture was presented. For the regression model to be
able to work properly, some modifications had to be made
to the network. The output layer was changed to output two
values representing the ab channels. The activation function

4



Figure 8: Illustration of the modified VGG16 baseline ar-
chitecture.

in the output layer was changed from ReLU to tanh, since
the ab channels can be both negative and positive. The L
channel was normalized by dividing it by 100 to get values
between 0 and 1. The ab channel was normalized by divid-
ing it with 128 in order for all values to be between -1 and
1. The presented architecture is also used as a baseline for
the multinomial classification model.

In figure 9 the architecture of the multinomial classifi-
cation approach is illustrated. Compared to the baseline
only one block is added, which has a size of 56x56x313.
This block is the output of the network and this is where the
probability distributions are predicted. As described earlier
in the theory, the bin with the highest probability is chosen
for colorizing the corresponding pixel. Since the features in
this block only have a size of 56x56, the output of the map-
ping needs to be up-scaled with a factor 4 to get the initial
size of the image.

Figure 9: Illustration of the final modified VGG16 architec-
ture [14].

To be able to decrease the computational time in the
training stage, pre-trained weights are used in the layers
up to and including block conv4 in the network. The pre-
trained weights are trained for image classification on a sub-
set of the ImageNet data set containing 1000 categories and
over 1.2 million images. Pre-trained weights are only added
up to the point were the architecture of the network is the
same as the one the weights have been trained on. To avoid
removing any useful information the pre-trained weights are
frozen during training. The pre-trained weights was gener-

ated from a VGG16 network which takes three channels,
R-G-B, as its input. The modified VGG16 network only
takes one input channel, so it needs to be extended to be
able to take three. Since a black and white image only is
represented by one channel, three identical lightness chan-
nels will be sent to the network. To get the most out of the
pre-trained weights the network will only be fed images of
size 224x224 since that is the size the weights initially were
trained on.

Table 2 illustrates the different hyperparameters used for
the architecture. These where combined with the Adam op-
timizer in the training stage.

Parameter Value
Regression learning rate lr 10−4

Classification learning rate lr 3× 10−5

Batch size 64
Input size 224x224

Table 2: Hyperparameters.

2.3. Description of data set

Several data sets were used during development and
evaluation of the models.

2.3.1 LSUN: Dinning Room

The LSUN: dinning room [13] data set consists of 657,571
coloured images of different sizes. The data set contains im-
ages of dinning rooms of different styles. Because of mem-
ory limitations, only 5% of the images where used during
training. Preprocessing was done before training by scaling
each image to 64x64 images. This data set will be used to
train and evaluate the cGAN model.

2.3.2 Linnaeus 5

The Linnaeus 51 data set consists of 1600 256x256 coloured
images for each of its five classes. There are downsampled
versions of the data set with images of sizes 128x128, 64x64
and 32x32. The Linnaeus data set was used mainly with
256x256 and 128x128. The modified VGG16 models will
both be trained and evaluated on Linnaeus 5 data set.

2.4. Description of evaluation protocol

To evaluate the performance of the two models produced
by the different methods a Turing test will be conducted as
described in the introduction. The test will consist of 15 ran-
domly sampled colorized images from each model together
with the ground truth image. The test will be held through

1http://chaladze.com/l5/

5



an online survey and the number of participants will there-
fore depend on the amount of responses the survey receives.

3. Results

In this chapter the result from both models are presented.

3.1. cGAN

Below the results from the Conditional generative adver-
sarial network is presented.

3.1.1 Loss

The idea behind Generative adversarial networks is that
both models should counteract each other, meaning that the
two models should balance each others loss. When one
model is good with a low loss the other should have a higher
loss and therefore make a larger change to move its loss
back down (and the first mentioned model up). The model
produced in this project have not succeeded in accomplish-
ing this phenomena. As after 1000 iterations the discrimi-
nators loss proceeds constantly moving downwards, while
the generator start moving upwards, but the longest training
session for the model was only about 3000 iterations.

Figure 10: cGAN loss graph. Orange line displays the dis-
criminators loss, the blue the generators loss. Each x repre-
sents 10 iterations.

In figure 10 the phenomena of that the two models bat-
tling each other is present. For instance at iteration 300 the
generator has a high loss, the generator drastically changes
yielding a large improvement and the loss of the generator
drastically decreases while the discriminators loss increase.
However in this graph a form of early stopping has been
applied based on previous training.

The early stopping was set at 1000 iterations, after that
the generator loss is constantly increasing, yielding worse
and worse colorizations. Given that the batch size was set
at 64, the model has been trained on 64 000 images which
is around two epochs of the data set.

3.1.2 Accuracy

The accuracy of the discriminator is clearly correlated with
both the generator and the discriminator loss, as expected.

Figure 11: cGAN discriminator accuracy graph. Orange
line displays the accuracy of classifying fake images as
fake, the blue real images as real. Each x represents 10
iterations.

In figure 11 it is clear that the discriminator is equally
good at classifying real images as real and fake as fake. The
correlation between the loss can be seen through the move-
ment of both graphs. For instance when the accuracy has a
clear decrease is at the same position where the generator
loss decreases and the discriminator loss increases. Before
the early stopping the accuracy of the discriminator oscil-
lates between 60 to 70%.

3.1.3 Images

Below images produced by the generator after early stop-
ping is presented.

(a) Real image (b) Colorized image

Figure 12: Successful colorization with cGAN.

From figure 12 there is clear that the model is able to
understand where outlines of objects (e.g. furniture) and
colorize them into a specific realistic color. The painting on
the wall of the images manifest the fact that the generator
does not try to duplicate the real image. Instead the genera-
tor attempts to colorize the image to something ”realistic” in
order to fool the discriminator. Leading to that both paint-
ings have different colors. But it is this fact that can cause
issues for the generator as well.

On the left side of figure 13 there is a window as seen
on the left/real image. Outside there is a blue sky and some
of the blue light shines through the window. However, the
generator can not understand this and will therefore not col-
orize the sky blue and colorize the light from the window.
This results in the fact that a human easily can see which
of the images is real and which is fake. Similar effects in

6



(a) Real image (b) Colorized image

Figure 13: Unsuccessful colorization with cGAN.

images creates an issue for the generator in order to make
an image that can trick humans. The images generated from
the model was however never evaluated by other people out-
side of the group so it is unclear how well the model would
perform in an Turing Test for an example.

3.2. Modified VGG16

In this section the results from the modified VGG16
model will be presented. The results from baseline regres-
sion model and the multinomial classification model are
presented separately.

Common for both the baseline and the multinomial
model is that they are only trained on the berries category
of the Linnaeus 5 data set. This was due to the training time
of the VGG16 model being very time consuming.

3.2.1 Regression

Figure 19 presents a few examples of colorized images ob-
tained by the baseline model. Figure 18 presents the cor-
responding ground-truth images. When looking at the col-
orized images it is clear that the model is struggling with
the colorization. When the images contain only berries and
there are not much distracting colors in the background the
model works best. The overall color of the image is plau-
sible for the those images although minor inaccuracies are
easily spotted when comparing to the ground truth images.

The colorization of the model is worse on images were
the object is surrounded by a more lively and colorful back-
ground, noticeable on the first two images. The model seem
to have difficulties understanding shapes and outlines of
certain objects causing the color of the object to spread out
from the outlines of the objects.

The overall result from the baseline colorization is poor
and it is easy to determine which image is the ground-truth
one when comparing two images. For this reason and for
the lack of time a Turing test to evaluate the model perfor-
mance was deemed unnecessary. Figure 14 and 15 displays
the corresponding results using regression by Zhang et al
[14]. It is clear that their model are doing a better job fol-
lowing the outlines of the objects. As mentioned previously
the L2-norm loss function tend to lead to desaturated colors

which is evident in their results while not as noticeable in
our results.

(a) Colorized image (b) True image

Figure 14: Successful colorization using regression by
Zhang et al. [14].

(a) Colorized image (b) True image

Figure 15: Unsuccessful colorization using regression by
Zhang et al. [14].

3.2.2 Regression loss

Figure 16 displays the loss graph for the baseline VGG16
model. To avoid overfitting early stopping was used by
ending the training when the test error started to increase.
Judging by the graph it is evident that model is learning and
that it performs better for every epoch until the loss con-
verges for the test data set. The training is stopped after
approximately 35 epochs, after that the model starts overfit-
ting leading to test error increasing and the model producing
worse colorizations.

Figure 16: Regression loss graph. Orange line displays the
test error, the blue the training error.

7



3.2.3 Multinomial classification

In figure 20 predicted images from the multinomial classi-
fication approach is shown. It can be seen that the model
struggles even more to colorize the images than the regres-
sion approach. Large parts of the different images are col-
orized as grey even though the true image is very colorful.
Another behavior that seems to be recurring is that the col-
ors red and green are predicted very frequently. By looking
at the images it seems like the model has a hard time to find
contours as well. This behavior results in large regions with
the same colors. As for the regression model, the images
predicted from the multinomial classification model can not
trick a human to believe that it is the ground-truth image.
Therefore, no Turing test where carried out for this model
neither.

3.2.4 Multinomial classification loss

The multinomial classification model was trained for 250
epochs and the loss for each of those is shown in figure 17.
In the first couple of epochs the loss decreases significantly.
After this it drops with a value between 3-7 for each epoch,
which shows that the training require a lot of time to reach
a model with a low error score. By looking at the graph we
can see that the loss tends to continue to decrease if more
training could have been carried out. The test loss is also a
little lower than the train loss, which shows that the model
is not overfit to the training data set.

Figure 17: Multinomial classification loss graph. Orange
line displays the test error, the blue the training error.

4. Discussion

In this chapter the result for the different models are dis-
cussed. The performance of the models are compared to the
result obtained by the scientific papers together with reason-
ing about why they might differ.

4.1. cGAN

Even though the cGAN-model was only trained for two
epochs the results generated were mostly all realistic. Some
of the generated images were still quite poor in quality and
it performed worse than the model from the paper of which
it was based on, though this was expected as the time frame
and access to hardware was limited for this project.

As the cGAN-model only aims to generate an image that
is realistic and does not try to replicate the original image
this works well for the training set selected for the model.
This is because of the fact that for an example a chair or
a table, which often can be found in the LSUN: Dining
Room data set, can be many different colors but if the im-
age instead was on something more color-specific, prob-
lems would quickly occur.

4.1.1 Selection of data set

It is always important to be studious when choosing a data
set for when training a neural network. For an example if
the selected data set has many images of an outside setting
it is likely that the neural network quickly will learn that the
upper part of an image is blue, because of the sky, and the
lower part of the image is green, because of the ground. So
for this project the focus was on learning how to colorize
images of an inside setting where images are more diverse.
In the beginning of the project we first used the LSUN:
Classroom data set but was later changed due to the fact
that the images in LSUN: classroom could vary quite a bit
from image to image, thus making it hard for the generator
to get a hold of what kind of image to create to due to vast
diversity. One other reason is that the LSUN: Classroom
data set often has humans in the images which seemed to
be harder for the neural network to colorize. With this said,
it is not known how well the cGAN-model in this project
would perform on images with an outside setting, a more
diversified data set or images with humans in it. However
some evidence of that it will perform poorly can be seen in
Figure 13 where the generator fails to colorize the sky blue.
This makes the cGAN in this report quite niche and this
should be kept in consideration when looking at the gener-
ated images.

4.1.2 Limitations in training

As mentioned in section 3.1.1 an early stopping was im-
plemented at 1000 iterations to avoid the generators loss to
increase to much. Due to limitations of Google Colab the
longest we trained our cGAN model was around 3000 iter-
ations and it could be that the poor quality of the generated
images after 1000 iterations was due to the generators loss
function being stuck in a local minima. Perhaps if the train-
ing would have kept going for more epochs it is possible

8



Figure 18: Real images.

Figure 19: Predicted images for baseline.

Figure 20: Predicted images for multinomial classification.

that the generator would have left the local minima and the
gradiant descent could have found a better local minima or
even the global minima for our loss function. If this is the
case it is also possible that the loss functions of the discrim-
inator and the generator would enter the phenomenon where
they are battling each other once again.

4.2. Modified VGG16

It was known from the beginning that a lot of training
time would be needed and that it would be a defining factor
for the result. For this reason we used pre-trained weights
to minimize the need for extensive. However the qual-
ity of the result was lower than expected and the amount
of training required was still underestimated. Even when
training on a subset of the Linnaeus data set the training
time was very time consuming. In the study of Zhang et
al. they fully trained their network for the colorization
task on over 1.3 million images [14]. It is believed that
the size of the training data is the most contributing reason
for the big difference between the results. This theory is
supported by the fact that when training the current mod-
els the loss is decreasing and the colorization becomes bet-
ter. Still the model do not generalize very well, although
the object is mainly colorized with plausibly colors. The
regression model produced better result which was also sur-
prising since the article that this work was based on argued
that regression was worse than classification.

4.2.1 Regression

The regression model performed decently on certain pic-
tures. It detected objects quite well and certain parts of
the images looked very promising. The model produced
just a couple of images that looked good and convincing.
For those images the structure was similar, with mostly a
blue color with different shades in the image. It was evi-
dent that the model favoured the color blue for many of the
images in the test data set. A reason for this might be that
the color distribution of the berries class of the Linnaeus
data set was uneven, meaning that it contained a lot of blue
images. Another reason might be because there are many
types of berries in blue shades, for example black berries,
blue berries, elderberries and grapes. However the same ar-
gument could be stated for red berries too. To determine
this further analyses of the data set is required.

4.2.2 Multinomial classification

The multinomial classification model performed much
worse than expected. An improvement over the regression
model was expected because of the result in the article and
faster training time. However that was not the case since the
multinomial classification seemed to not be able to differen-
tiate between objects. Images usually only had one or two
different colours in them as well. It is not clear why this
was the outcome, but a possible reason is that the multi-
nomial classification method requires more training time.
When looking at the loss graph in figure 17 it is clear that
the model can be trained longer since no signs of overfitting

9



is present. Perhaps the multinomial classification is more
sensitive to data sets with images that are very similar to
each other. It is mentioned in the article that their model
was trained on more powerful machines, for a longer pe-
riod and with more data than our model. All three reasons
surely has an impact on the performance of our model, and
it is difficult to determine what would improve our model
the most. It is sadly not mentioned in the article [14] how
many epochs the model completed. Knowing this metric
would have made it easier to determine what the problem
with our solution is. It is possible that we have fewer epochs
completed, which would mean that we are not training the
model long enough. It is also possible that more epochs has
been completed which would indicate that our data set is
too small.

4.3. Model comparison

When comparing the results from the two models it is
quite clear that the images generated from the cGAN-model
are more credible than the ones generated from the modi-
fied VGG16-model. The cGAN-model also generated bet-
ter images after a short training time when compared to the
modified VGG16-model. However, the comparison of the
images of the two models is quite unjust due to the selected
data sets for each model. The cGAN-models data set solely
consists of images of dining rooms thus limiting the models
exposure of nature in the images of which it is trained and
evaluated on. The data set used for the VGG16-models on
the other hand only contains nature themed images and all
of them containing berries. This makes the comparison of
the two models complicated as if the image, which can be
seen in Figure 19, contains a strawberry it will only seem
realistic if the model colors it red. But if the image instead
contains a table or a chair a multiple of colors can be chosen
from and the image still appears to be realistic. So the mod-
ified VGG16-model needs to be very precise when estimat-
ing which color the berry should be when the cGAN-model
can choose from a wider array of colors when estimating
and still get a realistic image.

4.4. Future improvements

The following section describes potential improvements
that could be made to increase the performance of the mod-
els. Further evaluation of the current results from the mod-
els are also discussed.

4.4.1 cGAN

As mentioned in section 4.1.2 it would be interesting to see
if the model would improve if training would have been kept
going for more iterations than what has been done in this pa-
per. Another improvement that could have been contribut-
ing to a better model would be if a larger part of the data

set would have been used, as for the model in this paper
only 5 percent of the LSUN: Dining Room was used due to
the memory limitations of Google Colab. As mentioned in
section 4.1.1 the model is only trained and evaluated on im-
ages from an indoor setting, more specifically only for din-
ing rooms, due to time and hardware limitations. For further
evaluation it would be interesting to train the model on other
data sets that have more variations than the LSUN: Dining
room data set to see how it would perform on a more gen-
eralized plane. Finally, the evaluation of the cGAN-model
is only done within the project group and no real test are
done to see how well the generated images are perceived,
this is something that would make it easier to benchmark
the models.

4.4.2 Modified VGG16

Common for both training time VGG16 models was that
the training time was very time consuming. Because of this
a future improvement would be to train both the VGG16
models on a larger data set with better hardware to speed
up the training time. To improve the results further it would
be interesting to experiment with different hyperparameters,
for example through the use of grid search.

To further evaluate the practical use of the model it
would be interesting to evaluate whether the model can be
used to improve the performance of a image classifier on
greyscale images as suggested by Zhang et al. [14].

4.5. Conclusions

For this project it can be concluded that the cGAN-model
was a better fit for the project scope and for the available
hardware. The cGAN-model was noticeably faster to train
than the VGG16 models and it could therefore be trained
on a much larger data set. The colorized images yielded by
the cGAN-model was more believable than the results from
the VGG16 models. It is believed that the current result
from the cGAN-model can fool a human, however, further
evaluation is needed to quantify its performance. At the
current stage it is assessed that the VGG16 models can not
produce believable results.

10



References
[1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen,

C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghe-
mawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia,
R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané,
R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster,
J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker,
V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. War-
den, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng. Tensor-
Flow: Large-scale machine learning on heterogeneous sys-
tems, 2015. Software available from tensorflow.org.

[2] A. F. Agarap. Deep learning using rectified linear units
(relu). arXiv preprint arXiv:1803.08375, 2018.

[3] S. Albawi, T. A. Mohammed, and S. Al-Zawi. Understand-
ing of a convolutional neural network. In 2017 International
Conference on Engineering and Technology (ICET), pages
1–6. Ieee, 2017.

[4] Y. Cao, Z. Zhou, W. Zhang, and Y. Yu. Unsupervised diverse
colorization via generative adversarial networks. In Joint Eu-
ropean conference on machine learning and knowledge dis-
covery in databases, pages 151–166. Springer, 2017.

[5] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu,
D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. Gen-
erative adversarial networks, 2014.

[6] S. Ioffe and C. Szegedy. Batch normalization: Accelerating
deep network training by reducing internal covariate shift. In
International conference on machine learning, pages 448–
456. PMLR, 2015.

[7] T. Joji, S. Abraham, R. Venugopal, and S. K R. Ijsrset195901
— review on different methods of image colorization. 05
2019.

[8] D. P. Kingma and J. Ba. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

[9] B. Ly, E. Dyer, J. Feig, A. Chien, and S. Bino. Research
techniques made simple: Cutaneous colorimetry: A reliable
technique for objective skin color measurement. The Journal
of investigative dermatology, 140:3–12.e1, 01 2020.

[10] M. Mirza and S. Osindero. Conditional generative adversar-
ial nets, 2014.

[11] M. Podpora, G. P. Korbas, and A. Kawala-Janik. Yuv vs rgb-
choosing a color space for human-machine interaction. In
FedCSIS (Position Papers), pages 29–34, 2014.

[12] B. Xu, N. Wang, T. Chen, and M. Li. Empirical evaluation of
rectified activations in convolutional network. arXiv preprint
arXiv:1505.00853, 2015.

[13] F. Yu, A. Seff, Y. Zhang, S. Song, T. Funkhouser, and
J. Xiao. Lsun: Construction of a large-scale image dataset
using deep learning with humans in the loop. arXiv preprint
arXiv:1506.03365, 2015.

[14] R. Zhang, P. Isola, and A. A. Efros. Colorful image col-
orization. In European conference on computer vision, pages
649–666. Springer, 2016.

11


