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1 Introduction

During the last decade, a lot of research has been made in support of the development
of self driving cars. In traffic environments, multiple different actors continuously
interact with each other. As the development of self driving cars continues to progress,
the need for models that can forecast these interactions increase. There are many
insights needed to support the progression of self driving cars and one is the ability to
forecast different actors’ trajectories in traffic environments. Trajectory forecasting is
the process of predicting the future location of an object based on historical locations.
This can be applied in processes such as pedestrian prediction and traffic prediction
which is especially useful for applications such as self driving cars.

This paper evaluates the state of the art Transformer Network(TN) in trajectory
forecasting instead of it’s traditional application in Natural language processing (NLP)
tasks. We further evaluate this model by comparing the results to a LSTM (long short
term memory) network. Transformers introduce the concept of attention which plays
an essential role in the performance when compared to LSTM.

1.1 Background

Trajectory forecasting is a research area which has been thoroughly researched through-
out the years. The research can be applied to many application areas, where one is
in different traffic scenarios. Some of the research has been performed to forecast the
trajectory of pedestrians while other work investigates the possibility of predicting
motion patterns of vehicles.

In the paper by Alahi et al [1] the authors propose a model for predicting human
trajectories in crowded spaces using LSTM networks. In their work they address
the problem of agents not taking into consideration interactions between humans
in crowded environments by introducing an “social” pooling layer. Each human in
a scene is represented by an individual LSTM network. The hidden layers of the
different LSTM networks are shared between closely related networks, i.e networks
representing humans which are close to each other. The sharing of the hidden layers
is performed through the social pooling layer.

Within the area of vehicle trajectory prediction, some work is based on data from
the drivers point of view, while other work is based on predicting trajectories from
a top down point of view. Yichuan et al[6] propose in their work a probabilistic
framework where latent variables are learned, without the need of explicitly labeling
the variables. The framework uses multiple RNNs, one for each agent in a scene. All
the RNNs learn a latent variable each, and share their weights with each other.

In this paper the focus will be on the task of forecasting vehicle trajectories in urban
traffic environments using the TN. As mentioned earlier, the TN is traditionally used
for sequence modelling in NLP tasks. However, in the paper by Francesco et al
[3], a new application area of forecasting pedestrian interactions and movements is
proposed. The authors compare the TN with a Gaussian LSTM and achieve state of
the art results.
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2 Method

In this section, we will first discuss the different architectures of the neural networks
that we use in this study. The purpose of this overview is to highlight the fundamental
features that separate the methods we implement and ultimately decide which one
is appropriate for our problem. The following sections presents the methodology
used when evaluating the models. Firstly, the dataset used to compare the models
is described; including its characteristics and properties. Secondly, an overview of
how the models were implemented is described. Lastly, the evaluation metrics are
presented.

2.1 Recurrent Neural Networks

What mainly separates the RNN from a feed-forward network is that it contains loops,
disqualifying it as a directed acyclic graph by definition. However, note that they can
be represented in a purely feed-forward manner, although we don’t address that in
this text and define them as strictly recurrent. The purpose of these loops stems from
the sequential data that recurrent networks are specialized for processing. Essentially,
the task is to learn shared meaning in contrast to a feed-forward network that treats
the input data independently.

Figure 1: RNN and unfolded RNN

Figure 1 demonstrates how the context of past data affects the output of current and
future outputs. On the left part of the figure, the recurrence is represented in the
hidden state with the arrow pointing to itself. To further illustrate how past input
affects future outputs the network is presented unfolded. In this form, we can clearly
see that the output produced at any point t, will take all previous states into account
when performing the computation. This mechanism of passing forward the internal
computed state works as a memory for the RNN and, ultimately, allows for previous
data to play a role in the output of the following data. However, although the RNN
memory is unlimited in theory, in practice, as the length of the sequence grows, past
inputs affect on current outputs begin to fade. This issue is known as vanishing
gradients and is described well by Sepp Hochreiter [5]. The problem of vanishing
gradients arises when training the network and is a consequence of backpropagation.
The network calculates the gradient of the current layer with respect to previous
layers, and as the gradient gets smaller in previous layers, the current gradient will be
even less. This will ultimately lead to the gradient of early elements of the sequence
becoming minuscule, causing the change to be almost zero, signifying that it will fail
to learn. This inadequate short-term memory of the RNN is what gives rise to our
next topic, a flavor of the RNN called long short-term memory (LSTM).
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2.2 LSTM

The LSTM is a response to the inherent short-term memory of the RNN. The internal
structure of the LSTM cell functions to separate valuable information in the sequence
from irrelevant information, in the sense that the latter will not contribute significantly
to the decision process of the output. Intuitively, the LSTM addresses this issue by
keeping gates in its cells. These gates learn during training what to remember and
what to forget, allowing early elements of a given input sequence to play a role in
calculations at later stages.

Figure 2: LSTM cell

The structure of the LSTM cell is illustrated in figure 2, with lines separating the
different gates. Moving from left to right we start with the forget gate. As the name
suggests, the network decides given the input sequence and the previous hidden state
what to forget. The sigmoid function provides the functionality of this procedure,
firstly, it is defined between [0,1], setting the importance of the value respectively. A
value close to 0 is considered not important and can be forgotten, whilst values closer
to 1 are important. Next, we move on to the input gate, whose task is to update
the cell state. Essentially it will pass the input sequence and the previous hidden
state as the forget gate, however, this is to determine what values are important to
be updated in the next step. The same input combination will be passed through a
tanh function, to regulate the network, this output will finally be multiplied with the
input passed through the sigmoid function, and finally, a cell state is computed. The
final gate, the output gate, forwards the cell state to the next cell together with the
new hidden state. The hidden state is calculated by first passing the input sequence
and previous hidden state through a sigmoid function and multiplying that with the
current cell state that has been passed through a tanh function.

Together with the increased memory the LSTM provides comes increased computation
[4]. Its worth noting that unless there is a demand for the LSTM as in long sequences,
the RNN should be considered in its original state.

2.3 Transformers

The transformer is a neural network developed at google and published in 2018 [7].
The transformer is simple in its architecture, in terms of complexity, when compared
what at the time was the state of the art, the RNNs, and convolutional neural networks
(CNNs). What mainly separates it from the previous memory oriented networks, is
that it utilizes an attention mechanism to learn the relationships between the elements
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in the input embeddings. Additionally, it is not entirely dependent on sequential
input throughout the network, given the feed-forward neural networks. This allows
for parallelization during training which significantly reduces running time.

2.3.1 Attention

The transformer network uses an encoder-decoder structure. The attention layer is
embedded in both blocks. Intuitively, the network captures important contextual
information for each word and its relation to each other and encodes the information
in a vector. From the input vector, the network will apply the attention function (1),
which takes three arguments, the query (Q), key (K), and value (V). These arguments
are computed by taking the input vector and taking its dot product with the respective
matrix for each argument. Their respective matrices are all randomly initialized by
the network and modified during training from the data. Additionally, the network
uses multi-headed attention, with a default value of six attention heads, essentially
this allows for the network to place attention on multiple parts of the input sequence.

Attention(Q,K, V ) = softmax(QKT /
√

dk)V (1)

2.3.2 Parallelization

One of the big advantages the transformer network has over other models is the feed-
forward neural networks that reside in the layers. Since the input of the feed-forward
network is entirely independent of each other, These networks allow for parallelization,
increasing computational speed. However, how can we take sequential information,
that is dependent on each other, and process it independently? The answer lies in
equations (2) and (3). In the first step of the Transformer network, all vectors are
added a time vector, that will encode its position into its embedding space, in relation
to all other vectors in the input sequence.

PE(pos,2i) = sin(pos/100002i/dmodel) (2)

PE(pos,2i+1) = cos(pos/100002i/dmodel) (3)

2.4 Data

The decision to look at the transformer model for trajectory forecasting was based on
a paper [3], which applied the model on pedestrian movement data. In this project
the task was looked at from another viewpoint, where the task now instead was to
predict vehicle movement in urban environments.
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Figure 3: Vehicle data mapped to an aerial map. The red lines corresponds to the
training data, and the blue line corresponds to the testing data.

The dataset chosen for this project was a dataset based on collected GPS coordinates
of a vehicle moving around in an urban city environment in the city of Sidney in Aus-
tralia1. The dataset contains different traffic settings such as turns and roundabouts,
which can be seen in figure 3. The data was split into a training set and a testing set.
In figure 3, the red line is the training data which corresponds to 70% of the dataset.
The blue line is the testing data, which corresponds to 30% of the dataset.

The task of predicting trajectories was modelled as a classification problem. The
original format of the dataset was in x and y coordinates. Since the transformer
network is a sequence modelling algorithm, the data needed to be transformed into
another format. The new way to format the dataset was to split up all the data into
unique, one dimensional bins. The dataset was first split up into multiple smaller
driving sessions, to form a trajectory. These trajectories were transformed into rela-
tive coordinates, where the first coordinate in the trajectory starts from the origin.
The relative coordinates are then mapped into the bins. The mapping to bins was
performed by first scaling all the x and y relative coordinates to a value between 0
and max, where max is the square root of the total number of bins. The scaling was
performed using a min-max scalar. For example, to scale the x-axis the function in
(4) was used. Note, in this setting the min(x) will always be equal to zero.

xscaled = (x−min(x))/(max−min(x)) (4)

The transformation from the relative coordinates to bins was performed using the
following function:

bini = y ∗max + x (5)

where bini is the index of the bin to map the coordinates to. The x and y values were
rounded to the nearest integer.

An example of the mapping can be seen in figure 4. The example is of an fictive
trajectory which is mapped into bins, shown as black squares where max = 10 and
total number of bins = 100. To make the model more general, the data was diversified
by randomly rotating some of the trajectories.

1http://its.acfr.usyd.edu.au/datasets/naturalistic-intersection-driving-dataset/
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Figure 4: Fictive example of trajectories mapped into bins

2.5 Model Input and Output

For each vehicle trajectory, the models take the first N bin positions as input and
outputs M predicted future bin positions. These bin positions are represented by
their bin index. We test using two different dimensions of bins; namely (30 x 30)
bins and (100 x 100) bins, where a bin in the former dimension configuration spans
approximately 0.5 meters (both in longitude and latitude directions) and a bin in the
latter configuration spans 0.15 meters. These configurations are adopted in order to
capture sufficiently small changes in position. Using this setup, the vehicle trajectory
problem is therefore modeled as a sequential multi-class classification problem with
Nbins classes, where each class corresponds to a bin position and a class is predicted
at each time step.

2.6 Transformer

The Transformer implementation uses 6 layers and 8 attention heads, with a dimen-
sionality of 256. These parameters are chosen to expand the model’s ability to focus
on different positions and relationships in the sequences. Because of time constrains
and the heavy computing power needed to explore all possible parameter combina-
tions, we did not have the opportunity to optimize these parameters. However, the
original paper that introduces transformers [7] also use 6 layers and 8 attention heads.
The output of the final linear layer in the transformer network acts as a classifier with
an output size as large as the number of possible bins. The output of the classifier
then goes through a softmax layer, which produces probability scores for each bin.
Therefore, the cross-entropy loss is used for the loss metric. Furthermore, Stochastic
Gradient Descent is used together with a decaying learning rate and a dropout value
of 0.2. The Transformer model was implemented in Python 3.6 using Pytorch.

2.7 LSTM

The LSTM model used was implemented in Tensorflow using the Keras API [2] as an
encoder-decoder architecture. The input sequence of bins was first embedded into a
dimensionality of 256 to match the transformer. These embedding vectors were passed
into the encoder containing 256 LSTM cells. The encoded vector is used as input into
the decoder which also contains 256 LSTM cells. Because this implementation is
modeled as a classification problem, the decoded result is passed through a dense
layer with as many units as there are bins. This creates a vector of probabilities over
the bin space using a softmax activation function.
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To train the LSTM networks stochastic gradient descent with momentum was used.
A dropout value of 0.20 was used in all the LSTM layers and categorical cross entropy
was used as the loss function.

2.8 Experiment Setup

The models were trained and evaluated on four dataset configurations using three
different combinations of input and output length: (30, 70), (100, 100) and (11, 22),
as well as two configurations of Nbins: 900, 10000 as shown in figure 6. The input
length denotes the number of bin positions that the models take as input, and the
output length denotes the length of the prediction horizon.

Datasets
Dataset Input sequence

length
Output sequence
length

Number of bins

1 30 70 10,000
2 30 70 900
3 100 100 900
4 11 22 900

Figure 5: Dataset configurations

These input and output lengths are chosen to test the models’ performance on both
long and short sequences. The different configurations of Nbins are chosen to examine
how the models’ performance change when increasing the number of possible classes
it can predict. The dataset that has an input length of 11 and output length of 22, is
slightly different from the other datasets; only every third coordinate in the trajectory
have been sampled. Therefore, there are greater distances between each bin position.

The models are compared using four different evaluation metrics: average displace-
ment error, final displacement error, bin accuracy, and percentage of perfect predic-
tions.

• Average Displacement Error (ADE): The average of the root mean squared error
(in meters) between the ground truth and the predicted trajectory position at
every time step.

• Final Displacement Error (FDE): The root mean squared error (in meters)
between the ground truth and the predicted trajectory position at the last time
step.

• Bin Accuracy Percentage (BAP): The percentage of correct predicted bin in-
dices.

• Percentage of Perfect Predictions (PPP): The percentage of trajectories where
all the predicted bin indices are correct.

The ADE and FDE evaluation metrics are often used when performing trajectory
prediction. To calculate the displacement errors, the bin indices were first converted
back into their relative coordinates. These relative coordinates were then converted
into UTM coordinates that were used to calculate the error in meters rather than
some arbitrary distance. This also gives a more understandable metric when trying
to understand how well the model predicted the trajectory of the vehicle. However,
information is lost when converting real coordinates to bin positions and then, in
turn, converting bin positions back to real coordinates. Furthermore, a bin position
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covers several real coordinates. Therefore, the BAP and PPP metric was introduced
to give more context to the displacement errors.

3 Results

In this section the main results are presented. The most relevant experiments are
presented in a table followed by a visualization of trajectories that are shown on a
satellite image.

3.1 Comparison Results

Figure 6 shows the experimental results. In this table the colors represent different
datasets that the LSTM and transformer model were evaluated on. The train and
validation loss is reported as the log-loss from categorical cross entropy. The rest of
the columns are explained above in section 3.5.

Datasets
Dataset #Bins Model Train

loss
Val
loss

ADE
(m)

FDE
(m)

BAP
(%)

PPP
(%)

1 10,000 TF 1.06 1.01 0.13 0.32 68.3 13.8
2 900 TF 0.12 0.09 0.02 0.07 98.7 88.2
3 900 TF 0.17 0.48 0.13 0.54 91.6 43.9
4 900 TF 0.16 0.13 0.01 0.02 99.4 95.3
1 10,000 LSTM 1.75 2.20 1.28 1.93 2.4 ∼ 0
2 900 LSTM 0.81 1.18 0.59 0.99 44.4 3.1
3 900 LSTM 1.12 2.08 1.85 2.56 33.1 7.5
4 900 LSTM 0.91 1.32 0.65 0.92 38.6 2.3

Figure 6: Experiment Results

The transformer model outperformed our LSTM model in every single metric that
we tested. LSTM performed best using dataset 2 with 900 bins resulting in a bin
accuracy of 44 percent. An interesting result is that increasing our bin count to 10
000 reduced the LSTM’s bin accuracy to about 2 percent for the same dataset. On
the other hand, when the same bin increase was tested on the transformer, it still
performed well and got around 68 percent bin accuracy. Our findings show that
the transformer model can learn and predict on this dataset very well with accuracy
above 91 percent on all the experiments using 900 bins. LSTM struggled to learn
long sequences and started to overfit the training data which lead to early stopping at
high loss values and resulted in poor performance when compared to the transformer.

3.2 Visualization of Trajectories

Figure 7 shows a satellite image over a city road in Sydney, Australia and contains
predictions from the LSTM and transformer model. The sequences are created by
converting the predicted bins back into relative coordinates, then the relative coordi-
nates into latitude/longitude. Another important detail is that this visualization is
a concatenation of many individual predictions from the models, each prediction is
about ten dots on on the map. This result clearly shows that the LSTM performs
poorly in the turns of the vehicle path, whereas the transformer performed almost
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perfectly. These results were consistent in the majority of intersections throughout
the test data.

Figure 7: Satellite image of real world coordinate predictions

4 Discussion

In this section, the results will be discussed together with potential sources of errors
in conjunction with the dataset and the implemented models. Then further improve-
ments and additions will be discussed in future work.

4.1 Results and Differences

In this study, we have presented a method to predict vehicle trajectories using a
multi-class classification approach. Instead of using cardinal coordinates as input,
the models operate on bin indices, where each bin index contains a range of rela-
tive coordinates from the origin of the trajectory. We compared and evaluated two
encoder-decoder models using a dataset consisting of urban driving. We varied the
length of the model input length and prediction horizon, as well as the number of
bins. The results show that the transformer network outperforms the LSTM model
in all evaluation metrics.

The results that were obtained in our experiments align with the paper Transformer
Networks for Trajectory Forecasting by Francesco Giuliari et al [3]. They found that
their vanilla LSTM model often predicted straight lines. Meanwhile, the transformer
could learn complex trajectories thanks to its ability to process longer sequences
compared to the memory of an LSTM model. Our results were similar in the sense
that in most trajectories that included 90-degree turns (most intersections) the LSTM
would fail to predict the curve, whereas the transformer almost always could.

An important distinction between their approach and ours is the domain of the data.
Their models were trained on pedestrian data taken over a large area where pedestri-
ans can move freely. Our models used solely vehicle data.
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In addition to the domain of the dataset, the collected data was also limiting to a
certain degree. Even though the dataset contained some curves and roundabouts,
there where still a predominant share of straight line trajectories within the dataset.
As vehicle data is constrained to roads this inherently creates biased data. We intro-
duced data augmentation, where some trajectories where randomly rotated to help
address this problem. Adding more diverse data taken from different sources would
increase the models ability to generalize and most likely increase prediction accuracy.

Another point to keep in mind is that the data was transformed to relative coor-
dinates. By transforming the data to relative coordinates, the models was forced
to learn the patterns of a trajectory curve rather then learning patterns at specific
coordinates. Learning general patterns rather than context specific patterns should
make the models more robust towards unseen information. But whether or not it is
desirable to learn general patterns rather then position specific patterns depends on
the problem attempted to solve.

The data was also transformed to fit into a one dimensional space, which gave rise to
a trade off between data granularity and problem complexity. When putting multiple
coordinates into the same bin, some information is lost during the transformation.
How much information that is lost depends on the number of bins that is chosen for
the model. As the number of bins increase, the data granularity increases as well
as the problem complexity. Since the task was to classify coordinates to bins, the
possible output space grows with the number of bins which give rise to the increase
in problem complexity.

It is a balancing act when choosing the number of bins to use. A low amount of
bins will increase the displacement error, since there is an direct displacement error
connected to placing an coordinate into an bin. An large bin, which holds many
coordinates will give rise to an larger displacement error inherently. There is also
the case of when the model makes an bad prediction. With fewer bins, the distance
between the centroid of each bin would increase, which in turn would increase the
displacement error as well. We can therefore see that the bin prediction accuracy
describes some parts of the displacement error.

It is also problematic to have too many bins. When comparing the results in figure 6,
we can see that the model performance decreased while using 10 000 bins compared
to 900 bins. This could be due to an increase of the problem complexity, where the
output space got larger then what was needed for the problem.

4.2 Future Work

The LSTM’s performance is an area that was not fully explored in this paper. The
potential to create more complex LSTM models could lessen the gap in performance to
the transformer. There exists many LSTM architectures that could have potentially
performed differently when compared to our encoder-decoder implementation. In our
case, the goal of this paper was not to find the best performing LSTM network and
therefore this could be expanded on in future work.

Another aspect that can be further researched is the difference between the classi-
fication approach taken in this paper, versus a regression approach. A regression
implementation would differ by instead of using one dimensional bins as the model
input, X and Y coordinates could be used as two dimensional input. With such a
change the problems regarding dimensionality of the bin space will no longer be an
issue. This would remove the need of a final dense layer to produce a vector of prob-
abilities over the vector space and instead the models could predict raw coordinates
instead. Furthermore, using multivariate data from several signals, such as speed and
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acceleration information of the vehicle could potentially increase the accuracy.

A final extension of the work could be to apply the transformer model to higher
dimensional data, such as data collected from the drivers point of view. Whether or
not it would be feasible to use the same data transformation methods as presented in
this paper is something that could be interesting to look further into as well.
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