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1 Introduction

1.1 Background

Instance segmentation is part of the science field known as computer vision.
Computer vision dates back more than a half century, however the complexity
of the subject wasn’t as apparent back then as for today. A memo from 1966
at MIT, The Summer Vision Project [1], clearly shows this as they assign sum-
mer workers the task of constructing an entire visual system. However, even
though they were far off achieving all their goals, the proposed method wasn’t
unlike what we usually use today. In the memo, it’s stated that the plan for
the project was to extract features like edges, using the results to extract higher
level features like shapes and in a step-wise manner end up at object identifica-
tion. This feature-based method were mostly disregarded due to computational
inconvenience but resurrected in the late 1900 and early 2000 with the rise of
machine learning [2].

In 1994 Shi and Tomasi published a paper which introduced an algorithm for
finding good features to track, which ended the research on the object tracking
area [3]. Until approximately 2006 the tracking problem was labelled as solved,
but since then the research has resumed and after the deep network revolution
in 2012 with introduction of the Alex Net, the research intensified. Previously,
the object detection and object tracking algorithms was dominated by bounding
boxes both for indicating a detected object and looking for the same object in
the next image frame. However since the deep network revolution this has been
questioned and improvements to this has been researched.

Instance segmentation is such an improvement. Instead of tracking and
detecting a bounding boxes, the goal of the algorithm is supposed to find a
mask which encapsulates the entire object. This has been popular and in the
challenge for visual object tracking 2020 (VOT2020) all competing algorithms
should use this methodology. 1 Instance segmentation is what could be described
as a combination of classical object detection, in which the goal is to localize
all objects of a certain class in an image, and semantic segmentation, where
each pixel is labelled to a pre-defined set of classes. Instance segmentation has,
unlike semantic segmentation, both the masks of each interesting object in an
image and can separate between different instances of the same class.

1.2 Objective

The objective of this project is to implement three different state-of-the-art mod-
els for instance segmentation: Mask-RCNN, Cascade Mask-RCNN and GCNet.
The purpose is to achieve an accurate model for detection of objects in im-
ages and videos. Furthermore, the report will provide insight about how these
different models operate and possibly differ from each other.

1https://www.votchallenge.net/vot2020/
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2 Method

2.1 Dataset and Evaluation

The primary dataset used for evaluating the different methods is the Cityscapes [4]
dataset which consists of 5000 annotated images with 30 different classes. Many
different settings and conditions are represented in the dataset in the form of
different urban environments, weather, seasons as well as varying illuminations
and occlusions. The dataset contains both annotations for bounding boxes and
segmentation masks so the methods can be evaluated using both metrics.

The evaluation is done by training all methods for 8 epochs using differ-
ent learning rates. After each epoch random flip augmentations are applied
to the training data to artificially expand it. When the training is done the
methods are evaluated by mean average precision of the bounding boxes and
masks, where precision is the proportion of true positives. A box or mask is
considered correct if the intersection over union (IoU) is over some threshold.
The thresholds used in this report is the same as those used by the COCO
dataset: mAP50 (IoU > 0.5), mAP75 (IoU > 0.75) and mAP (IoU > [0.5 : 0.05
: 0.95)]. Also, performance for differently sized objects will be presented as well.

In addition, due to limitations in computational resources, further analysis
of Mask-RCNN will be conducted in order to evaluate model performance with
more tuned parameters. In this case, the cigarette butt dataset is used [5]. This
dataset contains 2000 annotated images with one class, and an additional 10
images for out-of-sample validation. 4 epochs, with 500 steps per epochs are
used during training when evaluating different learning rates. The ResNet-50
and ResNet-100 backbones are also evaluated.

2.2 Previous work

Since mask R-CNN builds upon previous work on object detection, this section
briefly describes the papers and methods that mask R-CNN is based on.

2.2.1 R-CNN

The region-based convolutional neural network (R-CNN)[6] is a classifier that
most modern instance-segmentation algorithms are based on. It works by taking
an input image and running it through a network to pick out region proposals.
It produces about 2000 proposals where each of the proposals are passed to a
class-specific linear support vector machine (SVM). If one region proposal has
an overlap (IOU) larger than a threshold with a region with higher score, the
region is deleted. This is a type of non-max suppression.

2.2.2 Fast R-CNN

The paper about fast R-CNN [7] highlights 3 flaws in the R-CNN implementa-
tion
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Figure 1: R-CNN network architecture[6]

1. Training is a multistage pipeline

2. Training is expensive in time and space

3. Object detection is slow

Their solution adds a fully convolutional layer which takes the image and the
region proposals as input. The region of interests are first pooled using max-
pooling to feature maps and then mapped to feature vectors by fully connected
layers. This network has two outputs: probabilities that the region belongs to
a specific class and the bounding box coordinates. The fast R-CNN network
increases the detection quality, speed and reduces the amount of storage needed.
The network overview can be seen in figure 2.

Figure 2: Fast R-CNN network architecture[7]
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2.2.3 Faster R-CNN

The main idea behind the faster R-CNN network is to improve the speed in
which the region proposals are extracted [8]. Fast R-CNN is fast enough when
ignoring the time spent on region proposals, but faster R-CNN aims to provide a
network where the region proposal networks (RPNs) share convolutional layers
with the object detection network in order to improve the speed. The faster
R-CNN paper also introduces a new RPN scheme which avoids enumerating
images of different scale, thus improving the speed of the RPN.

Figure 3: Faster R-CNN network architecture[8]
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2.3 Mask R-CNN

The mask R-CNN network extends the work of Faster R-CNN with another
branch which predicts the mask of the object. Thus the output of the mask
R-CNN network is the class label, the bounding box offsets and the mask[9].

Figure 4: Mask R-CNN overview[9]

2.3.1 RoIAlign

The RoI pooling in the faster R-CNN network introduce a misalignment between
the RoI and the extracted features which turns out to affect the pixel-accurate
mask predictions introduced in this work. The solution to this is to remove the
RoI pooling used in Faster R-CNN and add the RoIAlign layer which aligns the
extracted features with the input image more efficiently. Each sampling point
in the extracted RoIs is interpolated using bilinear interpolation from nearby
feature map grid points. This is illustrated in figure 5. This methodology
removes the quantification completely from the system and improves the mask
accuracy with 10%-50%[9].

2.3.2 Loss function

The loss function during training used in this work was defined as

L = Lcls + Lbox + Lmask (1)

i.e basically adding the mask loss to the already existing loss function from
faster R-CNN. Lcls and Lbox are defined in the faster R-CNN paper [8] as

Lcls = −log(pu) (2)
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Figure 5: RoIAlign - the dashed grid is the feature map and the solid points the
sampled points in the RoI[9]

where pu is the probability p for the true class u.

Lloc =
∑

i⊂{x,y,w,h}

smoothL1(tui − vi) (3)

in which

smoothL1(x) =

{
0.5x2 if |x| < 1

|x| − 0.5 otherwise
(4)

tu is the scale-invariant translation relative to an object proposal and v is the
ground truth position.

The addition to the already existing loss function Lmask introduced in [9] is
defined as the average cross-entropy loss when applying a per-pixel sigmoid to
the mask branch output. The perk of defining the loss in this way is that for a
ground truth RoI class k, the loss is only defined on the k-th mask. This means
that other masks does not contribute to the loss.

2.3.3 Generated masks

The mask predicting branch which is the main part of the mask R-CNN network
generate binary m x m regions for each RoI. The mask for each RoI is predicted
using a FCN which requires appropriate RoI-features, handled by the RoIAlign
as described previously.
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Figure 6: Mask R-CNN for two different architectures[9]

One advantage of mask R-CNN and a reason to why it has been used widely
after its release is its generality. The mask branch can be added to different
architectures for bounding box recognition, such as ResNet[10] and Feature
Pyramid Network (FPN)[11]. The mask R-CNN customized for two different
architectures can be seen in figure 6.

2.4 Cascade Mask-RCNN

2.4.1 Cascade RCNN

Cascade RCNN [12] is a multi-stage extension to RCNN which adds multiple
detectors in sequence, where each stage has an increasingly higher intersection-
over-union threshold and each uses the positive outputs of the previous stage.
Due to the nature of having multiple stages the bounding-box regression be-
comes a set of cascades as well, one regressor for each stage, and they are
optimized for the inputs arriving at each stage. In other words, the initial re-
gressor is optimized for the input and the second regressor is optimized for the
output of the initial regressor and so on.

r(x, b) = rT (x, bT ) ◦ rT−1(x, bT−1) ◦ ... ◦ r1(x, b)

The detection part of the architecture becomes cascaded in a similar way where
a separate classifier and regressor are used at different stages.

2.4.2 Adding Instance Segmentation

Cascade Mask -RCNN adds instance segmentation to this architecture. Com-
pared to the Mask-RCNN there are multiple places where the instance segmen-
tation part can be added since there are multiple cascades of detection’s. Cai
et al. [12] suggests adding a segmentation part to each cascade for the best re-
sults, which is what is used in this report. The general architecture of Cascade
Mask-RCNN can be seen in figure 7
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Figure 7: Cascade Mask-RCNN architecture [12]

2.5 GCNet

Cao et al. [13] presents a potential extension for instance segmentation solutions
called a global context block, which simplifies and combines the features of Non-
Local Networks (NLNet) [14]. and Squeeze-Excitation Networks (SENet) [15].
NLNet aims to find how pixels depend on each other on a global scale, while
SENet tries to find the relation between different channels from a given feature
map. The GCNet is a combination of these two networks and forms the global
context block.

An important part of the GCNet is that it does not directly use the NLNet,
but a simplified versions of it. Cao et al. found that the attention maps that are
computed and used inside the block, one for each dependency, are usually very
similar. Therefore a global attention map is introduced to reduce computations
and make it faster. The global context block architecture can be seen in figure 8

Figure 8: GCNet block architecture [13]
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3 Results

3.1 Model Comparison

The results of the models listed in section 1.2 will be presented in this section
in order of listed appearance. The performance of the different evaluations for
each model can be seen in table 1, where the results for each model in the table
is taken from the best result from testing using different learning rates. How
each models mean average precision change for the set of learning rates can be
seen in figure 9.

Table 1: Mean average precision for all models
Model Mask-RCNN Cascade Mask-RCNN GCNet

mAP 0.368 0.102 0.369

mAP50 0.638 0.220 0.639

mAP75 -1 -1 -1

mAPs 0.126 0.039 0.117

mAPm 0.341 0.110 0.34

mAPl 0.581 0.164 0.584

Figure 9: mAP over learning rate

Considering figure 9, the trend of all three methods can easily be seen.
Firstly, Mask-RCNN shows its best performance for a learning rate of 0.001,
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GCNet peaks just around the corner at 0.00125 while Cascade Mask-RCNN
performed best for a learning rate of 0.01. It is worth noting that 0.001 is the
lower bound and 0.01 is the upper bound of this parameter evaluation.

3.2 Fine-tuning Mask-RCNN

In this section, the results from evaluating Mask-RCNN are presented, with the
configurations and cigarette butts dataset, which is described in section 2.1.

3.2.1 Learning rate and backbone evaluation

Below are the results from training mask-RCNN with four different learning
rates. Figure 10 illustrates the results from applying ResNet-50 as a backbone,
and Figure 11 shows the results from applying ResNet-101. By comparing the
two figures, one can observe that ResNet-101 achieves a higher precision for
each learning rate. The highest achieved mAP is 0.9425 with a learning rate of
0.0005, as seen in Figure 11.

Figure 10: mAP over learning rate, using resnet50 as backbone
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Figure 11: mAP over learning rate, using resnet101 as backbone

3.2.2 Out-of-sample Validation

The results in Figure 12 presents the confidence scores from classifying cigarettes
in the six images below. The results indicate that the model, for the most part,
correctly identifies cigarettes in the images. Although, it miss-classifies twice in
the top-right image in Figure 12.
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Figure 12: Resulting confidence score for each identified cigarette in the valida-
tion set

4 Discussion

4.1 Mask-RCNN

As can be seen in table 1, Mask-RCNN gets a mean average precision of about
37%. Its mAP50 is about 64% meaning that it usually finds, at least, a rough
mask estimate even though it is not precise. -1 on mAP75 shows that it gets
none correct, which is disappointing. Looking at figure 9, the model shows
best performance at the lower bound, meaning that a larger evaluation needs
to be conducted in order to find an optimal learning rate. However, the curve
is farily flat, suggesting that a significant better learning rate is unlikely to be
found below the lower bound value. With that in mind, one may find a more
representative learning rate if more data were to be added during training.

When observing the results from training with the cigarette butts dataset,
one can also see that backbone plays an important role in model precision. In
addition, one could have also performed more tests with different batch sizes,
since it has a vital role in training and prediction performance. When consid-
ering how close the results was when evaluating Mask-RCNN and GCNet in
Figure 9, we also see that further testing would be needed in order to gain more
reliable results.

13



4.2 Cascade Mask-RCNN

The results of Cascade Mask-RCNN in table 1 shows that the model is having
trouble finding correct masks. We do see an aggressive increase in performance
with increased learning rate, meaning that an optimal value is likely to be found
beyond the upper bound. However, even with that in mind, it is still notably
worse than both regular Mask-RCNN and the results of the original paper [12],
suggesting something is not quite right. Cascade Mask-RCNN essentially con-
sists of multiple Mask-RCNNs, making the convergence time in training longer
and more sensitive to smaller datasets. This could be one explanation for the
performance issue. Most of these networks requires datasets large enough to
thoroughly train the model which takes a significant amount of time. The
framework that was used, mmdetection [16], expects that multiple workstation-
GPUs are available but since only a single GTX 1070 GPU was available, the
training had to be reduced.

4.3 GCNet

GCNet had the best overall performance and an example of segmentations and
classifications generated by the best GCNet model can be seen in figure 13. The
best result when using the GCNet was for a learning rate of 0.00125 which had a
segmentation mAP of 36.9%. It gets a similar result compared to Mask-RCNN
for mAP50 and just like both of the other methods -1 for mAP75. Considering
the different object sizes, it seems to be struggling for smaller and medium
sized objects. GCNet should, according to the original article [13], increase the
accuracy with 2.4% compared to Mask-RCNN. However, as shown in table 1,
our results shows an increase of 0.27%, approximately 11% of the presented
performance in the GCNet article. There could be several reasons to why our
results did not match the presented performance by the authors. Insufficient
size of the training dataset and poor parameter tuning could be two sources of
the issue.

4.4 Conclusions

After testing the different types of models at different learning rates, it was
concluded that GCNet was the best model for overall performance. However,
it is worth noting that regular Mask-RCNN performed just slightly worse, and
even performed better for smaller sized objects which are generally harder to
detect and segment correctly. The results from Mask-RCNN are close to the
expected results with the authors own experiments [9] while the other two mod-
els performed significantly worse than the proposed performance. In addition,
Mask-RCNN gave very promising results when classifying one class from the
smaller dataset. These results suggest that there is more room for improve-
ment, in terms of hyperparameter optimization.

We expected better performance from Cascade Mask-RCNN and GCNet,
especially better performance relative to the Mask-RCNN model. Our first
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Figure 13: GCNet segmentations and classifications

suspicion is that we have not used enough data during training. We had to
truncate the training set due to insufficient computing power which could play
a role in this performance issue since the models probably have converged to
a poor value or not at all. On the other hand, we gain some valuable insight
due to this since is shows robustness of Mask-RCNN and GCNet over Cascade
Mask-RCNN because they performed fairly well despite lack of training data.
Secondly, tuning could also be part of the issue but due to insufficient time,
a thorough cross-validation evaluation could not be conducted. Lastly, two
different datasets were used to train and test the networks. This would definitely
have an impact on the results, and may have affected the performance. If more
time were available, it would be interesting to test our implemenation on the
entire COCO dataset which would provide insight about what improvements
that could be implemented.

4.5 Future work

As shown in the report, there is room for improvements for future research.
One direction is to get better results with smaller sets. As demonstrated, the
models can achieve near perfect results on specific tasks however when increasing
the data sets and the amount of classes to predict, it struggles. This problem
limits the specific hardware that can be used and complicates the task of further
research.

Another direction is to run the models in real time, as this would have
tremendous applications in autonomous vehicles. The problem to identify pedes-
trians and other obstacles is difficult but vital for the system to be reliable
enough to be used in practice. With instance segmentation the localization ac-
curacy for obstacles will improve, since the mask of each object will provide the
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exact boundaries. However, if this was to be used in real world applications the
speed, of which the system calculates the masks, has to be several frames per
second (fps). This provides an area of future work where the instance segmen-
tation algorithm needs to run at least at 30 fps. There is a lot of research in this
subject already. For instance, the model CenterMask [17] can be run slightly
above 36 fps and achieve a mAP of almost 36 percent on the COCO set, almost
as good as Mask-RCNN and GCNEt in our experiments. In the future, if the
autonomous vehicles industry takes the next step toward fully self driving cars,
it is likely that even higher speeds would be necessary.
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A List of contributions

Here it is specified what each member contributed with during the project.

A.1 Jacob Olausson

Implemented and tested Mask RCNN with the cig butts dataset early on to
get a greater understanding of the problem it was supposed to solve and how
Mask RCNN solves it. Further on in the project the theoretical background and
details of Mask RCNN were studied and written in the report. Primarily wrote
in the introduction and method parts of the report.

A.2 Martin Jirenius

Implemented an early version where the main goal was to learn the different
libraries related to Mask RCNN and Keras in particular. Have been studying
related work to gain an extended knowledge of the subject and where our work
lies in development. Have focused heavily on backing up claims in the report
with relevant references as well as writing the introduction and discussion.

A.3 Jacob Larsson

Training and testing of the models on the Cityscapes dataset, mostly worked
with getting the framework running properly. Wrote about the theoretical back-
ground of the Cascade Mask-RCNN and GCNet models and put together the
results for all the models on the Cityscapes dataset. Also wrote parts of the
discussion around the results.

A.4 August Johnson

Implementation, tuning, and testing of the Mask-RCNN model, worked primar-
ily with the cigarette butt dataset. Produced the results seen in Figure 11 and
Figure 10. Primarily wrote in the Dataset and Evaluation segment, Discussion,
and results.
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