
Finding the Odd One Out
Measuring Dissimilarity in Written Texts Using Natural Language Processing

Teodor Ganest̊al (teoga849)
Felix Nodelijk (felno889)
Jakob Norell (jakno732)

Sebastian Ragnarsson (sebra023)
William Stenberg (wilst118)
Gustaf Söderholm (gusso811)

December 18, 2020

https://gitlab.liu.se/tdde19-2020-2/tdde19-2020-divergent-text

https://gitlab.liu.se/tdde19-2020-2/tdde19-2020-divergent-text


Abstract

This paper evaluates how three models — Doc2Vec, Neural Network (NN), and Latent Dirich-
let Allocation (LDA) — can identify dissimilarity between games. The three models were im-
plemented and studied based on a common dataset. The dataset is a large catalogue of games
from Steam1 featuring user voted tags and game developer written descriptions for each game.
In order to find the best model parameters, 5-fold Cross Validation was implemented. The
results revealed that the Doc2Vec model outperformed both the LDA and the NN model.
Furthermore, the LDA model outperformed the NN model. From this a conclusion is made
that Doc2Vec is the preferred method when handling this type of data.

1https://store.steampowered.com/



1 Introduction

In the modern information age there are a lot of on-demand services that supply everything from
newspapers to movie recommendations with the click of a button. However with the luxury of
so many choices comes also the drawback of getting stuck trying to decide which one to go with.
To avoid this problem many suppliers of on-demand services provide recommendations based on
what the user has previously chosen in order to minimise the numbers of choices presented. This,
however, creates a feedback loop, causing the user to consume the same kind of content indefinitely.
This study intends to explore the methods contained within the field of Natural Language Pro-
cessing (NLP) in order to suggest different content instead of similar content based on previously
consumed data. Taking this popular concept and turning it on its head might result in a useful
metric for on-demand services but also in other fields.

1.1 Natural Language Processing

Natural Language Processing has been around since the 1950s, when Alan Turing developed the
Turing test [1]. As a part of passing the test, a machine would have to understand and create
speech that could cause it to be mistaken for a human. This sparked ideas eventually resulting
in fields analysing, generating and classifying the natural language of humans. This study intends
to focus on the latter problem of classification. Classification relies, as the name implies, on the
central concept of all texts being subject to categorisation and classification. Being able to derive
metadata from a text based on the words it contains, the syntax it uses and the semantics it
conveys. This is a process that usually relies on having lots of texts of the same kind that are all
individually connected to a class. Then, by studying these texts from different perspectives it is
possible to draw conclusions about which parts of the texts are relevant to its class. For example
a text that is political in nature might contain the words higher taxes which in turn might give
away which party the writer belongs to. Finding which class a text belongs to enables a scoring
algorithm to figure out if other texts are similar or dissimilar to the original text.

1.2 The Dataset

The dataset used in this project is the Steam Store Games dataset [2]. This dataset contains
metadata on all the games available on the Steam Content Delivery System, a popular online
gaming platform. The features from this set that are useful to this project are the unique identifiers,
game descriptions, and public votes on which genre the game belongs to — eighty-four different
tags such as strategy or first-person shooter. The genre tags and the count of their votes can be
used to determine if a game is similar to another. The vote distribution over tags will be treated
as the gold standard, the true genre nature of the game. Comparing distributions of this sort can
answer the question “Is this game similar to some other game?”

The relatively short but information packed textual descriptions on Steam serve as good bases
on which to predict the genre distributions, which will be the objective of the machine learning
models proposed herein. Using this data might result in biases such as some tags occurring more
often than others. These have been addressed in the methods chapter as different approaches use
different techniques in order to handle these issues.

1.3 Natural Language Processing - Different Approaches

The field of natural language processing (NLP) is broad with a lot of different techniques and

1



methods to choose from. They all come with their own pros and cons and they do not all produce
the same result given a set of data. Using only one of these techniques is not a good approach
due to some methods applicability being very narrow or in other ways not being optimal for the
task at hand. In order to increase the chances of success, three different solutions will be explored
and evaluated alongside each other to later on be compared by a common metric in order to find
out which approach is the most effective. These methods will be referred to as Doc2Vec, Neural
Network (NN), and Latent Dirichlet Allocation (LDA) and they are covered more in depth in the
methods chapter.

2



2 Method

The three different methods chosen from the field of NLP were applied separately to the same set
of data. All data was preprocessed from the original data [2] in order to only extract the relevant
columns of unique identifiers, game descriptions, and tag (genre) votes. These were then subject
to different types of tokenisation, lemmatisation, stop word removal, etc. depending on what the
model required.

2.1 Doc2Vec

The Paragraph Vector model by Quoc Le et al. [3], was introduced as an extension to the Word
Vector model to solve the issue about context. Traditionally, Word Vectors models utilise Bag-
of-Words, which has the disadvantage that it does not take context or even the word order into
account. This means that words that are semantically similar, may be represented as opposites
in a Word Vector model. The Paragraph Vector model is implemented in the Python package
Gensim [4] as Doc2Vec. The goal is to utilise the Doc2Vec model to predict dissimilarity of games
from the Steam games dataset.

2.1.1 Parameters

The parameters of the Doc2Vec model are the following:

• Alpha – The initial learning rate.

• Epochs – The number of epochs used when training the model.

• Vector Size – The dimensionality of the vectors that each document is transformed into.

The Gensim implementation of Doc2Vec supports more parameters, but these three parameters
were the ones relevant to modify in this project.

2.1.2 Training the Model

The Doc2Vec model was implemented from the Gensim package. The implementation was used to
train the model on game descriptions from the Steam game database as described in Section 1.2.
The model was designed with parameters defined in Section 2.1.1 in reference to the Gensim
documentation [5]. All descriptions of the dataset are instantiated as TaggedDocuments, which is
a requirement for the Doc2Vec model in Gensim. Each description is accompanied by a tag that
represents the index of a game in the dataset, this is useful as it allows the model to predict the
index of games in the dataset depending on the similarity of the description.

The Doc2Vec model is instantiated with all of the TaggedDocuments along with the parameters
defined in section 2.1.1. The vocabulary, which creates the vector room of the model, is then
created. The model is then trained for as many epochs as it was assigned during the initiation
stage.

2.1.3 Prediction Process

The prediction process is represented in Figure 1, which utilises the trained Doc2Vec model to
predict a set of N similar game indexes by inferring a game description. As the indexes are ranked

3



Figure 1: Representation of prediction of games using game descriptions as input

in order of similarity, it is a trivial task to get the dissimilar games, as this can be achieved by
reversing the output.

In order to evaluate the model in a way that is comparable with the other methods, the most
similar predicted game’s true tag distribution was used as the predicted distribution for computing
metrics.

2.2 Neural Networks

The second model is based on neural networks, and specifically transformer models [6]. Transform-
ers are deep neural networks trained on a large amount of data and comprise the state-of-the-art
for many NLP tasks today. A pre-trained instance of BERT, one such transformer, was chosen
because it was small enough to run with the resources available in this project.

2.2.1 BERT

BERT is a transformer model proposed in 2018 for NLP tasks [7]. A transformer is a new kind
of neural network architecture that has multiple levels of encoder-decoders and it uses attention
functions to learn dependencies between inputs with different positions (time, placement in a text
or similarly). It was shown that BERT was state-of-the-art on many different NLP-tasks [7]. This
was done together with a technique called fine-tuning as well as a second approach they refer to
as feature-based approach.

2.2.2 Fine-tuning

Fine-tuning can be used with a pre-trained BERT model to use BERT’s general language repre-
sentation for more specific tasks. Devlin et al. proposed to fine-tune the entire architecture by
training the pre-trained model on the specific task only with a simple classification layer [7]. This
approach is much faster than training the whole model from scratch, but it still required much
time on the GPU used in this project. Experiments were instead conducted using the pre-trained
BERT model without changing the internal parameters and only train a fully connected neural
network on the features produced as outputs of BERT. This approach will still be referred to as
fine-tuning.

4



2.2.3 Using BERT with Preprocessing

The model and training procedure is implemented in python with PyTorch for all the neural
network related parts. First the data is tokenised using the tokeniser BertTokenizerFast from
Huggingface2. An explicit preprocessing process was also implemented where the BERT model is
run (perform forward passes) on all the given training data – which takes more than an hour even
with a CUDA-enabled GPU. When the preprocessing is done, the fine-tuning network can be used
on these BERT outputs in a much less time-consuming training procedure.

2.2.4 The Network

The fine-tuning network that is trained consists of one fully connected hidden layer and one output
layer. The hidden layer has a variable amount of neurons and a dropout layer with a 50% dropout
rate. The dropout layer is applied to the hidden layer during training to try and force the network
to learn how to classify less representative data. A leaky ReLU activation function is used before
the fully connected output layer with 84 outputs representing tags of games. The outputs of the
network consists of raw logits and a softmax function needs to be applied to have the resulting
probability distribution. To have raw logits as outputs is dependent on the loss function used in
training, which needs modified logits to work.

2.2.5 Variable Parameters

The neural network has three parameters that need to be tuned in the training. These are:

• Number of hidden neurons – How many neurons to use in the hidden layer of the neural
network.

• Learning rate – The learning rate for the neural network during training.

• Number of epochs – How many times the network should be trained on the whole training
data.

2.3 Latent Dirichlet Allocation

Latent Dirichlet Allocation is a clustering method used for topic estimation in natural language
processing [8]. The model contains a fixed number of initially unknown clusters known as topics.
Through a generative process using documents as bags of words, each document is assigned a dis-
tribution over the topics, and each topic is assigned a distribution over the words. The idea is that
there are similarities between documents that are modelled by grouping documents together.

2.3.1 Clustering

The generative algorithm is tasked with learning the topic distribution of documents, and the word
distributions of topics. Samples from the set of documents are used to infer these distributions.
When iterating over the corpus many times, the estimations are updated with respect to each
other through new samplings. The hyperparameters η and α (eta and alpha) are used to control
the learning rate. A low alpha value means that documents will tend to be represented by few
topics with high amplitude, rather than many topics with low amplitude. A high eta value means

2https://huggingface.co/transformers/

5

https://huggingface.co/transformers/


a topic is connected to many words, which introduces overlap when words are associated to many
topics. This is not a problem due to the sampling techniques used.

The documents’ distributions stabilise during iteration, meaning that the clustering is finished.
Owing to the stochastic nature of LDA, it is unknown beforehand what type of similarities will be
found and represented by the topics. In this work the topics will be Steam tags. A useful property
of the LDA architecture is the possibility to assign a prior distribution to topics; specifying a tag’s
“affinity” for certain words. The process of pairing information-bearing words to key topics is
called seeding and means the similarities are at least partly known before training.

2.3.2 Seeding the Clusters

For this study it is important that each cluster reflects the tags seen in the data. Based on this a
seed was created for each desired cluster in order to guide the LDA algorithms clustering. These
seeds were selected to be the top 50-100 words that describe a tag based on the data. Seed words
were obtained by creating a corpus of all the words contained in the dataset. Using this corpus a
table was created as seen in Figure 2.

Here each word in the corpus is assigned a term frequency–inverse document frequency score (TF-
IDF score) based on how often it occurs in its own description compared to all the other ones.
Since the word wasteland occurs a disproportional amount in a certain description it is given a
high value.

Figure 2: Each game description has a TF-IDF score for every word in the corpus.

Then a second table was created which links each word of the corpus to the tags in order to find
the most relevant words for each tag. Using the tag distribution of each game a new table could
be populated as seen in Figure 3. In this table the TF-IDF score is multiplied by 0.8, because
Fallout 3 is considered to be 80% post-apocalyptic according to its votes, and then it is added to
it’s current seeding score of 0 to produce 0.75. After doing this for each word the new seeding
scores are used to determine if a word is relevant to a tag. The word wasteland for example occurs
often under the post-apocalyptic tag and not as often under the sports tag, this gives it a high
seeding score for post-apocalyptic. Using this matrix, the model has a notion of similarity between
games (in the form of bags of words) and uses it to perform recommendations.

During training, an additional parameter confidence determines for each training sample if it should

6



make use of the training matrix. It might make intuitive sense to always use the seed matrix, but
the practise of sometimes distributing words randomly make for a smoother topic distribution over
words, so that no topics can totally dominate certain words.

Figure 3: Each tag has a seed score for every word in the corpus.

2.4 Choosing Parameters

The three models use different parameters, and these parameters affect the performance of the
models. To find the most suitable parameters, grid search was used. For each combination of
parameters, 5-fold cross-validation was performed to determine the model’s performance with
those parameters.

Model Parameter Values

Doc2Vec
Alpha 0.002, 0.025, 0.05, 0.1, 0.4
Epochs 5, 10, 20
Vector Size 2, 5, 10, 69, 80, 100, 120, 160, 200, 300, 2000

NN
Number of hidden neurons 10, 100, 1000
Epochs 10, 100, 1000
Learning rate 10−2, 10−3, 10−4, 10−5

LDA
Alpha 0.001, 0.01, 0.1
Eta 0.01, 0.1, 0.4, 0.8
Confidence 0.1, 0.4, 0.7, 0.95

Table 1: Parameters tested for each model

In Table 1 the parameters for the different models can be seen and the values that were tested for
each parameter.

2.5 Comparing the Models

Each model was evaluated using the two following metrics for comparing probability distribu-
tions:

7



• Jensen-Shannon – An inversion of the Jensen-Shannon distance [9], 1−JSD(P | Q) where
JSD(P | Q) is the traditional Jensen-Shannon distance between probability distributions P
and Q over probability space χ, defined as

JSD(P | Q) =

√
1

2
D(P |M) +

1

2
D(Q |M), where

M =
1

2
(P +Q) and

D(P | Q) =
∑
x∈χ

P (x) log

(
P (x)

Q(x)

)
.

(1)

• Match Top 5 – The overlap in the five most probable outcomes of the two distributions.
That is, how many outcomes do the distributions have in common, looking only at the five
with highest probability?

The scores used for comparing models were the mean scores achieved for each metric in the 5-fold
cross-validation.

The models were all evaluated by predicting a distribution of game tags and comparing those to
the true distribution. Therefore these metrics represent similarity between games. These metrics
also translate, inversely, to how well the models perform when predicting dissimilarity of games.
This is because the closer the predicted distribution is to the true distribution, the further away it
is from the distribution furthest away from the true distribution.

2.6 Demo Tool

To show the purpose of this project, suggesting games that seem new to the user, based on descrip-
tions of the games in the database. The demo tool is an attempt to visualise the three different
models: LDA, Doc2Vec, and NN. The demo gives the user the possibility to choose a subset of
provided games that the user claims to have played before. A suggestion of games that are the
least similar (in given the database) to the user’s current preference is then provided by each
model.

8



3 Results

The results of the three models will be presented separately, followed by a comparison. The
Jensen-Shannon metric and Match Top 5-scores will be presented: For Jensen-Shannon, this means
computing the average score per game between the ground-truth vote distribution and the predicted
topic distributed by a model. For the Match Top 5 score, the average cardinality of the intersection
of the top five tags for both distributions is computed.

3.1 Doc2Vec

The chosen Doc2Vec model used the parameters Alpha = 0.025, Epochs = 20, and Vector Size =
160. The parameters chosen for this model were not the ones that performed best. In particular,
the best scoring Vector Size = 2000 was not chosen due to making the model very computationally
heavy.

Figure 4: The validation score from varying each parameter Alpha, Epochs, and Vector Size re-
spectively while keeping the other two parameters constant.

Using 5-fold Cross Validation, the model reached an average Jensen-Shannon score of 0.333 with
Vector Size = 2000. The same score when using Vector Size = 160 was 0.331, which is more
than 99% of the best score. The performance seems to converge as Vector Size increases, so
Vector Size = 160 was chosen since it gave very similar performance to Vector Size = 2000, in
only 27.7% of the computation time. In addition to high computation time, a model with large

9



Vector Size also uses more computational resources. Figure 4 shows the effect on performance from
changing one parameter at a time on the chosen model.

3.2 Neural Networks

The parameters for the neural network with the best performance were as follows.

• epochs: 100

• learning rate: 10−3

• number of dense nodes: 1000

The best validation score for the epochs parameter was neither the highest nor the lowest value.
Learning rate resulted in the second lowest value tested. The greatest number of nodes was the
configuration with the highest validation score. To illustrate how the individual parameters affect
the score, the validation score is plotted for each variable while keeping the other two parameters
constant with their best value, as seen in Figure 5. What must be noted is that the best model
was chosen based on the top-5 score and not on the Jensen-Shannon metric. There was another
model with higher Jensen-Shannon score but lower top-5 score.

Figure 5: The Jensen Shannon score and procent of the 5 top matching tags from varying each
parameter while keeping the other two constant.

10



3.3 Latent Dirichlet Allocation

The α, η, and confidence parameters were determined to optimise performance for the values 0.001,
0.8, and 0.4 respectively. The numbers are interpreted as follows: The best α-value was 0.001, the
lowest tried. This means the model prefers for games to be represented by few topics with high
amplitude, rather than having a little amount in every topic. This is congruent with actual vote
distributions for many games, where some topics are absolutely dominant.

A confidence of 0.4 means that during training, two out of five words are directly allocated using the
seeding matrix, and the rest distributed randomly according to the current topic-word distribution,
this means that there is a balance between exploiting the known relation between words and topics,
and exploring the connections between a word and other topics.

Lastly, a high (0.8) value of η means each topic is associated with many words when iterating, in
addition to the initial seeding words. This is congruent with the balanced seeding confidence, the
model prefers to let a single word explore many topics instead of being statically locked to a single
or a few topics.

Running these best parameters, a Jensen-Shannon metric of 0.325 is achieved, and a Match Top
5 score 2.008. On average, if presented with the description text of a Steam game, the LDA
model’s prediction will have within its top five tags two out of top five tags that the community
voted.

3.4 Comparing the Models

Model Jensen-Shannon Match Top 5
Doc2Vec 0.331 2.111
NN 0.246 1.765
LDA 0.325 2.008

Table 2: Metrics for the best version of each model

The results in Table 2 show that Doc2Vec outperforms both the NN model and, albeit marginally,
the LDA model. This is further reflected in the Match Top 5 score.

11



4 Discussion

Tags and descriptions are two distinctively different ways to predict a dissimilar game. It can
be argued that descriptions may provide more information, however, it is not obvious that this
information is relevant to the game, or if it is relevant, that it provides enough text. Conversely,
tags may provide condensed, relevant, information. However, these tags are selected by the users
and may not accurately represent the game to the fullest extent. It may be that too few relevant
tags are used to describe the game, in which case it might be a less useful predictor. It might be
that these two methods can complement each other to provide more information, and consequently,
result in a better performing model.

An interesting example is KovaaK’s FPS Aim Trainer3. Using the game descriptions in the
Doc2Vec model, the most similar predicted games were other aim training games. On the other
hand, simply selecting the games with the shortest Jensen-Shannon distance between their true
tag distributions, other action and fps games were deemed most similar. In this example it can be
seen that the tags present in the data do not capture every possible aspect of games, such as these
“training”-type games.

As game description are written by the owners of the product, the descriptions may be prone to
various grammatical mistakes as well as spelling mistakes and contextual mistakes. These errors
may, undoubtedly, disturb the training or prediction process. However, it is difficult to assess the
extent to which these affect the results.

The problem of finding dissimilar games is a trivial problem as a user is likely to select a dissimilar
game at random, provided that the user has the entire catalogue of steam games in possession.
Therefore, it is perhaps considered more interesting to optimise for relevant recommendations.
However, it could be argued that there is a chance that a user may, at random, select a similar
game. In this case, the model would perform better as it would guarantee that the most dissimilar
games – which the model has deemed dissimilar – would be provided to the user. Furthermore,
while the probability is high that selecting a game at random will result in a dissimilar game, it
would not be evident that this game is, in-fact, the most dissimilar game. Moreover, games can be
dissimilar in more than one way. The models base their assumption on the text description and/or
the tags. It is important to note, however, that there may exist other factors which determine the
dissimilarity.

A thing to consider is how the metrics chosen represent the actual similarity of games. The Jensen-
Shannon metric, based on Jensen-Shannon distance, measures the difference between probability
distributions. However, when seeing these distributions as vectors, each dimension represents a
tag, and they are all perpendicular to each other. What this means is that a game with only
action tags will be seen as similar to a game with only fps tags as to a game with only puzzle tags.
Intuitively action and fps would be more similar than action and puzzle, but the metric in itself
does not reflect this.

4.1 Results

The results showed that the Doc2Vec and LDA methods both had similar performances with BERT
reaching a lower score, this is in line with results reached by Krithika Iyer [10] and Kovalev et al. [11].
While the Jenson-Shannon metric is not used in the aforementioned articles, correlations between
the performance of the different models can still be inferred, which allows for a comparison with

3The game has since collecting the data been updated to KovaaK 2.0 :
https://store.steampowered.com/app/824270/KovaaK_20/

12

https://store.steampowered.com/app/824270/KovaaK_20/


these findings. These papers report on having slightly higher accuracy for Doc2Vec, suggesting
that it is more adapt at handling this task than LDA or BERT.

The results for the NN model were worse than expected and one could assume that there are better
parameter values or designs for the NN model that would perform better. Based on the produced
predictions it seemed that the NN model learned that the action tag is over-represented and thus
guessed that most games were action games. The methods used in this project did not produce
satisfactory results in that aspect, but there should be some way to solve this without changing
too much in this design. It would for example be interesting to try with more hidden neurons,
more hidden layers or with much more training. Using Jensen-Shannon divergence as loss function
instead of Kullback-Leibler is another change that might yield some improvement.

The metrics shown as results for each model are, however, the average scores achieved during cross-
validation. The models were not tested on a separate set of test data, but only on validation data.
This might lead to misleading results as the models chosen are optimised for the validation data.
Testing with independent data is needed in order to say whether the models generalise well.

4.2 Conclusion

Looking forward from this project, it is evident that the problem of finding online content from
description texts only — similar or dissimilar — has many possible solution architectures. This
work has presented a method of straight-forward vector representation, a matrix factorisation and
clustering method, and a neural network. All three models produced satisfactory results (for the
scope of this project) and it is clear that the problem is solvable with the proposed tools.

The considered dataset was preprocessed in a domain-specific way, but any body of text could be
used. However, the Steam game dataset is rather small (having only just above twenty thousand
games) with a comparatively large tag set of eighty-four. It would be interesting to see how these
methods perform in other domains where the texts have other connections to the content. Another
possible change is to let a Word2Vec/Doc2Vec model relate its dimensions to the tags, similar to
how the LDA model proposed here uses seeding to relate its clusters to tags.

Other domains might necessitate different forms of preprocessing, and might not compare distri-
butions and hence not use Jensen-Shannon as a metric, but there are still valid comparisons to be
made.

13



References

[1] A.M. Turing. Computing machinery and intelligence. Epstein R., Roberts G., Beber G. (eds) Parsing
the Turing Test, 2009.

[2] Nik Davis. Steam store games (clean dataset). https://www.kaggle.com/nikdavis/

steam-store-games, 2019.

[3] Quoc Le and Tomas Mikolov. Distributed representations of sentences and documents. In Proceedings
of the 31st International Conference on International Conference on Machine Learning - Volume 32,
ICML’14, page II–1188–II–1196. JMLR.org, 2014.

[4] Radim Rehurek. Doc2vec paragraph embeddings. https://radimrehurek.com/gensim/models/

doc2vec.html, 2020.

[5] Radim Rehurek. Doc2vec model. https://radimrehurek.com/gensim/auto_examples/tutorials/

run_doc2vec_lee.html, 2020.

[6] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention is all you need. CoRR, abs/1706.03762, 2017.

[7] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of deep
bidirectional transformers for language understanding. CoRR, abs/1810.04805, 2018.

[8] Killian Tattank. Lda and document similarity. https://www.kaggle.com/ktattan/

lda-and-document-similarity/comments, 2017.

[9] Dominik Maria Endres and Johannes E Schindelin. A new metric for probability distributions. IEEE
Transactions on Information theory, 49(7):1858–1860, 2003.

[10] Krithika Iyer. Classification of legal text. 2020.

[11] A Kovalev, I Nikiforov, and P Drobintsev. An approach to semantic search on technical documentation
based on machine learning algorithm for customer request resolution automation. 2020.

14

https://www.kaggle.com/nikdavis/steam-store-games
https://www.kaggle.com/nikdavis/steam-store-games
https://radimrehurek.com/gensim/models/doc2vec.html
https://radimrehurek.com/gensim/models/doc2vec.html
https://radimrehurek.com/gensim/auto_examples/tutorials/run_doc2vec_lee.html
https://radimrehurek.com/gensim/auto_examples/tutorials/run_doc2vec_lee.html
https://www.kaggle.com/ktattan/lda-and-document-similarity/comments
https://www.kaggle.com/ktattan/lda-and-document-similarity/comments

	Introduction
	Natural Language Processing
	The Dataset
	Natural Language Processing - Different Approaches

	Method
	Doc2Vec
	Parameters
	Training the Model
	Prediction Process

	Neural Networks
	BERT
	Fine-tuning
	Using BERT with Preprocessing
	The Network
	Variable Parameters

	Latent Dirichlet Allocation
	Clustering
	Seeding the Clusters

	Choosing Parameters
	Comparing the Models
	Demo Tool

	Results
	Doc2Vec
	Neural Networks
	Latent Dirichlet Allocation
	Comparing the Models

	Discussion
	Results
	Conclusion


