SEMANTIC TEXT SIMILARITY

Document1 Semantic score Document2

Martin Bjorn Simon Gustafsson Oskar Skoglund
Joakim Tao David Thimren Tim Yngesjo

TDDE19 Advanced Project Course - AI and Machine Learning
Link6ping University

Chapter 1

Introduction

Determining similarity between sentences is an important and fundamental task in Nat-
ural Language Processing (NLP). Being able to compare the semantic similarity between
texts has many applications in a wide variety of areas. Examples of areas where text
similarity is being used are plagiarism detection, search engines and customer service.
This report aims to evaluate and compare different semantic text similarity algorithms
based on the accuracy metric.

1.1 The problem

The text similarity problem is that given two texts t; and ¢y predict if the texts are
semanticly similar. The texts may have different number of characters and words. To
achieve this, supervised learning can be applied to the problem. The problem is a binary
classification problem, i.e. the prediction can be exactly one out of two values. The goal
is to construct a prediction function hg(t1,t2) — {0,1} where t1, t5 are the two texts and
0 are parameters of the predictor function.

1.2 Possible solutions

There are many different algorithms to solve the semantic text similarity problem. In this
project, the following algorithms were compared and evaluated: term-frequency inverse
document frequency (TF-IDF), Bidirectional Encoder Representations from Transformers
(BERT), Long short-term memory (LSTM) and gated recurrent unit (GRU).

1.3 Hypothesis

The hypothesis of this project is that TF-IDF will perform worse than both LSTM and
BERT. The reasoning is that TF-IDF is a very simple way to model the problem. It
ignores the context of a sentence and also the sequence of words, but it will probably be a
fast model that can give a simple overview of the similarity between documents. TF-IDF
is a unsupervised algorithm, meaning that it disregards the ground-truth labels and only
calculates similarity based on the word-vector space.

In contrast to TF-IDF, the supervised model, LSTM, will give a more accurate pre-
diction of the similarity problem and will have a higher accuracy than the TF-IDF model.
Given what previous scientific works get as accuracy when using a LSTM model in similar
problem, it will most likely get a accuracy of 80-85% in our task.

Finally, the last hypothesis of the project is that the BERT model will outperform
TF-IDF and slightly outperform LSTM. BERT is a more recently developed algorithm
compared to LSTM and according J. Devlin et al. the model has improved the results in
seven different NLP tasks [3]. Therefore it is probable that it will outperform LSTM in
the text similarity task as well, most likely with a resulting accuracy of 85-90%.

Chapter 2

Method

This chapter describes the pre-processing step as well as the implementation process. The
main goal of the project is implement different algorithms which are able to distinguish
if two question are divergent or not. The implementation includes 1 baseline model TF-
IDF and 5 algorithms LSTM(MaLSTM), BiLSTM, GRU, BERT and ALBERT. The best
performing model will have a fine-tuning process and will be presented as the final model.

2.1 Dataset

To train and evaluate the accuracy of the different models implemented, a dataset of
Quora Question Pairs were used E The dataset is part of a publicly available Kaggle
competition, with the goal to classify if two sentences(questions) have the same meaning.
The set contains over 400 000 question pairs, with given ground truth for each pair labeled
as 1 if the two sentences has the same meaning, and 0 otherwise. The ground truth has
been labeled by human experts, and can therefore be subjective.

Some examples of question pairs from the dataset:

"How can I be a good geologist?”,” What should I do to be a great geologist?”, 1

”What is the best travel website in spain?”,” What is the best travel website?”, 0

2.2 Pre-processing steps

The questions in the data set are an exact replica of the questions asked on Quora which
contain a lot of uninformative words and are not in the format which the models can train
on. Some question might even contain misspelled words. Before training the models, a
pre-processing steps is needed to both remove uninformative words which are known as
stopwords, and also reformat the question.

The first step was to clean up the question. The questions were filtered using regular
expression operations from python. More specifically the project used the re.sub(pattern,
repl) function, which matches a regular expression (pattern) in the question and replaces
it (repl). This was done to filter out the non-alphabetical words but also used to reformat
common contraction like ” I'll to I will”.

After reformatting the questions using regular expression, the stopwords were filtered
out using the list of stopwords from NLTK library EI in python .

Finally there was also a fixed question length, this was implemented to reduced the
amount of zero-padding needed for the shorter questions. The zero-padding was necessary

Thttps://www.kaggle.com/c/quora-question-pairs
2https://www.nltk.org/

since most of the models required feature vectors of the same length. The fixed question
length was 100 words, this means that the shorter questions were zero-padded while the
longer questions were cut off at 100 words. For the model using BERT or ALBERT the
word length was set to be no longer than 35 characters long, since the model crashed when
a word was too long. The limit of 35 characters was set so that all normal english words
would fit, including ”supercalifragilisticexpialidocious”. Words longer were removed from
the question.

2.3 Baseline

A classifier based on Tf-idf was used as a baseline for this project. For each sentence pair
u,v, ti-idf vectors were formed

v = tfidf(t;,dy, D) i=1,--, M
w=tf-idf(t;,dp, D) i=1,--- M

where M is the number of words in the vocabulary. The similarity between the vectors
u,v was then calculated using cosine similarity defined by

UTU

cos_similarity(u,v) = ————
[ollollull,

Two sentences are classified as similar if their cosine similarity exceeds some threshold,

this can be written as

UT’U

- >
[ollallull,

where a € (0,1). Experiments for different values of a were conducted.

2.4 LSTM,GRU, and BiLSTM

For this project the popular deep learning library, keras EL was used to implement the
LSTM and the bidirectional LSTM models. The method was implemented with a many
to one implementation meaning that the model only gave one output for each sentence.
This output was a vector with a length of 50. The structure of the model was two siamese
LSTMs that both took one question each and then produced a vector, which would be
compared to each other and than a final prediction would be produced. A very similar
model which used gated recurrent units instead of LSTMs was also implemented.

(N
Question 1 >

Embedding Siamese LSTM —> Output
Question 2 >

Figure 2.1: LSTM model structure

Shttps://keras.io/

The structure was used for both the LSTM, GRU and the bi-LSTM model and for
both the LSTM model.

To use the sentences in the LSTM models they have to be transformed through a
embedding matrix, created with word2vec, that has been pre-trained. The specific one
used in this project was the Googlenews-vector-negative300.bin. Now each word can
pass through these embedding matrix as one hot vectors which would yield the vector
representation needed for the LSTM:s.

2.5 BERT and ALBERT

The model using BERT [3] or ALBERT [4] consists of the base version of the respective
model, a bidirectional LSTM, max and average pooling, dropout, and lastly a dense layer
that outputs the prediction. Unless otherwise specified, the LSTM layer has 64 units, and
the dropout is set to 0.3. This project used HuggingFace transformers 8] implementation
of BERT and ALBERT in Keras and Tensorflow. Before the questions are passed through
the model, the two sentences were first encoded together and separated with [SEP] token
using HuggingFace implementation of BERT and ALBERT tokenizer.

| Uopsanm
v
L 2
Bulood abelany
L 2

13971 L3949
WLET
nodoun
asuag
nding

Z uojsanm
v
¥
Bulood xew
¥

Figure 2.2: BERT/ALBERT model structure

2.6 Fine-tuning

The model with the highest accuracy was then fine-tuned to try and get a better accuracy.
To fine-tune the hyper parameters of the model trial and error was used to see what gave
the best accuracy. To save time during the fine-tuning, only 100 000 question pairs were

used for training and 10 000 question pairs for validation. As seen in the
different values or length was tested of these parameters:

e Word pre-process

e Max sentence length
e Instead of long word
o LSTM size

When using Word pre-process the same pre-processing steps was used as in
Instead of long word was used to see if the model would learn that two questions, with
the Instead of long word characters in them, might be related.

Chapter 3

Results

This chapter presents the performance of the baseline models TF-IDF and the perfor-
mance of evaluation models BERT, ALBERT, MaLLSTM and BiLSTM. The performance
is measured using accuracy.

3.1 TF-IDF

The projects baseline model Tf-idf achieved an accuracy of 65.2 %. The hyper-parameter
« was optimized by varying the a value. The experiments resulted in o =~ 0.6 yields the

highest accuracy, this can be seen in

tf_idf classification

0.64

0.62

0.60 -

0.58 A

accuracy

0.56

0.54 1

0.52

0.50 A

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Figure 3.1: Accuracy of tf-idf for different values of «

3.2 LSTM

The projects Manhattan based LSTM model achieved an accuracy of 81.5 % on the test
data and a 86.5 % on the training. The accuracies for the train and test data over 25

epochs can be seen in [Figure 3.2}

3.2.1 GRU

The GRU-based model achived a training accuracy of 82 % and a test accuracy of 80.0
%. The accuracy during training can be seen in Figure

3.2.2 Bi-directional LSTM

The Bi-directional LSTM, BiLSTM achived an accuracy of 81.3 % on the test data and
86.3 % on the training data. The accuracies over the 25 trained epochs for both the train
and test set can be seen in |Figure 3.2

LSTM vs BI-LSTM vs GRU

MALSTM train_accuracy
MALSTM test_accuracy
BI-MALSTM train_accuracy
BI-MALSTM test_accuracy
GRU train_accuracy

GRU test_accuracy

0.86

0.84

accuracy
=}
@
[N

0.80

0.78 4

epoch

Figure 3.2: Accuracy of LSTM vs BiLSTM vs GRU model

T
25

3.3 BERT

The projects BERT model achieved an accuracy of 85.8 % on the test data and an
accuracy of 85.0 % were also achieved on the train data. The accuracies over the 10

trained epochs for both the train and test set can be seen in

3.3.1 ALBERT

The ALBERT model resulted in an accuracy of 87.2 % on the test data and an accuracy
of 91.4 % on the train set. The accuracies over the 10 trained epochs for both the train

and test set can be seen in |[Figure 3.3

BERT vs ALBERT

0.90
0.88
)
[®)
© 0.86 -
=
[&)
B
0.84
0.82 1 ; ——- BERT train
Vi BERT test
/ —— ALBERT train
0.80 4 ’ —— ALBERT test
T T T T T T T T T T
0 1 2 3 4 5 6 7 8 9 10

epoch

Figure 3.3: Accuracy of BERT vs ALBERT

3.4 Fine-tuning

Comparison between the test accuracies for the MaLLSTM, GRU, BiLSTM, BERT and
ALBERT models shows that the ALBERT model achieves the best accuracy and was

thus chosen to be fine-tuned.

The results and variation of fine-tuning the hyper-parameters of ALBERT can be seen i

in the

Table 3.1: Accuracy with ALBERT using different parameters

Word pre-process | Max sentence length | Instead of long word | LSTM size | Acc..
Yes 50 Use the long word 64 Error
Yes 50 7T 64 0.8547
No 50 7 64 0.8600
No 50 ’@” 64 0.8631
No 50 7 64 0.8627
No 100 ’@” 64 0.8619
No 100 " 64 0.865
No 150 7 64 0.8645
No 100 77 32 0.8582
No 100 7 128 0.8619

3.4.1 Final ALBERT

After the fine-tuning process the final ALBERT model achived an test accuracy of 88.2
% and a train accuracy of 91.4 %. The accuracies over 10 epochs for the final ALBERT

model can be seen in

10

accuracy

ALBERT

0.90
0.88
0.86
0.84 7 — frain
— test
T T T T T T T T T T
0 1 2 3 4 5 6 7 8 9 10

epoch

Figure 3.4: Final ALBERT

11

Chapter 4

Discussion

This chapter will discuss the validity of the results as well as an evaluation of the model
and methods used in the project. This chapter will also include some discussion of future
works.

4.1 Pre-processing

The pre-processing used in this project is the standard pre-processing used in most of
project in text classification. First the removal of non-alphabetical words and expanding
contractions, this is always a good idea to do to limit the scope of words the model would
have to learn. After that, all stop words in the questions were removed because they don’t
contain any relevant semantic meaning and would only introduce noise for the model and
the result would likely be worse. Lastly using a fixed length for the input sequences was
done so to limit the zero padding needed for the shorter questions. Which would mean
that longer questions would loose some information but would also improve the efficiency
of the model by making it significantly smaller, and this is worth it because only outlier
questions would exceed the max length.

What was not done but could have improved the results obtained was fixing the
lemmatization for each word, for example changing driving into drive, so to reduce the
number of variations for each word that means semantically the same thing. This could
help the model understand some words better and improve the accuracy for the model.

4.2 Sentence length limitations

It seems like reducing the maximum sentence lengths helped most LSTM/GRU models
to learn better. Since the models operate on sentences of fixed length, all sentences
needs to be converted to the same length. This is done by zero-padding all the sentences
to get the same length as the longest sentence. While preserving all the information
about the sentences, this method introduces redundancy in the data that is fed into the
models. In an attempt to make the input more information dense, a max sentence length
was introduced. Although this removes some information about some long sentences the
results become better. A max sentence length of about 50 words seemed to yield the best
result. Why a relatively low max sentence lengths worked good is probably due to the
fact the most questions in the data set are relatively short.

12

4.3 Results

The different models performed significantly better than the baseline (TF-IDF), which
is expected. Out of the five algorithms BERT and ALBERT performed better than
their RNN-based counterparts, as hypothesized. ALBERT performed the best with an
accuracy of 88%. Out of the RNN-based models MaLSTM performed the best with an
acccuracy of 81%. This accuracy also agrees with the hypothesis.

Comparing the results with Semantic Textual Similarity on MRPC [5] which is a
similar problem, the models perform below the state of the art models that reach an
accuracy of 93.4% using ALBERT. However the two data sets used are not the same,
meaning the same results cannot be expected. In addition, the ALBERT used in our
model was base model, there exist larger models (Large and XL), changes of this could
result in higher accuracy.

One thing to note is that the average human accuracy is unknown, which means it is
hard to tell how good an accuracy of 88% actually is. Additionally the questions have
been labelled by humans and can therefore be subjective.

4.4 BERT vs ALBERT regarding dropout

Dropout =0 Dropout = 0.3 Dropout = 0.5
0.86 | _— | 0.84 - —
0.84 -
0.84 - 0.82
0.82
0.82 0.80
0.80
0.80 — train — train |0.787 — train
test | 0-78 1 test test
T T T T T T T T T T T T T T T
2 4 6 8 10 2 4 6 8 10 2 4 6 8 10

Figure 4.1: Accuracy of BERT for different values of dropout

ALBERT seems more robust compared to BERT, where BERT might rely too much on
only a few parameters per output, so when some of those parameters are dropped, it
loses too much information to give an accurate guess. However, as can also be seen in
this does not affect the testing accuracy since the dropout is only active while
training. One possible explanation of the difference between the effect of dropout on the
model using BERT and the model using ALBERT, is that BERT already uses dropout
inside the model during training, while ALBERT has no dropout. It could be that using
the dropout in BERT plus the dropout in our model is too much for the model to make
a good prediction.

4.5 Future Works

One part of the project that could be looked at in order to improve the performance
is the data. The data set consists of 400 000 question pairs, but compared to some of
the larger open source data sets Blog Authorship Corpus and Amazon Product Data set
which consist of around 140 million data 400 000 is not a lot. To further improve the
performance of the model better training would be needed thus a larger data or in this
case some kind of data augmentation.

Data augmentation are techniques used to increase the amount of data by slightly
modifying existing data and adding them or creation of synthetic data from existing

13

data [7]. There are two more well known data augmentation techniques one is GAN also
known as Generative Adversarial Networks, the other is EDA, also known as easy data
augmentation.

EDA is a method that increases the data by slightly modifying the data by using 4 main
methods in EDA, more details can be found in [9]. GANs normally consists of two neural
networks which train and competes against each other. One of the networks works as the
generator which generates data that is indistinguishable from real-world data while the
other network works as the discriminator to distinguish if the generated data looks like
real data or not |2, [6]. More details about GAN can be found in |2, (6].

Both data augmentation method could be explored to see the advantages of both. While
the EDA have a more simple approach it is also less robust, while a GAN based approach
is more advanced but it gives a more robust solution.

Caccia et al. (2018) investigated language based GAN models and came to a conclu-
sion that well-adjusted language model outperforms the GAN variants [1]. Caccia et al.
(2018) also states that ”GAN training may prove fruitful eventually, but this research lays
forth clear boundaries that it must first surpass.” |1]. But a more recent research states
the opposite. The research was about GAN in text classification and introduced a new
method called GAN-BERT [2]. GAN-BERT is a method which uses a semi-supervised
GAN (SS-GAN) in BERT fine-tuning. More implementation details can be found in [2].
In the paper Croce, Castellucci and Basili (2020) explains that GAN-BERT was proven
to systematically improve the robustness of all while not bring in any additional costs
to the inference [2|. So a GAN-BERT approach for synthetic data generation would be
worth investigating.

14

Bibliography

Massimo Caccia et al. “Language GANs Falling Short”. In: arXiv e-prints, arXiv:1811.02549
(Nov. 2018), arXiv:1811.02549. arXiv: [1811.02549 [cs.CL].

Danilo Croce, Giuseppe Castellucci, and Roberto Basili. “GAN-BERT: Generative
Adversarial Learning for Robust Text Classification with a Bunch of Labeled Ex-
amples”. In: Proceedings of the 58th Annual Meeting of the Association for Compu-
tational Linguistics. Online: Association for Computational Linguistics, July 2020,
pp. 2114-2119. por: 10 . 18653 /v1 /2020 . acl-main . 191. URL: https : //www .
aclweb.org/anthology/2020.acl-main. 191,

Jacob Devlin et al. BERT: Pre-training of Deep Bidirectional Transformers for Lan-
guage Understanding. 2019. arXiv: 1810.04805 [cs.CL].

Zhenzhong Lan et al. ALBERT: A Lite BERT for Self-supervised Learning of Lan-
guage Representations. 2020. arXiv: [1909.11942 [cs.CL].

paperswithcode. Semantic Textual Similarity on MRPC. 2021 (accessed January 09,
2021). URL: https://paperswithcode.com/sota/semantic-textual-similarity-
on-mrpch

Pegah Salehi, Abdolah Chalechale, and Maryam Taghizadeh. “Generative Adversar-
ial Networks (GANSs): An Overview of Theoretical Model, Evaluation Metrics, and

Recent Developments”. In: arXiv e-prints, arXiv:2005.13178 (May 2020), arXiv:2005.13178.
arXiv: |2005.13178 [cs.CV].

Great Learning Team. Understanding Data Augmentation — What is Data Aug-
mentation & how it works? Aug 5, 2020 (accessed Jan 05, 2021). URL: https :
//wuw.mygreatlearning.com/blog/understanding-data-augmentation/.

The Hugging Face Team. Transformers. 2020 (accessed January 08, 2021). URL:
https://huggingface.co/transformers/index.html.

Jason Wei and Kai Zou. “EDA: Easy Data Augmentation Techniques for Boosting
Performance on Text Classification Tasks”. In: arXiv e-prints, arXiv:1901.11196 (Jan.
2019), arXiv:1901.11196. arXiv: 1901.11196 [cs.CL].

15

https://arxiv.org/abs/1811.02549
https://doi.org/10.18653/v1/2020.acl-main.191
https://www.aclweb.org/anthology/2020.acl-main.191
https://www.aclweb.org/anthology/2020.acl-main.191
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1909.11942
https://paperswithcode.com/sota/semantic-textual-similarity-on-mrpc
https://paperswithcode.com/sota/semantic-textual-similarity-on-mrpc
https://arxiv.org/abs/2005.13178
https://www.mygreatlearning.com/blog/understanding-data-augmentation/
https://www.mygreatlearning.com/blog/understanding-data-augmentation/
https://huggingface.co/transformers/index.html
https://arxiv.org/abs/1901.11196

	Introduction
	The problem
	Possible solutions
	Hypothesis

	Method
	Dataset
	Pre-processing steps
	Baseline
	LSTM,GRU, and BiLSTM
	BERT and ALBERT
	Fine-tuning

	Results
	TF-IDF
	LSTM
	GRU
	Bi-directional LSTM

	BERT
	ALBERT

	Fine-tuning
	Final ALBERT

	Discussion
	Pre-processing
	Sentence length limitations
	Results
	BERT vs ALBERT regarding dropout
	Future Works

