Deep Learning in Digital Image Processing and
Photography

Karol Wojtulewicz Daniel Jonsson Emil Luusua
Tobias Lofgren Joel Oskarsson Daniel Roos

December 2019

1 Introduction

Image manipulation through use of deep neural networks is nothing new in
the 21st century. In 2012, when AlexNet [4] demonstrated that deep neural
networks are more than suitable for image classification, the trend of using
neural networks for various complex problems started. Two examples of such
problems in image processing are image denoising and photo enhancement, both
of which are explored in this report.

The task of denoising concerns improving the quality of an image by perform-
ing inpainting and removal of noise. In this work two state-of-the-art solutions
utilizing neural networks, PizelRL [2] and Noise2Noise (N2N) [5], are evaluated
and compared with a simple self-implemented autoencoder.

Photo enhancement is typically performed by professional photographers in
order to make their photos more aesthetically pleasing. Since photography is a
subjective art form requiring a lot of creativity it is not a task typically suited
for machine learning. Therefore successfully applying machine learning on the
task would be a great achievement in pushing the boundaries of what artificial
intelligence is capable of learning. One attempt at this was made in 2017 by
Google researchers Fang and Zhang who developed Creatism [1], a system based
on deep learning designed to perform photo enhancement at a professional level.
They manage to accomplish this by dividing the photo enhancement process
into adjustment of several aesthetic aspects, each of which can be optimized
individually. This enables neural networks to be trained in order to handle a
single straightforward aspect, which they are very well-suited to do. In this
work, Creatism has been re-implemented from scratch with some modifications
in an attempt to evaluate its effectiveness.

The remaining chapters of this report are organized as follows. Chapter 2 will
present used algorithms in further detail as well as the experiments conducted
and data sets used to evaluate these. Chapter 3 will present the experimental
results and chapter 4 will provide an analysis and discussion of these findings.
Chapters 2 and 3 are both be divided into two parts, treating denoising and
photo enhancement separately.

2 Methods

Below the different methods used are explained for reproducible purposes. The
chapter is divided into two parts: denoising and photo enhancement.

2.1 Denoising

As previously mentioned, we begun by evaluating some existing, state of the
art, implementations for denoising: PixelRL [2] and N2N [5].

For evaluation of PixelRL and N2N, pretrained networks trained by the au-
thors of the papers were used. The reason for this is the unreasonable amount
of time and computational power required to train these networks on our own.
It also gave us a reasonable delimitation for the project as a whole: the pre-
trained N2N network trained on Gaussian noise allowed for a maximum noising
of standard deviation 0.2. Based on this, we limited ourselves to using a Gaus-
sian noiser with standard deviation of 0.1. For evaluation, a unique seed was
chosen for the noiser for all algorithms tested, resulting in a comparable result
cross-implementation.

2.1.1 PixelRL

PixelRL stands for Reinforcement Learning with Pixel-wise Rewards which uses
a fully convolutional network in order to detect and remove noise, restore images
and enhance colors in the image [2]. PixelRL extends deep RL [6] which is
previous work in the area that many people think changed and improved many
things in the area of image processing using deep learning. They have made
this implementation to work on other various applications, by reason of deep
RL. Earlier works have been too limited with regards to how these methods
only can execute global actions for the entire image and are limited to simple
applications, e.g. image cropping and and global color enhancement.

PixelRL introduces the concept of each pixel in the image, corresponding to a
pixel value, having its own agent that can perform 9 possible actions in order to
change this and surrounding pixel values. What actions to take is decided by a
Reward Map Convolution. More details can be read in [2]. Available actions are
such as increasing or decreasing pixel value, adding a 5x5 median or gaussian
filter etc. The PixelRL implementation only works for grayscale images for
image denoising. The PixelRL program and evaluation was performed without
convGRU or reward map convolution on a pretrained network trained on the
BSD68' and Waterloo? exploration data set. The reason for this was that
it was proposed by the authors and simplicity. This means the network was
trained and tested on different data sets, which may have an impact on the
results. The implementation extends the A3C algorithm which is a popular
hybrid CPU/GPU implementation. More information and the code is available

Thttps://github.com/clausmichele/ CBSD68-dataset
2https://ece.uwaterloo.ca/ k29ma/exploration/

on github3.

2.1.2 Noise2Noise

Noise2Noise is based on the U-Net architecture with channel concatenation be-
tween the encoder and decoder (skip architecture) to preserve the image struc-
ture [10]. Evaluation of the N2N-implementation was performed using the pre-
trained

network_final-gaussian-n2n network, meaning the network is trained for
Gaussian noise using noisy images as ground truth (a speciality of the N2N
algorithm; see the paper [5] for more detail).

2.1.3 Custom implementation

Architecture Similarly to N2N, the custom autoencoder follows the U-Net
architecture. It is also a fully convolutional network, meaning that it only
contains convolutional layers with adaptive filter weights.

Table 1 and Figure 1 show the layer stack of the network.

Training The training was performed using the

n
Ly = Z(ytrue - ypred>2 (1)
i=1
loss function and the Adam optimizer. A batch size of 64 was used, and the
network was trained for 30 epochs. As training data, the Cifar10? dataset
was used. These images are 32x32 pixles in size, which ends up becoming a
delimitation for the network; it cannot in its current implementation handle
images larger than this.
The network was implemented in TensorFlow® through Google Colab®, which
delivers 24GB ram and more than 15GB of GPU memory.

Shttps://github.com/rfuruta/pixelRL
4https://www.cs.toronto.edu/ kriz/cifar.html
Shttps://www.tensorflow.org/
Shttps://colab.research.google.com/

Layer Type Filter Size | Stride | Activation | Output Shape
Input - - - 3x32x32
Convolutional 5 1 ReLU 32x32x32
Max Pooling 2 1 ReLU 32x16x16
Convolutional 5 1 ReLU 64x16x16
Max Pooling 2 1 ReLU 64x8x8
Convolutional 5 1 ReLU 128x8x8
Max Pooling 2 1 ReLU 128x4x4
Deconvolution 2 1 ReLU 64x8x8
Convolutional 1 1 ReLU 64x8x8
Convolutional 1 1 ReLU 64x8x8
Deconvolution 2 1 ReLU 32x16x16
Concatenation - - - 64x16x16
Convolutional 5 1 ReLU 32x16x16
Convolutional 1 1 ReLU 32x16x16
Deconvolution 2 1 ReLU 32x32x32
Concatenation - - - 64x32x32
Convolutional 5 1 ReLU 32x32x32
Convolutional 5 1 ReLU 3x32x32
Convolutional 1 1 ReLU 3x32x32
Convolutional 1 1 ReLLU 3x32x32

Table 1: The custom denoiser architecture

2.2 Photo enhancement

A simplified version of the Creatism [1] system was implemented using the Py-
Torch” library. The Creatism system enhances images by sequentially applying
a number of image processing operations. These operations all have tunable
parameters that determine how they change an image.

The task of choosing these parameters is normally performed by a knowl-
edgeable photographer, but in the Creatism system this is done automatically.
The parameters are optimized by using a number of neural networks. Each neu-
ral network performs a scoring task, taking an image as input and outputting
a score in [0,1]. A different network is used for each image operation, scoring
a specific criteria of how the image looks. For example, when applying an op-
eration that changes saturation the saturation-network scores the saturation of
the images it is fed.

2.2.1 Enhancement Algorithm

The different operations involved in enhancement are cropping, saturation, High
Dynamic Range (HDR) and tone curves®. Saturation and tone curves are op-

"https://pytorch.org/
8https://www.mediachance.com/pseam/help/curves.html

Figure 1: The custom denoiser architecture visualized

erations that change the lighting settings of the image. HDR merges different
exposures of an image to get as much intensity details as possible.

After the networks for the different image operations have been trained,
enhancement can begin: First off, test images that the network has not trained
on are used for enhancement. Secondly, a fixed number of different crops are
generated for the image. This is done by trying multiple different aspect ratios
and fractions of the original image height. All of these different crop proposals
are propagated through the cropping network and the n best scored crops are
selected. All other operations are then applied to the selected crops, sequentially
optimizing the parameters of each operation by using the networks for scoring.
The aesthetic ranking network is finally used in order to rank the images based
on their overall look in order to find the best photo. When the best one has been
chosen, that parameter configuration is applied to the image at full resolution
to generate the final enhanced image.

2.2.2 Training Datasets

Semi-professionally edited lanscape photos were scraped from Flickr? using the
Flickr API'9. Used search terms were beautiful landscape, colorful landscape and
nature landscape to retrieve 10500 unique photos. After cleaning out non-edited
photos and photos with watermarks this resulted in a dataset consisting of 8337
photos. Approximately 90% of these (7399) were used for training and the
remaining (938) for validation.

Following the approach utilized by Fang and Zhang [1], each of the photos
was randomly perturbed six times to create negative training examples. This
procedure was conducted separately for each of the different image operations by
randomly sampling its tuning parameters and applying the operation; yielding 4

9nttps://wuw.flickr.com/
Ohttps://www.flickr.com/services/api/

datasets of 51793 training and 6566 validation examples each (6 perturbations
+ the original photo). The photos were also resized to a size of 299x299 for
cropping and 128x128 for the other 3 datasets.

Since the enhancement algorithm requires the networks to predict a score,
targets for the training data needed to be calculated. This was accomplished by
assuming the original photos were optimally edited (receiving a score of 1) and
measuring how similar the perturbed photo was to the original to determine its

. . Area(Perturbed)
score. For cropping, the area ratio defined as S =—r"+*

Area(Original)
other three operations, the similarity metric ReLU(1 — ﬁ) was used where §
denotes the average percentage pixel difference between the images (yielding a
score of zero when the difference exceeds the threshold of 6%).

The aesthetic ranking network was trained on the AVA dataset [7], which
contains more than 250000 images with manually annotated scores for photo
aesthetics. A target was assigned to each image based on which percentile it
would rank in within the dataset (i.e. a target of 0.7 would correspond to
the image having a higher average aesthetic score than 70% of images in the

dataset).

was used. For the

2.2.3 Training Procedure

In total 5 neural network models were trained, one for each of the enhancement
operations and one for aesthetic ranking. Each model was trained using its cor-
responding dataset, as introduced in section 2.2.2. Apart from this the training
loop used was identical for the different networks.

The network architectures used were InceptionV3 [12], InceptionTinyl128
and InceptionTiny299. The last two are scaled down versions of the popular
Inception V3 network. The full sized network was used in the original Creatism
paper [1]. The main differences between the two smaller networks is the input
size, one taking images of size 128x128 and the other images of size 299x299.
The networks start with a sequence of convolutional layers, max-pooling and
batch-normalization. This convolutional part of the network features some of the
Inception-modules from [12]. This is followed by two fully connected layers. The
final layer has only a single unit with a sigmoid activation function, representing
the estimated score of an image. A detailed description of the architectures can
be found in appendix A.

The networks were trained for regression, trying to predict the score of each
perturbed image in the generated datasets. More training details can be found
in appendix B.

2.2.4 Experiment setup

Two small datasets were used for evaluating the finished creatism system. The
first dataset, referred to as Gmaps consists of 29 screenshots from Google Maps
streetview!! panoramas. The Vacation datasets consists of a set of vacation
photos taken by the authors.

Uhttps://www.google.com/streetview/

Two enhanced versions of the Gmaps dataset were created. The first was
enhanced using the implemented Creatism system. The second set was enhanced
manually, using only the same operations as Creatism has available and a similar
amount of time as the automatic enhancement. A survey was conducted, where
participants were shown the two different enhanced versions of an image. They
were then asked to select which of the two images they found more aesthetically
pleasing.

The Vacation dataset was used with two purposes, to showcase the impact of
the individual operations as well as to investigate the robustness of the enhance-
ment procedure. The first purpose was fulfilled by simply saving intermediate
images after each step in the pipeline and observing these; the second purpose
was fulfilled by enhancing the photos using both trained and untrained networks
and comparing the results to examine just how much the networks are actually
able to learn.

3 Results

3.1 Denoising

Below we present some results for each of the implementations evaluated. Im-
portant to note is the lack of a universal metric of evaluation for denoising.
Therefore several were considered — e.g. PSNR, SSIM, MSE, NRMSE — but
the results were not included in this chapter due to we thinking the images told
the clearer story.

3.1.1 Dataset evaluated

As previously mentioned, a common ground truth was chosen for all evaluation.
As a sample, Figure 2 shows two of the images from the Cifar10 dataset used for
evaluation. These images were then noised as previously discussed to produce
the images in Figure 3.

3.1.2 Noise2Noise

Figure 4 shows the images denoised by Noise2Noise. These results are quite
good, especially considering the network has never seen a ”clean” image without
noise. Especially interesting is how the details in the windshield of the truck
are retained after denoising. The truck wheels do however lose some detail.

3.1.3 PixelRL

Figure 5 shows the images denoised by PixelRL. As mentioned earlier the im-
plemenation only works for gray scale, which explains why the images looks
so different from the others. Otherwise, the results of the pixels are looking
relatively accurate when not taking pixel value into regards.

('

=

(a) Horse original) Truck original

Figure 2: Before noising

_N |
(a) Horse noised (b) Truck noised

Figure 3: After noising

3.1.4 Own autoencoder

Figure 6 shows the images denoised by our own autoencoder. Compared to
N2N, the autoencoder is significantly less aggressive in its denoising, which can
for example be seen in the top-right part of the trees in the truck example. The
detail in the truck wheel is however (similar to N2N) lost after denoising.

The training and test loss for this implementation can be seen in Figure 7.
The indexing is kind of confusing, for two reasons: (1) the indexing starts with
0, meaning the first epoch is epoch 0. (2) the first epoch was excluded from
the figure due to its extremely large value compared to the rest of the training.
This summarizes to "epoch 5” in the graph actually being the 7*" epoch. The
epochs will be referred to by their index in this graph below.

No early stopping was implemented, so the network could potentially have
continued learning given the time. Most of the improvements was observed

(a) Horse denoised (b) Truck denoised

Figure 4: Denoised by Noise2Noise

(a) Horse denoised (b) Truck denoised

Figure 5: Denoised by PixelRL

between the 0" and 2" epochs, as well as the 4" and 5**. Looking at the
progress the network made between these epochs, the majority of the change
can be attributed to color correction. The network often started off with no
color at all, then gradually added color as the loss was decreasing. Due to how
our kernels were implemented, the network sometimes never colored the image
at all, resulting in a black-and-white image after training.

Some additional denoising made by our own autoencoder can be seen in
Figure 8. Looking at additional these, especially the fourth one, it is clear that
our network struggles somewhat with open, monotone, areas with no detail. It
performs best on images containing small color variations and clear contours.

(a) Horse denoised (b) Truck denoised

Figure 6: Denoised by our own autoencoder

—— Train
Test

0.007

0006

0.005

Loss

0.004

0.003

0.002

Epoch

Figure 7: Training and test loss over epochs

3.2 Enhancement
3.2.1 Survey Results

61 persons responded to the survey. The mean value of how many times an
individual preferred the Creatism-enhanced version of a photo was 11.84/29
(40.1%), the median 12/29 (41.4%), and the standard deviation 3.16. A his-
togram depicting the distribution of responses can be seen in figure 9. Here it
can be seen that the results vary from 6 to 19 Creatism photos being preferred.
Table 6 in appendix D shows the percentage of times each of the photos en-
hanced by Creatism was preferred, showing that 10/29 (34.5%) of the photos
were preferred in a majority of cases.

10

i -
S
i
= A J.J+ 3
ﬁ
ke,
= -
ﬁ

Figure 8: Additional denoising done by our own autoencoder. Note the differ-
ences in denoising capabilities for different levels of detail. The first row is the
ground truth, the second the noised (Gaussian w/ std = 0.01) versions and the
third the denoising done by our network.

3.2.2 Impact of Individual Operations

Figures 10-14 show the same image from the Vacation set at each step of the
Creatism pipeline. This visualizes the impact of the difference image processing
operations. In this particular instance it can be seen that the cropping operation
roughly adheres to the rule of thirds by having the sky occupy 1/3 of the vertical
space and placing the cliff off-centre. The saturation operation makes the image
slightly more colorful and the HDR operation boosts the depth that can be seen
in the waves, clouds and the cliff. Lastly the tone curve operation further
modifies colors, making the water bluer and sky whiter while simultaneously
increasing contrast in the image.

11

Histogram of survey results

00'6C
00'8C
00°.2
00'92
00'sC
00'v2
00°€2
00'ze
00°i2
00'0C
00°61L
00'8L
00°ZL
00'9L
00°GL
00'vL
00°€lL
oo‘zL
00°kLL
00°0L
00'6
00‘8
00°2
009
00's
00y
00'c
00
00°}
000

sjuapuodsal Jo #

of Creatism photos preferred

Figure 9: A histogram depicting the survey results.

Figure 10: Original vacation image.

12

Figure 11: Vacation image after cropping enhancement.

Figure 12: Vacation image after saturation enhancement.

13

=2 ot

Figure 13: Vacation image after HDR enhancement.

-

Figure 14: Vacation image after tone curve enhancement.

14

3.2.3 Enhancement

Table 2 showcases five images from the Vacation dataset. It can be seen that
the tone curve operation is especially sensitive, since multiple images display an
unnatural tint. More enhanced images can be found in appendix C.

Original Creatism Random

Table 2: Vacation images enhanced by Creatism and random parameters.

15

4 Discussion

This section will discuss different methods and concepts that were used to solve
the different problems as well as discussing possible alternations that could be
made for further improvement.

4.1 Improvements to the Autoencoder

Even though the autoencoder presented in this report performs well, there are a
number of improvements, both in terms of usability and architecture that could
be made. There are a number of architectural improvements and regulation
methods that could be implemented or have been already tried in this autoen-
coder. One method, which is known for improving the overall performance of
a network is the dropout, where each node instead of being active at all times
during training and testing, gets a probability value of it being active during
training. This regularization method is known to reduce overfitting by forcing
all of the nodes to compensate for the nodes that are turned off at any point in
time during training [11]. Dropout was implemented for the autoencoder in the
very beginning of the network development.

It did unfortunately result in unclear and blurry images and has therefore
not been chosen in the final architecture. What could be considered instead of
dropout, that has not been implemented is batch normalization, which normal-
izes the input to each layer [3]. This method has been proven to decrease the
convergence speed as well as improve the accuracy as stated in [3]. The conver-
gence speed could also be improved as well as better results could be obtained
by using a non-random weight initialization technique [8].

Another major improvement to the autoencoder would be the ability to
input images sized differently than 32x32 pixels. An easy way of implementing
this would be to downsize any input image larger than this to 32x32 using for

example skimage.transform. resize!?.

4.2 Enhancement Results

The results from the conducted survey (section 3.2.1) indicate that the Creatism
system performs similar to a human photo editor using the same tools. The
survey results give a slight edge to the human enhancer. These results are
still quite promising, considering the complexity of creating something that
is aesthetically pleasing. Further insight can be gained from the comparison
with photos enhanced with random parameters in table 2. It is clear that the
networks have learnt some notions of how the operations should be applied to
improve the photos.

Observing the changes at each step of the pipeline in figures 10-14 allows
for reasoning about the impact of the different observations. The importance of
cropping is clear, as would be expected. HDR also performs some substantial

12https:/ /scikit-image.org/docs /stable/auto_examples/transform /plot_rescale.html

16

changes to the image, exaggerating details. Importance of operations varies
between images, but these observations extend to most of the Vacation dataset.

4.3 Image Processing Operations

The orthogonality of the operations used was not an aspect that was taken into
account to a large degree. Saturation, tone curves and HDR were all used and
utilizes different techniques for light manipulation in the image. This means that
image operations interfere with each other and change the result from previous
enhancement. This could be one reason why aesthetic ranking did not show as
much promise as hoped.

Creating different perturbations of the HDR images was a challenging task,
since we did not have the same access to different HDR filter strengths as in the
Creatism work, where they used Snapseed’s HDR filter strength operations for
this purpose. Instead, a fake HDR effect!? was used that utilizes edge-preserving
smoothing filters to generate HDR images [9]. In order to increase this effect on
the image, linear interpolation between the original image and the HDR image
was used: HDR(«) = (1 — «) * image + a * HDR_image,a € [0,1]. These
simplifications might also have had impact on the results.

4.4 Applications and Future Work

Many similar works has been done on the area of image denoising. Given the
results and how we were able to create an implementation that is comparable to
state of the art works, shows that many improvements are possible given more
effort and time available. This works can be applied to many applications,
such as surveillance systems or other image processing systems. Future work
could further improve how the image denoising system works but also widen the
system to work on other applications, such as videos.

The Creatism system provides a basis for many different possible applica-
tions. Automatic photo enhancement can be applied on photos taken with
mobile phones or digital cameras. This would give users fast access to enhanced
versions of their photos without any manual work required. Such automatic en-
hancement would likely be carried out on a server, so privacy concerns related
to the photos would need to be considered.

One of the powers of the Creatism system is that it only applies explic-
itly defined operations and decides on specific parameters for said operations.
This makes the enhancement procedure fully explainable. Contrast this with
fully-convolutional neural networks, where the actual changes being made to
an image are very hard to decode in an explainable way. Having the system
output the best parameters for each operation also opens up for many possible
extensions. These parameters can be used to initialize values in photo editing
software, allowing a human to then make adjustments. This approach could also
be extended to more interactive photo enhancement use cases. For example, a

B3https://github.com/ray075hl/singleLDR2HDR,

17

dialogue system could be constructed around the Creatism system, allowing a
user to give comments like ”I think this photo should have a bit higher satura-
tion”. Such interactive approaches are interesting directions for future research.

18

References

[1]

2]

[10]

[11]

Hui Fang and Meng Zhang. Creatism: A deep-learning photographer capa-
ble of creating professional work. arXiv preprint arXiv:1707.08491, 2017.

Ryosuke Furuta, Naoto Inoue, and Toshihiko Yamasaki. Fully convolutional
network with multi-step reinforcement learning for image processing. In
AAAI Conference on Artificial Intelligence (AAAI), 2019.

Sergey loffe and Christian Szegedy. Batch normalization: Accelerating
deep network training by reducing internal covariate shift. arXiv preprint
arXw:1502.03167, 2015.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet clas-
sification with deep convolutional neural networks. In Advances in neural
information processing systems, pages 1097-1105, 2012.

Jaakko Lehtinen, Jacob Munkberg, Jon Hasselgren, Samuli Laine, Tero
Karras, Miika Aittala, and Timo Aila. Noise2noise: Learning image restora-
tion without clean data. arXiv preprint arXiv:1805.04189, 2018.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves,
Timothy Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu.
Asynchronous methods for deep reinforcement learning. In International
conference on machine learning, pages 1928-1937, 2016.

Naila Murray, Luca Marchesotti, and Florent Perronnin. Ava: A large-
scale database for aesthetic visual analysis. In 2012 IEEE Conference on
Computer Vision and Pattern Recognition, pages 2408-2415. IEEE, 2012.

Derrick Nguyen and Bernard Widrow. Improving the learning speed of
2-layer neural networks by choosing initial values of the adaptive weights.
In 1990 IJCNN International Joint Conference on Neural Networks, pages
21-26. IEEE, 1990.

Jae Sung Park, Jae Woong Soh, and Nam Ik Cho. Generation of high
dynamic range illumination from a single image for the enhancement of
undesirably illuminated images. 2019.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolu-
tional networks for biomedical image segmentation. In International Con-
ference on Medical image computing and computer-assisted intervention,
pages 234—241. Springer, 2015.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and
Ruslan Salakhutdinov. Dropout: a simple way to prevent neural networks
from overfitting. The journal of machine learning research, 15(1):1929—
1958, 2014.

19

[12] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbig-
niew Wojna. Rethinking the inception architecture for computer vision. In
Proceedings of the IEEE conference on computer vision and pattern recog-
nition, pages 2818-2826, 2016.

20

Appendices

A Inception Architectures

Table 3 describes the architecture of the InceptionTiny128 network. Table 4
describes the architecture of the InceptionTiny299 network. For the architecture
of InceptionV3 we refer to the original publication [12]. All Inception-modules
mentioned refer to the modules used in the original InceptionV8 network, as
described in [12]. Each convolutional layer consist of a 2D-convolution, batch

normalization [3] and finally activation function.

InceptionTiny128 consists

of 2932413 trainable parameters and InceptionTiny299 consists of 2941693

trainable parameters.

Layer Type Filter Size | Stride | Activation | Output Shape
Input - - - 3x128x128
Convolutional 3 1 ReLLU 32x126x126
Convolutional 3 1 ReLU 32x124x124
Max Pooling 2 2 - 32x62x62
Convolutional 3 1 ReLU 64x60x60
Convolutional 3 1 ReLLU 128x58x58
Max Pooling 2 2 - 128x28x28
InceptionModuleAT - - - 256x28x28
InceptionModuleB - - - 736x14x14
InceptionModuleC? - - - 768x14x14
Adaptlve Average i i i 768x1x1
Pooling

Flatten - - - 768
Fully Connected - - ReLU 350
Fully Connected - Sigmoid 1

Table 3: List of layers in the InceptionTiny128 network.
features 2Using 128 7x7 channels

21

1Using 32 pooling

Layer Type Filter Size | Stride | Activation | Output Shape
Input - - - 3x299x299
Convolutional 3 2 ReLU 32x149x149
Convolutional 3 1 ReLU 32x147x147
Convolutional 3 1 ReLU 32x145x145
Max Pooling 3 2 - 32x72x72
Convolutional 3 1 ReLU 64x70x70
Convolutional 3 1 ReLU 128x68x68
Max Pooling 3 3 - 128x22x22
InceptionModuleA! - - - 256x22x22
InceptionModuleB - - - 736x11x11
InceptionModuleC? - - - 768x11x11
Adaptlve Average i i i 768x1x1
Pooling

Flatten - - - 768
Fully Connected - - ReLU 350
Fully Connected - Sigmoid 1

Table 4: List of layers in the InceptionTiny299 network. 'Using 32 pooling
features 2Using 128 7x7 channels

B Creatism Training Details

The networks were trained using the Adam-optimizer with a learning rate of
0.001 and batch size 64, except for the HDR-model that used batch size 16.
The networks were regularized by using dropout in the layer between the con-
volutional and fully connected part. Dropout probability was set to 0.5 during
training. Additionally, lo-regularization with a weighting of 0.0005 was applied.

Operation Network Model
Cropping InceptionTiny299
Saturation InceptionTiny128
HDR InceptionV3s

Curves InceptionTiny128
Aesthetic Ranking | InceptionTiny299

Table 5: List of which network model was used for scoring of the different
operations.

Table 5 describes which model was used for scoring each operation. The
networks were trained for 100 epochs on an Nvidia GTX 1060 GPU. Each epoch
included training on each image in the training set once. After each epoch the
network was validated on the validation set. This was done by calculating the
average absolute error between the network output and the true score for all

22

samples in the validation set. Which model to be used in the enhancement
procedure was manually selected by studying the validation error for different
epochs.

C Enhanced Images

Figures 15-26 show Vacation photos enhanced by Creatism, with the original
photo to the left.

Figure 15: Photo from Khao Sok, Thailand.

Figure 16: Photo from Battambang, Cambodia.

23

Figure 17: Photo from Mui Ne, Vietnam.

Figure 18: Photo from Mui Ne, Vietnam.

Figure 19: Photo from Hoi An, Vietnam.

24

Figure 20: Photo from Hoi An, Vietnam.

Figure 21: Photo from Ha Giang, Vietnam.

Figure 22: Photo from Ha Giang, Vietnam.

25

g”‘!

Figure 23: Photo from Ha Giang, Vietnam.

Figure 24: Photo from Gunung Ijen, Indonesia.

L o

)

Figure 25: Photo from Railay, Thailand.

Figure 26: Photo from Khao Sok, Thailand.

D Individual Photo Results from Survey

Table 6 describes the results for each individual photo in the survey.

27

Photo | Creatism preferred (%)
1 14.8
2 37.8
3 59.0
4 9.8
5 73.8
6 62.3
7 32.8
8 11.5
9 16.4
10 72.1
11 80.3
12 50.8
13 29.5
14 18.0
15 6.6
16 78.7
17 26.2
18 85.2
19 42.6
20 16.4
21 4.9
22 40.1
23 47.5
24 88.5
25 16.4
26 65.6
27 11.4
28 45.9
29 37.7

Table 6: Percentage of times each Creatism photo was preferred.

28

E List of Contributions

e Karol Wojtulewicz

— Worked on the denoising part of the project
— Dived into the Noise2Noise paper
Dived into the PixelRL paper

— Has written introduction in the report

— Has written significant part of discussion for the denoising part of
the report

Has created the architecture for the denoising autoencoder inspired
by the U-Net architecture

e Daniel Jonsson

— Worked on the denoising part of the project
— Evaluated the (already trained) PixelRL network
— Wrote the denoising parts of the paper

e Emil Luusua

— Worked on the Creatism part of the project
— Gathered training data from Flickr
— Created the Vacation dataset

— Implemented perturbation for cropping, the tone curves operation
and some of the enhancement pipeline

— Wrote parts of the Creatism part and introduction in the report

— Presented the mid-term presentation
e Tobias Lofgren

— Worked on the Creatism part of the project

Implemented perturbation for most image operations and some of
the enhancement pipeline

— Overlooked training of a few networks

Wrote parts of the Creatism part in the report

Presented final presentation
e Joel Oskarsson

— Worked on the Creatism part of the project

— Implemented most of the training loop, the network architectures,
some of the enhancement pipeline and pre-processing for aesthetic
ranking

29

— Overlooked training of multiple networks

— Wrote parts of the Creatism part in the report and final presentation
e Daniel Roos

— Worked on the denoising part of the project
— Evaluated the (already trained) Noise2Noise network

— Evaluated and assisted Karol in implementation of our own autoen-
coder

— Wrote major parts of chapter 3.1

30

