
Stock prediction using LSTM and Hidden Markov Models

Johan Karlsson* Johan Lind* Zacharias Nordström* Rickard Torén*

André Willquist*

Abstract

The area of stock prediction is a potentially ex-
tremely lucrative one to master. In this report two differ-
ent approaches to stock prediction are explored, LSTMs
and HMMs. Prediction models are created with each
of the techniques and their performance are evaluated.
The evaluations are done by measuring accuracy as
well as by simulation. In the simulation the models
are compared to three benchmarking methods, buy and
hold, buy after trend and a simple ANN. Neither of the
constructed models performed consistently better than
buy and hold, and none had accuracy much larger than
50%. This indicates that either the models were not
complicated enough, the training data was too limited
or that the problem is too hard to solve well.

Keywords stock prediction, LSTM, HMM, simu-
lation metric

1. Introduction

The world of stock market trading is a hard chal-
lenge to beat, it is also a market that is attractive to
master because the large chance of earning money. If
the stock market could be easily predicted, it would be
trivial to earn a lot of money. There is some evidence
according to Chen, T. Leung and Daouk that “stock re-
turns are to some extent predictable” [5]. Historically,
stock trading was performed by human investors but as
of late, upwards of 70 % of trades in the United States
was automated [2].

The purpose of this article is to evaluate the per-
formance of two different models, Long-Short Term
Memory (LSTM) models and Hidden Markov Mod-
els (HMM). Recurrent Neural Networks and LSTMs
in particular have previously been used to handle time
series and stock data well [10]. HMMs is a statisti-
cal model that also have been applied to stock predic-
tion [11]. The models will be evaluated with two met-

*The authors contributed equally

rics, first the standard classification accuracy and sec-
ondly the yearly return when the model can buy and
sell the stock in a simple simulated environment. These
two metrics have both been used frequently in related
work by other authors.

A final problem with accurately evaluating stock
market prediction models is that it can be difficult to
model the complex stock market. Brokerage fees can
play a big part of expected return on investment and this
could mean that it is not enough to only predict upwards
or downwards shifts.

2. Background

This section presents the dataset used and how the
models were evaluated. The baseline models used for
comparison are also presented together with a more in
depth description of the LSTM and HMM models.

2.1. Data

Yahoo financial data was used through the Python3
module yahoo-finance1. The six swedish shares
ALIV-SDB.ST, AZN.ST, ERIC-B.ST, SAAB-B.ST,
SWED-A.ST and VOLV-B.ST was selected, together
with ATVI which is an american stock. Two index
“stocks” were also selected. ˆDJI and ˆGSPC are not
stocks but comparison indexes that are comprised by
different stocks. Index stocks cannot be bought, but
they usually represent the stock market well. The data
that is exposed through yahoo-finance is historical
data ranging 20 years back. A datapoint consists of the
following fields:

• date - date of the datapoints

• close - last trade price during the day

• open - first trade price of the day

• high - the highest trade price of the day

1https://github.com/lukaszbanasiak/yahoo-finance
1



Figure 1. HMM structure

Z1 Z2 Z3 Z4

X1 X2 X3 X4

• low - the lowest trade price of the day

• volume - the amount of traded stocks during the
day

All fields except for the date was used for prediction.

2.2. Baseline models

The simulation metric is also computed for the fol-
lowing baseline models:

• Buy and Hold (BaH)

• Trend

• Random

• ANN

The BaH model initiates a single buy action at the
start and keeps all stocks for the whole simulation pe-
riod. Trend model only compares todays price to yes-
terdays price. If the trend is pointing downwards the
model initiates a sell action and if the trend is pointing
upwards it initiates a buy action. The random baseline
model randomly tries to buy and sell at each time step.
A simple artificial neural network (ANN) is also used as
a baseline model. The ANN has 25 input features, two
hidden layers with 15 respectively 7 nodes and outputs
2 values. The network is sequential and fully connected.
Tanh is used as activation function for the hidden layers
and a softmax is applied to the two output nodes. The
two output values if the predicted probabilities for the
stock increasing respectively decreasing in value for the
net day. Input consists of features such as todays closing
price in relation to low, high, open and moving average
over different amounts of days.

2.3. Hidden Markov Models

The Hidden Markov Model was introduced in 1966
by Baum and Petrie [4]. When a HMM is used to
model a system, the observed data Xt is said to be emit-
ted from some unobservable state Zt which the system
is in, according to a probability distribution p(Xt |Ztt)
called the emission model. The observed data makes

Figure 2. RNN structure2

it possible to infer which states are more likely at the
moment, which in turn gives information about which
data points are likely to be emitted next. Time is dis-
cretized in equal width intervals t = 0,1, ..n. The states
are modeled as a Markov chain, and at each time step
the current state is updated according to a transition ma-
trix which is assumed to be constant. Being Markovian,
these transitions depend only on the current state, that is
Zt+1⊥Z0:t−1|Zt . Similarly, the observation X t depends
only on Zt . Generally the structure of the model is fixed
to what is shown in figure 1

In order to fit this model to data and make pre-
dictions, there are a number of problems that must be
solved.

1. Given the model parameters, determine the likeli-
hood of the observations.

2. Given the model parameters and the observations,
determine the most likely state sequence.

3. Given the observations, determine the model pa-
rameters.

The problems are solved by the forward-backward [3],
the Viterbi [12] and the Baum-Welch [4] algorithms re-
spectively.

2.4. LSTM

In certain applications it is necessary to remem-
ber what you have already seen. Natural language pro-
cessing (NLP) is such a domain where the next pre-
dicted word heavily depends on the previous words.
Standard NNs forward the whole input vector at the
start which makes it impossible for the network to ac-
count for temporal data. To solve this, recurrent neural
networks (RNN) were introduced which are networks
where nodes are connected temporally.

As can be seen in figure 2, the network has an in-
trinsic state that is updated based on all previous itera-
tions. The current prediction of what word type is cur-
2https://commons.wikimedia.org/wiki/File:
Recurrent_neural_network_unfold.svg, CC BY
4.0

2

https://commons.wikimedia.org/wiki/File:Recurrent_neural_network_unfold.svg
https://commons.wikimedia.org/wiki/File:Recurrent_neural_network_unfold.svg


Figure 3. LSTM structure3

rently processed, in the context of NLP, is transferred to
when we process the following word.

Long short-term memory networks (LSTMs) are an
extension of RNNs due to the vanishing gradient prob-
lem [8]. By introducing memory gates the network can
learn when to forget and remember certain information.
In figure 3 there are a few components that needs to be
described. Inputs and outputs are illustrated as directed
lines while gates are illustrated as boxes. The orange
circles are point wise operations. Input, forget and out-
put gates together with the cell and hidden state are the
main parts of an LSTM. The top left input is the last
cell state ct−1, the bottom left input is the last hidden
state ht−1. Xt is the current input to be processed. The
top right output is the next cell state ct and the bottom
right is the next hidden state ht . The equations below
describe an LSTM in detail [1].

ft = σ(Wi f xt +bi f +Wh f ht−1 +bhi)

it = σ(Wiixt +bii +Whiht−1 +bhi)

gt = tanh(Wigxt +big +Whght−1 +bhg)

ot = σ(Wioxt +bio +Whoht−1 +bho)

ct = ft ∗ ct−1 + it ∗gt

ht = ot ∗ tanh(ct)

The left most gate computes ft and is the forget-
gate which decide what parts of the last cell state to
keep for this input. The next gate is the input gate and
computes it that learns what parts of the input to store
for this cell state. Together with the tanh gate, the input
gate updates the cell state from ct−1 to ct . The last gate
is the output gate that computes ht and what to predict
based on the current cell state.

3https://commons.wikimedia.org/wiki/File:
The_LSTM_cell.png, CC BY 4.0

The benefit of using memory cells is that informa-
tion can be remembered for multiple iterations, instead
of only a few as in RNNs. LSTMs have been used pre-
viously in the context of stock prediction with varying
results [6].

3. Method

This chapter describes what has been done during
the project in such a way as to be replicable. Included
in this is how the data is preprocessed, how the ANN,
LSTM and HMM is set up as well as how the final tests
are set up.

3.1. Data processing

Data that is used in a financial context is often nor-
malized by applying the log-return transform

log pt − log pt−1

to stabilize the variance [9].
Machine learning tries to predict values or classes

based on features. In end-to-end machine learning
these features are learned by the system during train-
ing. There is however also the possibility of using hand-
crafted features in a machine learning system. Using
hand crafted features means that features are specifi-
cally designed outside the system and fed into the sys-
tem. These are designed in such a way that they are
likely to contain useful information. Within stock pre-
diction handcrafted features are often used, in the stock
prediction context they are however referred to as tech-
nical indicators. In this project technical indicators ex-
tracted by TA-Lib4 were used. The technical indica-
tors which were used are “Simple moving average” and
“Relative Strength Index”5. When used these were cal-
culated and then added to the rest of the data for the
stock.

The models tried to predict whether or not the stock
would rise or decrease in value. Each of the data points
gathered are then mapped to a label value that reflects
this, 1 if the stock would increase in value and -1 if the
stock would decrease in value.

The data given to the Hidden Markov Model was
preprocessed by for each point in time calculating the
3-D vector [Close−Open

Open , High−Open
Open , Open−Low

Open ], as recom-
mended by Nguyen [11]. A difference for the HMM is
that the open, close, high, low values can represent val-
ues for a longer time period than a day. HMM can take
values for a day, week or monthly,

4http://ta-lib.org
5https://www.investopedia.com/terms/r/rsi.asp

3

https://commons.wikimedia.org/wiki/File:The_LSTM_cell.png
https://commons.wikimedia.org/wiki/File:The_LSTM_cell.png
http://ta-lib.org
https://www.investopedia.com/terms/r/rsi.asp


3.2. LSTM

The LSTM model was implemented using the Py-
torch library. To account for the temporal data in
the stock market, a moving window approach was se-
lected [6]. A moving window is simply a range where
the current day and a predefined length of previous days
are selected and predicted on. Below is a list of hyper-
parameters that were examined:

• hidden layers

• number of consecutive LSTMs

• window size

• some technical indicators

The number of hidden layers correspond to the size of
the internal memory of the LSTM. In Pytorch, one pa-
rameter for the LSTM model is the number of consecu-
tive LSTMs where the result of the preceeding LSTMs
is fed into the coming LSTM. A large window size
means that many previous days are considered for the
next day prediction. The technical indicators tested
were a subset of the available indicators in TA-Lib. Ei-
ther this subset was included as features for the net-
work or they were not. Different combinations of these
hyper-parameters were tested to find the best perform-
ing LSTM model.

3.3. Use of Hidden Markov Models

The emission model p(Xt |Ztt) is set to be a 3-D
multivariate Gaussian distribution, emitting the vector
[Close−Open

Open , High−Open
Open , Open−Low

Open ] at each point in time.
First the number of states is given to the model as a
hyperparameter, as this cannot be learned by the Baum-
Welch algorithm. All model parameters except number
of states are learned using the Baum-Welch algorithm
on the previous 100 observed data points. This is re-
peated, for the number of states 2,3,4,5, resulting in 4
models with differing complexity. Out of these models,
the model with the highest Akaike Information Crite-
rion (AIC) is selected as the final model. Use of the
AIC takes into account both the quality of the fit and
the number of model parameters, which combats over-
fitting.

The Forward-Backward algorithm is applied to the
100 data points used to train the model, giving a prob-
ability distribution of likely states for the final point in
time. We wish to make a prediction for the next point
in time, so this probability distribution is multiplied by
the transition matrix, giving a probability distribution
of likely states for ”tomorrow” (or next week / next

month). Now the expected value of the next emission
is calculated by using the means of the Gaussian distri-
butions of each possible state, weighted by how likely
each state is. When predicting for a sequence of time
steps, this process is repeated that many times. Once the
prediction is made, only the first dimension of the pre-
diction is looked at, as Close−Open

Open represents how much
the stock will change in value percentage-wise during
the next time step, which is the value of interest.

3.4. Test setup

The data that was gathered was split into three dif-
ferent sets, training, validation and test. To better com-
pare the performance of the different models, the test set
data was selected in the range 2014-01-01 to 2018-31-
31. For the renaming data, all data points up to 2013-
12-31 was split with 80/20% into training and validation
The models were trained on the training set, and based
on the validation data, the best hyper-parameters were
selected. The metrics that were presented in section 3.5
were used to select the best performing model.

Only one models was selected for testing, this mod-
els was the one with overall best performance on all
trained stocks.

The stock was retrained for each training on the
training data for that stock. When the stock was run
on the test data it was still only trained on the training
data and not the validation data.

3.5. Performance evaluation

To compare and evaluate the performance of the
models in this article the following metrics were used:

• Accuracy

• Annual return from simulations

The accuracy is computed as
T P+T N

T P+FP+T N +FN
and

is a good measurement for classification datasets that
are balanced. A negative aspect of accuracy is that a
high accuracy might not indicate how good the model
would perform on the stock market. A simulation met-
ric was then introduced to better reflect the portfolio
value the bot would end up with after the stock predic-
tion period was over.

The simulation starts with a set amount of money,
in this case 100000 SEK for the swedish stocks and
100000 USD for the other. At each time step T , the
models predicts whether or not the stock will go up or
go down. An up prediction while not owning any stocks
results in an instantly buying as many stocks as possi-
ble for the price of the stock at time step T . Similarly, a

4



Stock
Model

ANN LSTM HMM BaH Trend Random

ALIV-SDB.ST -10.8 1.3 -4.9 5.5 2.4 0.9
ATVI 10.0 -0.4 7.0 19.1 4.7 -5.6

AZN.ST 6.3 -3.5 3.3 11.5 7.1 5.0
ERIC-B.ST -10.7 5.4 5.9 -0.2 1.3 -6.0

SAAB-B.ST 4.9 12.9 3.9 16.0 10.5 7.7
SWED-A.ST -2.4 -2.8 3.5 2.5 3.0 -0.3
VOLV-B.ST 1.6 8.0 11.6 4.0 -7.9 0.4

Average -0.16 2.99 4.33 8.34 3.01 0.3
ˆDJI -0.3 3.3 -0.3 8.6 3.7 2.0

ˆGSPC 6.0 6.9 -2.6 7.5 2.0 6.6
Average 2.85 5.1 -1.45 8.05 2.85 4.3

Average over all 0.51 3.46 3.04 8.28 2.98 1.19

Table 1. Annual returns (in percentage) for the
different stocks

down prediction wile owning stocks results in instantly
selling all stocks own. All simulations use the closing
price except for HMM that use the open price for trades.
The decision at time step T is decided based on the pre-
viously seen data. Even though the simulator was de-
veloped to be able to handle transaction fees, these were
excluded. This was done since the goal of the report is
to investigate the possibility to predict the direction of a
stock. Whether these predictions would make money or
not in a real trading environment was regarded as sec-
ondary and thus not as explored. The simulation does
not take into account spread, since we do not have data
to model it.

The final portfolio value can then be used to, for
example, calculate an annual return rate to represent the
performance of the model. The annual return of a stock
is calculated as:

(

(
port f olio valueend

port f olio valuestart

) #trading days a year
#trading days

−1)∗100

It represents the trend of a stock over a longer period
with a single value.

4. Result

The general performance of the implemented mod-
els was rather poor. In this section, first the overall re-
sults will be presented together with a description of the
performance on the ERIC-B.ST.

4.1. Overall returns

In table 1 the predicted annual returns for the com-
bination of stocks and models are presented. Recall that
the BaH model mirrors the stock value. From the ta-
ble we can see that the trend model generally performs
worse than the BaH model with only beating BaH on

the SWED-A.ST stock. Randomly predicting seems
to be bad as the random model also has a worse re-
sult than BaH. The implemented models had a hard
time with results that are very varied. For example, the
LSTM model predicts a rather large negative annual re-
turn for AZN.ST while the BaH annual was 11.5%. The
same applies for the HMM model on the ALIV-SDB.ST
stock. Good predictions can be seen on the VOLV-B.ST
stock for both the LSTM and HMM model. In general,
the results are rather poor compared to BaH. The HMM
model has a higher average performance on the normal
stocks over both the LSTM and the ANN model.

The index stocks are apparently hard to predict
with the HMM model while the LSTM does a reason-
ably good job. The average annual return for the BaH
model over the normal stocks is very close to the an-
nual return other over index stocks. The index stocks
are a collection of stocks that usually capture the gen-
eral market trend. Given that the average of the exam-
ined stocks is close to the annual return of the index
stocks, the examined stocks could be representative of
the stocks market as a whole.

The accuracy for all stocks and for the imple-
mented models were around 50%. The highest recorded
accuracy was only 53% for one stock and model but if
compared to the positive rate of that stock, it was only
∼ 3 percentage points larger. Something to note is that
if the accuracy would be very large, the annual returns
would be extremely large. The gains from the stock
market is exponential as previous gains would be in-
vested again.

4.2. ERIC-B.ST results

In figure 4 the value over time of the ERIC-B.ST
stock is presented given the predictions of four different
models, LSTM, Trend, BaH and Random. The positive
rate (percentage of ups in the stock), accuracy of imple-
mented model and confusion matrix is presented. The
LSTM model performs poorly on the first half of the pe-
riod, after the end of 2016, the blue line is consistently
above the green line and performs better than BaH. It
is difficult to analyse the performance in greater detail,
we can for example see that the accuracy and confu-
sion matrix indicate that the predictions seem randomly
distributed. Something that was apparent in almost all
stocks was that the accuracy was higher than the pos-
itive rate. This is something that is expected at least
to some degree, the trend of a stock does not shift up
and down every other day, there is usually some period
where the trend stays the same. The difficulties then
become when the stock shifts and that is apparently dif-
ficult.

5



Figure 4. LSTM predictions on ERIC-B.ST

Figure 5. HMM predictions on ERIC-B.ST

6



Figure 5 is the HMM performance on the ERIC-
B.ST stock. Please note the similarity between the BaH
models of the two plots, there is although a small differ-
ence between the x-axises where the LSTM model has
an earlier stop date. It is not a big difference but must
be noted. The HMM model also performs well on the
ERIC-B.ST stock. Both of the models seem to perform
exceptionally well during the last month but the HMM
also seem to perform a bit better in the middle of the
test.

4.3. Framework

To be able to predict the stock market a framework
for doing so was created. This framework reads data
from yahoo finance and pre-preocess the data into a for-
mat that can be predicted on with LSTM:s and HMM:s.
The framework can split the data into training, valida-
tion and test data; and the model can be trained then
validated and lastly tested on the data sets. Easy tuning
of the parameters for a network exists as it is only to
expand a base class. The framework utilizes docker to
handle installation of packages needed and is then run
with jupyter notebook for easy training and tuning of
the network.

5. Discussion

In this section the result, the performance metrics
and some potential reasons for the poor performance is
discussed. The accuracy was around 50% for all models
and for all stocks. A different approach for when to
predict is also presented in this section.

5.1. Good performance metrics

The two metrics used in this report were not with-
out fault. As noted in section 3.5, there are some ap-
parent limitations of the accuracy metric. In general,
with a high accuracy there will be more correct classi-
fications. However, the stock market is made up of real
values and thus could also be modeled as a regression
problem. This regression aspect is not reflected in the
accuracy, meaning that the accuracy does not reflect if
the change was a large or a small one, only if the pre-
dicted direction was correct. As a result, a good accu-
racy might not reflect a good overall monetary perfor-
mance. This since the correct guesses might be on small
changes while the misses might be on large changes The
accuracy might also be lowered due to a large amount
of incorrectly classified small changes while the large
changes are correctly classified. It is however the case
that accuracy is a widely used as a metric for machine

learning with classification problems, so it was still in-
cluded in the report.

The annual return based on the simulation also has
some problems. The simulation is much simpler than
the real market and thus not accurately represent how
our models would perform in a real world scenario. A
real market is very oscillating, only open some hours a
day, has fees and requires both a buyer and seller willing
to trade for a price for the trade to be completed. Our
simulation only allows the bot to trade using one price
a day, without any of the complications mentioned. An-
other reason why a simulated annual return can be a
misleading measurement for our models is because our
models were not trained to make successful trades on
the stock market but to predict the stock market. Trad-
ing on and predicting the stock market is closely related
but not the same thing.

If a stock have an upwards trend it can be reasoned
that it is hard to beat investing in the stock and waiting.
This due to the stock not dropping in price which means
that there are fewer chances to sell stocks and then buy
them back cheaper. Or if it is attempted, then the stock
might increase and the shares have to be bought back at
a higher cost, which will mean a loss instead of a gain.

5.2. Accuracy

The accuracy was rather poor (around 50%) for all
the different models and stocks. Figure 6 illustrates ac-
curacy in relation to change in the stock. The plot shows
the accuracy for the predictions only on the days when
the absolute value of the daily change is larger than a
fixed percent. Note also that the daily change refer-
enced in the plot is the true change in the stock and is
not a predicted value. The plot indicates that it is more
difficult to correctly predict small changes. Considering
a threshold < 2% the model achieves around 50% accu-
racy, but with a threshold of ∼ 3% the model achieves
a higher accuracy of around 55% to 60%. With larger
thresholds the accuracy fluctuates to a much higher de-
gree due to fewer such changes in the data. Wrong pre-
dictions where the change is small does not affect the
simulation result much but accuracy is affected. The
accuracy could maybe be better modeled if a neutral
“hold” action was introduced where the small changes
in the stock value is not considered. It would be inter-
esting to see if such an approach could help with deter-
mining what model performs the best.

This report has previously only considered the pre-
dictions from the models as binary decision, i.e. if the
stock value will increase or decrease, All the models
still gives some form of measurement of how confident
the prediction is. For example the LSTM model gives a

7



Figure 6. Accuracy for LSTM in relation to min-
imum change in stock ERIC-B.ST

Figure 7. Accuracy in relation to prediction
probability for LSTM on stock ERIC-B.ST

probability for each of the two classes. Figure 7 shows
how the accuracy change when only considering predic-
tions where the highest probability is above a fixed per-
centage. The plot shows that predictions with a higher
probability generally has a higher accuracy.

Figure 8 shows the distribution of the prediction
probabilities from figure 7. The model is often certain
of its decision. In over half of the predictions, the prob-
abilities are above 80%. A drawback of predicting when
the model is more certain is that fewer trades are made,
it would be interesting to see if this also affects annual
returns. Based on figure 7 and figure 8 it would seem
reasonable to assume that taking the probabilites into
account would lead to a better performing model.

5.3. Potential reasons for poor performance

The overall performance of all of the models was in
general rather poor, both in terms of accuracy and sim-
ulation results. The accuracy was mostly at or slightly

Figure 8. Histogram of probabilites for LSTM
on stock ERIC-B.ST

above 50% which is just about the same as only guess-
ing that the stock value will rise. As for the simulation
results, BaH was more often than not the best model.
There are several reasons as to why this might be the
case.

One reason could be that the stock market fluctu-
ations is based on random walk, as supported by some
previous work [7]. This means that while the value of
the new day is dependent on the previous day, whether
the values increase or decreases is, essentially, random.
If the stock market is indeed a random walk then this
would entail that it would not be possible for the mod-
els to predict any better. The implications of the market
being a random walk would be, as stated in the article,
that the optimal policy would be the BaH policy. The
inability to outperform BaH is then expected.

Even if the stock market is not a random walk then
there are still several other potential reasons for the poor
performance of the models. One of these could be due
to a lack of data points used for training the models. As
stated in subsection 2.1 the data used was gathered from
yahoo-finance that records 20 years of data. It is
however daily data, meaning that 20 years does not re-
sult in as many data points as one might expect. The
stock markets are in general closed on weekends and
other major holidays. Only assuming that it is closed
for weekends this would mean that the total amount of
data points for 20 years would be 52 ∗ 5 ∗ 20 = 5200
data points. This then has to be split into the train-
ing, test and validation sets. The results of this is the
training set being made up of about 3500 data points
for most stocks. 3500 data points is a rather tiny data
set compared to many other areas where machine learn-
ing is used, especially if this is considered to be a rather
difficult problem. This might result in the models not
having enough data to learn properly, leading to poor
performance.

8



A third potential reason is that the final model is
poorly chosen. A lot of different hyper-parameters need
to be tuned in order to create a well performing final
model. There were attempts to make sure that a large
variety of parameters were considered. This includes
the creation of several different models which were each
tested on the validation data, for a final best model to
then be selected. The different models tested might not
have been enough however. There might have been dif-
ferent combinations of parameters with (much) better
performance. The lack of data also affects this prob-
lem. This since larger models with more hidden nodes
or LSTM layers require more training in order to learn.
The more complex models might not have enough data
to learn all related weights properly, leading to them un-
derperforming. This might mean that potentially better
performing models might have been discarded due to a
lack of data.

6. Conclusions

As discussed in 5 predicting the stock market is a
hard problem and its secrets are elusive. This project
have created a framework that was used to evaluate
some models if they could learn the fundamentals of
the stock market and help with investments. The mod-
els are able to give advice if it is good to invest in a
particular stock, but the advice is not worth listening
on. The models implemented achieve around 50% ac-
curacy and very varying performance on the simulation
metric. The LSTM and HMM model achieves a posi-
tive annual return on average but it is often lower than
the BaH annual return. There are some indications that
a different approach on how to handle small changes
in stock value could help in the final model selection.
A threshold on when to predict up or down could help
the accuracy. Some potential reasons for the poor per-
formance are presented, the stock market might not be
predictable, the data set uesd could be limited and the
final model selection process could be improved. As a
final note, if there is someone interested in investing in
stocks, the advice is to buy the stock and then hold it.
The BaH model performed the best on average as stocks
in general increase in value.

7. Future work

In section 5.3 three potential reasons for the poor
performance were discussed. This section presents pos-
sible approaches on how to handle those together with
some extensions that could be made to better answer the
question: “Can you predict the stock market?”.

To increase the amount of training data, one could

potentially combine multiple stocks into one data set.
Perhaps there are similarities between stocks that the
LSTM and HMM models could make use of. The com-
bined data could perhaps be worse for predicting a par-
ticular stock but similarities could be drawn to the many
applications of image prediction where models are pre-
trained using large datasets and finally trained on a par-
ticular data set.

The selection of the final model was difficult due
to the random nature of the accuracy and simulation
metric. If the models gave rise to more stable met-
rics, this selection would be easier. A more structured
hyper-parameter selection process could also be useful.
More hyper-parameters could also be investigated, for
example, different optimizers or different loss functions
could be examined.

As for the potential reason that the stock market
is unpredictable, there is not much to be done. More
reasearch is definitely needed to answer this. This re-
port only focused on daily-trading, perhaps other trad-
ing methods are more (or less) predictable. Also, other
models could perhaps be examined as this report only
focused on LSTM and HMM.

Other areas that could be looked at in future work is
to extend the framework created for different machine
learning methods. These might give better performance
then the ones tested in this report.

References

[1] Pytorch nn documentation. https://pytorch.
org/docs/stable/nn.html. Accessed: 2019-10-
14.

[2] J. Arnoldi. Computer algorithms, market manipulation
and the institutionalization of high frequency trading.
Theory, Culture & Society, 33(1):29–52, 2016.

[3] L. E. Baum. An inequality and associated maximization
technique in statistical estimation for probabilistic func-
tions of markov processes. Inequalities, 3(1):1–8, 1972.

[4] L. E. Baum and T. Petrie. Statistical inference for prob-
abilistic functions of finite state markov chains. The an-
nals of mathematical statistics, 37(6):1554–1563, 1966.

[5] A.-S. Chen, M. T. Leung, and H. Daouk. Application of
neural networks to an emerging financial market: fore-
casting and trading the taiwan stock index. Computers &
Operations Research, 30(6):901 – 923, 2003. Operation
Research in Emerging Economics.

[6] K. Chen, Y. Zhou, and F. Dai. A lstm-based method
for stock returns prediction: A case study of china stock
market. In 2015 IEEE International Conference on Big
Data (Big Data), pages 2823–2824, Oct 2015.

[7] E. F. Fama. Random walks in stock market prices. Fi-
nancial Analysts Journal, 51(1):75–80, 1995.

[8] S. Hochreiter and J. Schmidhuber. Long short-term
memory. Neural computation, 9:1735–80, 12 1997.

9

https://pytorch.org/docs/stable/nn.html
https://pytorch.org/docs/stable/nn.html


[9] H. Lütkepohl and F. Xu. The role of the log transforma-
tion in forecasting economic variables. Empirical Eco-
nomics, 42(3):619–638, Jun 2012.

[10] D. M. Q. Nelson, A. C. M. Pereira, and R. A. de Oliveira.
Stock market’s price movement prediction with lstm
neural networks. In 2017 International Joint Confer-
ence on Neural Networks (IJCNN), pages 1419–1426,
May 2017.

[11] N. Nguyen. Hidden markov model for stock trading. In-
ternational Journal of Financial Studies, 6(2):36, 2018.

[12] A. Viterbi. Error bounds for convolutional codes and
an asymptotically optimum decoding algorithm. IEEE
transactions on Information Theory, 13(2):260–269,
1967.

10


	Introduction
	Background
	Data
	Baseline models
	Hidden Markov Models
	LSTM

	Method
	Data processing
	LSTM
	Use of Hidden Markov Models
	Test setup
	Performance evaluation

	Result
	Overall returns
	ERIC-B.ST results
	Framework

	Discussion
	Good performance metrics
	Accuracy
	Potential reasons for poor performance

	Conclusions
	Future work

