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1 Introduction

During the last couple of years, shopping lists have travelled from paper into our smart-
phones. This allows the shopping lists to have new features that contribute to a quicker
and smoother shopping experience. Two such features that have been examined in this
project are item sorting and automatic suggestions based on statistics and the user’s
shopping history.

1.1 Motivation

Technology often strives for solutions that make people’s lives easier. Grocery shopping
is a necessary evil that every household has to regularly do. A shopping list that is
sorted could be a time-saving touch to peoples’ everyday lives, either because it will not
have to be done manually or because it will be harder to miss items as opposed to using
an unsorted shopping list.

One example of a company that already use this kind of feature is ICA [9]. Their
app can only sort items after their own stores. The application developed in this project
use a more general approach which will be independent of what store it is used in. Also,
it does not require any work from the stores themselves since it is the users that provide
the data.

1.2 Aim

As a part of the course TDDE19 Advanced Project Course - AI and Machine Learning
a smart shopping list was requested. The aimed result is a shopping list that sorts
added items into their order of appearance in a specific store, and suggest new items
to be added, based on the user’s normal shopping behaviour as well as on the items
already added to the list. The outcome of this project is supposed to be used in a
mobile application.

1.3 Delimitations

This project will mainly focus on algorithms for sorting items and give item suggestions.
Thus, implementation of a mobile application and use of different models for different
stores will be left as future work. Since limited amount of data for the sorting is available,
categorization will also be investigated.

1.4 Limitations

One natural path to take is to create personal models for each user of the application.
These models would have a greater chance of finding relevant patterns since they only
care about one person. This will however not be possible since the data needed to create
these models do not exist.

1.5 Possible Solutions

Solutions to the two major subproblems of the project, sorting and suggestions, are
discussed in this section.

1.5.1 Sorting

The goal is a shopping list that sorts added items into their order of appearance in a
specific store. To accomplish this, knowledge of the layout of a store, or timestamps of
when items are picked up in a store, is necessary. Since this data is limited, different
approaches will be investigated. Usually, items that are similar to each other, i.e. are in
the same category, will be located in the same section in a store, e.g. dairy products and
fruits. Thus, some type of sorting might be accomplished by categorizing the items in
the list. Furthermore, since more data with categorized items is available, the focus will
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mainly be on categorization. Sorting might also be easier if the items are categorized
first.

1.5.2 Suggestions

Many online shopping sites have a section where they suggest items that they think suit
the user, so naturally, a smart shopping list should have a suggestion function where it
suggests relevant items that it thinks the user should buy.

1.5.2.1 Neural network

One of the first ideas was to use an Artificial Neural Network for the predictions. Such
networks have previously been used for different types of prediction tasks to great effect.

The hypothesis was that the accuracy will be rather low, since the dataset used does
not seem to contain any clear trend or pattern for the network to learn.

1.5.2.2 Association Rule Learning

It was first decided to implement some association rule algorithm in order to compare it
to the neural network. Association rule learning is used to find patterns in large datasets
[2], often in the form of strong rules [1] on the form X1, X2, ..., Xn → Y1, Y2, ..., Ym.
When the first association rule algorithm was proposed by Agrawal et al. [1], it was used
for for finding patterns among customer transactions in stores and has since continued
to be used for that purpose. Therefore, it is interesting to see how well association rule
learning performs when used for predictions.

The hypothesis is that association rule learning will produce very meaningful pre-
dictions, but not many enough to generate the best result.
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2 Methods

The different methods that were used in the projects are presented in this section.

2.1 The datasets

During the development of the project, a number of different datasets have been used
to train machine learning models and to evaluate performance. All data that was used
was in English.

2.1.1 Groceries

In 2006, Hahsler et al. [5] created a dataset gathered from a real-world grocery store
during one month. In total, the dataset has 9835 transactions where each item is cat-
egorized into one of 169 categories. Furthermore, the items are also divided into more
general categories, with 55 and 10 different category labels respectively. Additionally,
the dataset is included in the CRAN arules package [4].

2.1.2 Timestamp data

In order to simulate shopping behavior, Cyrille Berger provided a script that generates
lists of items along with timestamps stating when the items were added and removed
from the list. The order in which the items were removed was based on the order they
could appear in a real grocery store, but with some added noise to better simulate the
real-world problem.

2.1.3 Web-Scraping

Categories and items were also retrieved by web-scraping the web page of the grocery
store Lidl [11]. Around 3700 items categorized into 21 categories were retrieved.

2.2 Sorting and Categorization

One of the main functionalities with the application is that it is supposed to sort the
added items in order of appearance in a certain store. This can also be achieved by
categorizing the items, since items in the same category usually are located near each
other in a grocery store.

2.2.1 Sorting

The sorting was found to be an easily solved problem with the right amount of good
data. No machine learning was used to solve the problem, but instead a simple sorting
algorithm.

2.2.1.1 Simple sorting algorithm

The sorting problem was solved by using the timestamp data to check at what time
during a grocery store visit a specific item was removed from the shopping list. Items
with early timestamps was then assumed to appear at the beginning of a store and vice
versa. The Timestamp data was used to calculate a mean value for when each individual
item was removed from the shopping list.

2.2.2 Categorization

To categorize the shopping list two different approaches were investigated: a neural
network solution and a clustering solution.
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2.2.2.1 Pre-trained word embeddings

The first step for the categorization was to investigate different pre-trained word em-
beddings. Different dimensions of the pre-trained word embeddings from GloVe, trained
on Wikipedia 2014 and Gigaword 5, were tested. They provided vectors with 50 dimen-
sions, 100 dimensions, 200 dimensions, and 300 dimensions and all of them were tested.
The categorized items from the grocery dataset [4], described in 2.1.1 was used to com-
pare the different dimensions with each other. By calculating the cosine distance of an
item in a category with the other items in the same category and taking the mean, a
similarity measure could be obtained. This was done for one item in every category.
The embedding with 200 dimensions gave the best similarity measure and was used in
later steps.

2.2.2.2 Neural Network

The Lidl-data was used for the neural network approach. The items in the Lidl-data
consisted of several words, so a bag-of-words representation was used. The data was
split into 20% test-data and 80% training-data. A vocabulary of over 2000 words was
then obtained from the training data. An embedding matrix was created by getting
the vectors of every word in the vocabulary, the vectors were obtained from the pre-
trained word embedding. The first layer of the model was the embedding layer. The
fixed input size was 10 words and the embedding matrix was set as the weights. After
the embedding layer, there was a dropout layer with rate 0.5 and a Long Short Term
Memory (LSTM) layer with 128 units. After that, there was one more dropout layer
with rate 0.5 and a dense layer with the softmax activation function.

The model was compiled with the categorical cross-entropy as loss function and the
Adam optimizer. Early stopping with patience 4 and a ratio of 80% training-data and
20% validation-data was used.

2.2.2.3 Clustering

The word embeddings were used by K-Means clustering in order to cluster closely re-
lated items together. The implementation is described in Algorithm 1. The algorithm
was run with different K:s to find the highest possible similarity. In addition to the
word embeddings, the mean timestamp values found with the simple sorting algorithm
described in section 2.2.1.1 were tested as features for the clustering.

Algorithm 1: K-Means algorithm

Input: Items, Number of clusters K.
Output: Clusters with Items

1 Initialize K random centroids
2 Repeat step 3, 4 and 5 until convergence
3 Assign each item to its closest centroid
4 Calculate sum of similarity between centroids and their assigned items
5 Update centroids to mean of all items assigned to each cluster

The performance of the clustering was evaluated by the total cosine similarity ac-
cording to Equation 1, where Ci is a cluster, ci is the cluster centroid, v is an item
belonging to the cluster and · is the dot product.

Total similarity =

K∑
i=1

∑
v∈Ci

ci · v
||ci||2||v||2

(1)

2.3 Suggestions

The other major functionality of the application is suggesting new items to the user
based on the previously selected items.
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Figure 1: Example of simple DenseNet network with one hidden layer.

2.3.1 Neural Networks

One group decided to implement a neural network to offer suggestions. In the following
subsection, their methods will be shown.

2.3.1.1 DenseNet

The network is of DenseNet architecture, which means that all layers are fully connected.
These networks require fixed sized input. Initially, a single fully connected layer was
used as a baseline. In order for a growing shopping cart to become fixed size, the input
was converted to a bag of words representation. The resulting bag of words vector was
169 binary variables long, each corresponding to one of the 169 different categories in
the Hahsler shopping list dataset used for this part of the project. Data was generated
from the shopping lists in the dataset by splitting the lists into input and correct output.
If the network was able to guess one or more of the correct outputs for a given input,
it was considered a successful prediction. To make the network generalize to lists of
different lengths, data was generated using Algorithm 2.

Algorithm 2: Data generation for Neural Network

Input: List of items, D.
Output: Train and test data

1 Initialize a data store, S
2 for each item I ∈ D do
3 Create copy of D, Dc.
4 Split Dc at index of I.
5 Insert the pair created by the split into S

6 end

Some improvements were then made to increase the accuracy of the model. This
was done in several steps. Two fully connected layers were added to the model, along
with a dropout layer between the first and second fully connected layers. The number
of epochs used during training was also increased. To mitigate the overfitting effects
from this, early stopping was also implemented. These improvements gave significant
increases in accuracy. An example of a DenseNet network can be seen in Figure 1 above.
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Figure 2: Example of header table [7]. Dotted lines represent a header link.

2.3.2 Association Rules

There are multiple association rule algorithms and one had to be chosen because of
time constraints. Two popular algorithms are Apriori and FP-growth. In this project,
FP-growth was implemented because it is more efficient than Apriori [7, 8]. A method
based on the algorithm Breadth First was also implemented, which would theoretically
give more general suggestions than FP-growth.

The FP-growth algorithm was proposed in 2000 by Han et al. [7]. FP-growth has
the advantage of not having to generate so called candidate sets, in contrast to the
previously mentioned Apriori algorithm. The candidate sets are possible combinations
of items in the database which increase exponentially in size with the database size.
The algorithm comes in two parts: Tree construction and mining of the tree for frequent
patterns.

2.3.2.1 Tree Construction

The tree is used in order to get a compressed representation of the transactions that
facilitates later frequent pattern mining. Each node in the tree has an item name and
the number of times it occurs in the path leading to that node. This path can be
seen as all the transactions containing the node and all the nodes before it in the path.
Furthermore, each node has a header link that points to the next node in the tree that
also has the same item name. These connections between nodes with the same item
names create the header table. The header table defines the mining order of items with
the same name. An example of a header table can be found in Figure 2. The algorithm
for constructing the tree can be found in Algorithm 3 and Algorithm 4. The algorithms
use the measure support. Support is simply the amount of times an item appears in the
transactions [1].

Algorithm 3: FP tree construction [7, 10]

Input: Transaction database D, minimum support minsup.
Output: The FP tree for D and minsup

1 Count the support for each item in D
2 Remove the infrequent items from the transactions in D
3 Sort the items in each transaction in D in support descending order
4 Create an FP tree with a single node T with T.name = NULL
5 for each transaction I ∈ D do
6 insert-tree(I, T )
7 end
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Algorithm 4: insert-tree(I1, ..., Im, T ) [7, 10]

Input: Itemset I1, ..., Im, T and a node T in the FP tree.
Output: Modified FP tree.

1 if T has child N such that N.name = I1.name then
2 N.count+ +
3 else
4 Create a new child N of T with N.name = I1.name and N.count = 1
5 Add N to the end of the header table

6 end
7 if m > 1 then
8 insert-tree(I2, ..., Im)
9 end

2.3.2.2 Mining Frequent Patterns

In order to find items that are often bought together, i.e. frequent patterns [6], the tree
has to be mined. By making use of the header table, each node serves as a starting
point, or suffix, in each iteration of the tree mining. Next, a conditional pattern base is
created for that node, meaning all paths that end with the aforementioned suffix. The
conditional pattern base is then used to construct a conditional sub-tree with Algorithm
3. This sub-tree is then recursively used as input to the mining algorithm. Suffixes larger
than one item is achieved by concatenating suffixes generated from the conditional sub-
tree. As a result, all frequent patterns of varying length will be generated [7]. The
process is described in Algorithm 5.

Algorithm 5: FP-growth(Tree, α) [7]

Input: Tree constructed as described in Algorithm 3 and minimum support ξ.
Output: The complete set of frequent patterns.

1 if Tree contains a single path P then
2 for each combination (denoted as β) of the nodes in the path P do
3 generate pattern β ∪ α with support = minimum support of nodes in β
4 end

5 else
6 for each ai in the header table of Tree do
7 generate pattern β = ai ∪ α with support = ai.support construct β’s

conditional pattern base and then β’s conditional FP tree Treeβ
8 if Treeβ 6= ∅ then
9 FP-growth(Treeβ , β)

10 end

11 end

12 end

2.3.2.3 Generating Strong Rules

Lastly, strong rules are needed to make the predictions. These rules are generated from
the frequent patterns and exist on the form
X1, X2, ..., Xm → Y1, ..., Yn. A rule expresses that if a transaction contains the items to
the left of the arrow, the antecedent, then we also expect to see the items to the right
of the arrow, the consequent [3]. How certain a rule is can be expressed in different
measures. One popular measure is confidence and is defined as [1]:

Conf(X → Y ) = Supp(X ∪ Y )/Supp(X)

The rules are generated by taking all combinations of the antecedent together with
the original consequent and removing the items that appear in the antecedent. This
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is done for each frequent pattern and after this, the confidence is calculated for each
rule. The rules that do not reach the minimum confidence specified by the programmer
are discarded [6]. Thus, all possible strong rules that meet the minimum confidence
requirement are generated.

2.3.2.4 Breadth First

The Breadth First implementation used the generated Tree, but in the opposite way
of FP-growth. Instead of searching patterns beginning from the leaves, probable item
suggestions was based on patterns beginning in the root of the tree. See the following
pseudo code.

Algorithm 6: Breadth-First(Tree, Cart)

Input: Tree constructed as described in Algorithm 3 and current shopping list
Cart

Output: List of items sorted on probability in ascending order.
1 Create an empty map pointing from items to probabilities probabilities
2 Store each item and it’s probability in res
3 Initialize the frontier with only the Tree root contained
4 while frontier is not empty do
5 Pop frontier and store it in node
6 for child in node.children do
7 Calculate probability by dividing child.count with node.count
8 if name in Cart then
9 frontier.append(child)

10 end
11 else
12 if name not in probabilities then
13 res.append(child)
14 probabilities[child] = probability

15 end
16 else if probability > probabilities[child] then
17 Update the item with name of child in res with the new

probability probability
18 probabilities[child] = probability

19 end

20 end

21 end

22 end
23 Sort res on probability in ascending order
24 returnres

In short;

• Search from the root node

• Add all items not already in the shopping list query, and calculate it’s probability:
child.count / parent.count

• Add all items already in the shopping list query to the frontier

• Continue with the same process but start searching from the elements added to
the frontier

2.3.2.5 Evaluation

Accuracy: To test the accuracy of the rules, the dataset was first divided into 75%
training data and 25% test data. Because the result of the FP-growth algorithm de-
pends on the user defined parameters minimum support and minimum confidence,
the parameters that yields the highest accuracy had to be found.
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For minimum support between 2 and 20 transactions and minimum confidence be-
tween 20% to 100%, the FP tree was constructed and mined for frequent patterns. The
patterns were used to generate the strong rules.

The training data was firstly used to create an FP tree, secondly the tree was mined
for frequent patterns and lastly strong rules were generated according to previous sub-
sections. Then, all combinations of items of size 1 to 4 for each transaction in the test
data was used for predictions. The combination of items was used as input to check if it
matches the antecedent of a rule. If it does, the rule consequent would be the prediction.
Next, if the prediction contains any of the items left in the transaction that was not a
part of the antecedent, then it is a correct prediction. If there is no matching rule to
the item combination or no item in the consequent matches the rest of the items in the
transactions it is then an incorrect transaction.

A maximum combination size of 4 was chosen because larger values took exponen-
tially longer time to generate with seemingly not better results.

Precision: Precision describes how many items were correctly predicted when the
algorithm provides a prediction. More formally, precision is described as:

Precision =
True Positive

True Positive+ False Positive

In this case, the true positives are correctly predicted items and false positives are
wrongly predicted items.

Recall: Similarly to accuracy, recall describes how many of the items are labeled
correctly. Recall is formally defined as:

Recall =
True Positive

True Positive+ False Negative

In this case, the true positives are correctly predicted items and false negatives are
when the algorithm gives no prediction.

f1 score: Precision favors very accurate predictions, even if the algorithm seldom
makes a prediction. In contrast, the recall measure will favor algorithms that often
make predictions. In order to get a balance between the two measures, the f1 score was
constructed. It is defined as:

f1 score = 2 ∗ Precision ∗ Recall
Precision + Recall

Comparison Between FP-Growth and Breadth First: Some sort of comparison
was needed for these two methods, and it seemed logical to test them based on two
critical factors: number of known items in shopping list, and number of unknown items.
The number of known items controls the possibility of narrower and more specific sug-
gestions, while the number of unknown items broadens the number of possible correct
answers. The first measurement would hypothetically be more beneficial to a specific-
giving suggestion method, and the second by a model giving general suggestions. The
training and test data was created by a split of 80- and 20% of the original dataset. All
samples was then modified to only contain 1 to (N-1) items of the original sample, where
N is the length of that sample. The rest of the items that had been cut out was used as
possible correct answers to each suggestion query. A correct suggestion was defined as
one of the top three suggestions being in the cut-off items of the sample shopping list.
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3 Results

In this section the results from the different experiments are presented.

3.1 Sorting and Categorization

Below are all results gathered from the sorting and categorization methods.

3.1.1 Simple sorting algorithm

The simple sorting algorithm performed well to the naked eye. The method is very
straight-forward and should give reasonable results as long as the data follows a certain
pattern without too many outliers. This was the case with the dataset that was used in
this project. The sorting result is presented in Appendix A.

3.1.2 Categorization

With the neural network solution a test accuracy of 0.80 was obtained. In Figure 3 the
results for each class in the test data can be seen. In Figure 4 the loss curve and the
accuracy curve can be seen.

Figure 3: Precision, recall, f1-score and support for each class in the test-data
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Figure 4: Accuracy and loss curve during training

3.1.3 Clustering

The K-Means clustering was run with one through ten clusters as seen in Figure 5.
The additional time feature did not give a noticeable difference in cluster similarity.
According to the Elbow method that is used to find an appropriate K, two or three
clusters are enough for the dataset, although there are more categories in the data.
An example clustering with K=7 and word embeddings as features can be found in
Appendix B.

Figure 5: Total cluster similarity for different K:s with word embeddings (left) and with
both word embeddings and time (right) as features.

3.2 Suggestions

Below are all results gathered from the different suggestion methods.

3.2.1 Neural networks

The initial neural network structure using only one hidden layer achieved an accuracy
score of 51%, while the final neural network using 3 hidden layers and a dropout layer
between the first and second hidden layers in addition to using model selection to find
the best model achieved an accuracy score of 56%.
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Figure 6: Neural network accuracy based on number of known items and number of
unknown items.

The blue line represents the accuracy of the model in correlation to how many items
that gives a correct prediction. The orange line represents the accuracy of the model in
correlation to how many items the model got as input.

The model is more accurate when having many items as input, and when there is a
lot of items that gives a correct answer.

3.3 Association Rule Learning

Below are all results gathered from the Association Rule based methods.

3.3.1 FP-growth

The plot showing the accuracy, precision, recall and f1 score can be found in Figure 7,
8, 9 and 10 respectively. The best results and the parameters that yielded them can be
found in Table 1. Note that the precision result is excluding the 100% precision outlier,
since it only provided 4 predictions.

Best Result Min Support Min Confidence
Accuracy 34% 16 0.2
Precision 63% 19 0.8
Recall 61% 20 0.2
f1 score 51% 16 0.2

Table 1: Best results of different measures and their parameters.

The elapsed time of the FP-growth algorithm is presented in Figure 11. By looking
at the graph, it becomes evident that the FP-growth runtime increases exponentially as
the minimum support is decreased.

Using the highest score parameters, the accuracy based on number of known and
number of unknown items is shown in Figure 12. The average accuracy is 20%.
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Figure 7: FP-growth accuracy plotted against minimum support and minimum confi-
dence.

Figure 8: FP-growth precision plotted against minimum support and minimum confi-
dence.
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Figure 9: FP-growth recall plotted against minimum support and minimum confidence.

Figure 10: FP-growth f1 score plotted against minimum support and minimum confi-
dence.
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Figure 11: FP-growth execution time plotted against minimum support and minimum
confidence.

Figure 12: FP-growth accuracy based on number of known items and number of un-
known items.

3.3.2 Breadth First

Using the Breadth First algorithm, the accuracy based on number of known and number
of unknown items is shown in Figure 13. The average accuracy is 38%.
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Figure 13: Breadth First accuracy based on number of known items and number of
unknown items.
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4 Discussion

In this section the results for the different solutions are discussed.

4.1 Sorting and Categorization

Since timestamp data is used, the solution to the sorting problem is heavily dependent
on that the user removes each item from the list once it is collected in the store, instead
of doing it in bunches or when at home. An alternative method that is already used
by e.g. ICA [9] today, is to have a sorted list of the items already in the app. This
will always give perfectly sorted shopping lists for the supported stores, but cannot be
generalized to work with any store.

The main advantage of using categorization instead of sorting is the data. There are
more datasets with categorized items than with items and timestamps. It is also easier
to collect categorized items, e.g. with web scraping.

The use of pre-trained word embeddings worked pretty well for the categorization
even though they are not trained for this particular case. The optimal solution would
probably be to train word embeddings in a way so that for example all vegetables have
a high similarity while being different to dairy products.

Even though a simple model architecture was used in the neural network solution,
the model had quite high accuracy which is very promising and shows that there is
potential for this type of solution. However, if this solution is consistent with reality,
the layout of an actual store, is not clear. A study should be conducted to investigate
which categories that are representative of the sections of grocery stores, and if it is
possible to generalize the categories so that they fit several different grocery stores. An
advantage of the neural network solution compared to the clustering solution is that it
can handle an item that is described with several words. Support for this should be
added to the clustering solution as well.

Future work in this task would be to combine the sorting and the categorization. It
would be desirable to sort the categories and if GPS coordinates where added to the
items, this would allow different sorting for different stores.

4.2 Suggestions

In this section the results for the different suggestion methods are discussed.

4.2.1 Neural nets

The results from the neural network were better than expected. Since the dataset
used contained receipts from many different customers, the prospects of discovering
meaningful patterns were considered bleak. However, the resulting 56% final accuracy
score is significantly higher than the 45% score achieved when suggesting only the two
most frequent items in the dataset. The method of calculating accuracy is also somewhat
arbitrary, since suggestions is just that, suggestions. When using the application in real
life, even though predicting only eggs, milk and bread might have given a high accuracy,
the application would be completely useless. Therefore, there might be other evaluation
methods that are more relevant than accuracy for pre-made receipts. This issue however,
was beyond the scope of this project, and is something that should be considered if this
should turn to a real product.

4.2.2 Association Rule Learning

The results from making predictions using association rule learning do not look promis-
ing. In fact, just suggesting the two most frequent items, ’whole milk’ and ’other vegeta-
bles’, will perform better than predictions made by the FP-growth algorithm with 45%
accuracy to the 34% of FP-growth. While suggesting the same two items every time
has a higher accuracy, is it fair to say it is better than FP-growth? Probably not, since
users would find the same suggestions rather pointless. In contrast, users may accept
that they do not always get item suggestions on every input, but sometimes very useful
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suggestions. Therefore, accuracy may not be the best measure to define predictions
performance in the case predicting items in a shopping list. However, the f1 score that
is a balance between precision and recall, reported the same parameters as accuracy
did. Perhaps this is a coincidence, or accuracy may be a good indicator of how good an
algorithm is after all.

The Breadth First algorithm seemed to perform better than FP-growth, but, as
previously noted, accuracy does not give a fair comparison of these methods. When
testing these manually, and generating shopping lists from scratch, FP-growth rarely
gave any suggestions at all, but when it did, it gave some specific and useful suggestions.
The Breadth First algorithm gave more general results, and a lot of them. The two
algorithms functionality can be described with: If we have a shopping list with bread and
butter, FP-growth would say something like ”ham”, or ”sliced cheese”, while Breadth
First would give something related to the breakfast genre, e.g. ”yoghurt”.

We concluded that the best use of association rules is not to use one of these methods
solely, but complement it with a method giving more general/specific suggestions as
needed.
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Appendices

A Simple sorting algorithm result

Item
strawberries
pear
rhubarb
oranges
grapes
mango
banana
nectarines
apricots
apple
peach
pineapple
grapefruit
avocado
salad
lemons
carrots
potatoes
garlic
onion
cucumber
tomatoes
mushroom
broccoli
chicken
sausage
entrecote
cream
eggs
yoghurt
milk
yeast
sugar
ice cream
flour
cleaning product
frozen vegetables
frozen diner
detergent
toilet paper
mop
toothpaste
shampoo
soap
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B Clustering result

Cluster Item
1 strawberries

oranges
grapes

nectarines
apricots

grapefruit
lemons

2 pear
mango
banana
apple

pineapple
avocado
carrots

potatoes
garlic
onion

tomatoes
mushroom

chicken
eggs

3 rhubarb
peach

broccoli
4 salad

cucumber
sausage

5 cream
milk
yeast
sugar
flour
mop

6 yoghurt
detergent

toothpaste
shampoo

soap
7 ice cream
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