
TDDE18 & 726G77
Inheritance & Polymorphism

Christoffer Holm

Department of Computer and information science

1 std::vector
2 Command‐line argument
3 Inheritance
4 Polymorphism
5 UML Diagrams
6 More on Polymorphism
7 Type information
8 Exceptions

1 std::vector
2 Command‐line argument
3 Inheritance
4 Polymorphism
5 UML Diagrams
6 More on Polymorphism
7 Type information
8 Exceptions

3 / 108

std::vector
Storage

‚ Linked storage

‚ Sequential Storage

3 / 108

std::vector
Storage

‚ Linked storage

‚ Nodes linked together with pointers.

‚ This is what we did in the List lab.

‚ Very slow to access values in the middle of the
collection since we have to loop from the beginning
every time.

‚ Sequential Storage

3 / 108

std::vector
Storage

‚ Linked storage

‚ Sequential Storage

‚ If we place everything next to each other in
memory, then we know where each element is.

‚ This is faster for accessing values in the middle.

‚ However, it is now slower to insert values between
two values and at the beginning.

‚ This is how std::vector works!

4 / 108

std::vector
Sequential Storage

std::vector<int> v {5, 3, 1, 2};

4 / 108

std::vector
Sequential Storage

std::vector<int> v {5, 3, 1, 2};

5 3 1 2
[0] [1] [2] [3]

4 / 108

std::vector
Sequential Storage

v.at(1) = 4;

5 3 1 2
[0] [1] [2] [3]

4 / 108

std::vector
Sequential Storage

v.at(1) = 4;

5 4 1 2
[0] [1] [2] [3]

4 / 108

std::vector
Sequential Storage

v.push_back(3);

5 4 1 2
[0] [1] [2] [3]

4 / 108

std::vector
Sequential Storage

v.push_back(3);

5 4 1 2 3
[0] [1] [2] [3] [4]

4 / 108

std::vector
Sequential Storage

v.back() = 6;

5 4 1 2 3
[0] [1] [2] [3] [4]

4 / 108

std::vector
Sequential Storage

v.back() = 6;

5 4 1 2 6
[0] [1] [2] [3] [4]

4 / 108

std::vector
Sequential Storage

v.pop_back();

5 4 1 2 6
[0] [1] [2] [3] [4]

4 / 108

std::vector
Sequential Storage

v.pop_back();

5 4 1 2
[0] [1] [2] [3]

5 / 108

std::vector
Sequential Storage

‚ std::vector is defined in #include <vector>

‚ Declared like this: std::vector<T>.

‚ A std::vector<T> contains a sequence of values that
has the data type T.

‚ For example: std::vector<int> is a vector that stores
integers.

5 / 108

std::vector
Sequential Storage

‚ Each element in a std::vector is indexed, beginning
with 0 being the first element.

‚ Element i in vector v can be accessed with either v[i]
or v.at(i).

‚ v.at(i) will check that element i exists, so it is
preferred over v[i].

‚ First element can be accessed with v.front() and last
with v.back().

5 / 108

std::vector
Sequential Storage

‚ It is possible to insert values at the end with
v.push_back(3).

‚ To remove the last element, you write v.pop_back().

‚ To see how many elements there are, write v.size().

6 / 108

std::vector
Looping through

vector<string> words {...};
for (int i{0}; i < words.size(); ++i)
{
cout << words.at(i) << endl;

}

6 / 108

std::vector
Looping through

vector<string> words {...};
for (string word : words)
{
cout << word << endl;

}

6 / 108

std::vector
Looping through

vector<string> words {...};
for (string const& word : words)
{
cout << word << endl;

}

7 / 108

std::vector
Looping through

‚ There are multiple ways to loop through a vector

‚ The first is to use a counter that goes through each index
in order.

‚ The second way is what’s know as a range based
for‐loop.

‚ A range based for‐loop looks like this: for (int e : v)

7 / 108

std::vector
Looping through

‚ You can read it as: Loop through v, for each iteration the
current element is stored in e.

‚ However, each element is copied into e.

‚ for (int& e : v) does not copy the element in to e,
and it allows us to change the values inside the loop.

‚ Since copying is unnecessary for most cases where we
want to read the elements, it is recommended that you
loop through v like this: for (int const& e : v)

8 / 108

std::vector
Example

#include <vector>
#include <iostream>
using namespace std;
int main()
{
vector<int> values{};
int value{};

// read values until ctrl+D
while (cin >> value)
{
values.push_back(value);

}

// double each value
for (int& e : values)
{
e = 2*e;

}
}

1 std::vector
2 Command‐line argument
3 Inheritance
4 Polymorphism
5 UML Diagrams
6 More on Polymorphism
7 Type information
8 Exceptions

10 / 108

Command‐line argument
Calling a program with arguments

$./a.out a b c

10 / 108

Command‐line argument
Calling a program with arguments

$./a.out a b c

Arguments: a, b, c

11 / 108

Command‐line argument
Calling a program with arguments

‚ Unix‐systems are based on calling programs with various
arguments,

‚ This is in fact what “commands” are in the terminal:
programs that takes arguments.

‚ But how do we read these arguments in our own
programs?

12 / 108

Command‐line argument
Reading arguments

int main(int argc, char* argv[])
{

// argc = number of arguments passed to the program
// argv = a pointer to an array of pointers to C-strings

}

13 / 108

Command‐line argument
argv

$ a.out a b c

a . o u t \0 a \0 b \0 c \0

argv: argc: 4

14 / 108

Command‐line argument
argv

‚ The arguments are passed into your program as
C‐strings.

‚ A C‐string is an array of char.

‚ It is called a C‐string because this is how strings work in
C.

‚ The end of a C‐string is indicated with the special
character '\0'.

‚ Note: The name of the executable file is the argument
at index 0.

15 / 108

Command‐line argument
Example

int main(int argc, char** argv)
{
for (int i{0}; i < argc; ++i)
{
cout << argv[i] << endl;

}
}

15 / 108

Command‐line argument
Example

$./a.out 10 20 30
./a.out
10
20
30

16 / 108

Command‐line argument
Example

‚ We can access the i:th argument with argv[i].

‚ Notice that these are strings!

‚ How do we interpret them as something else?

17 / 108

Command‐line argument
Converting arguments

‚ std::stoi(argv[1]) ‐ convert argv[1] to int

‚ std::stod(argv[1]) ‐ convert argv[1] to double

‚ Using std::stringstream:

std::stringstream ss{};
ss << argv[1];

int number;
ss >> number;

18 / 108

Command‐line argument
Cool trick

vector<string> args { argv, argv + argc };
// now all arguments reside in the vector
// as std::string instead of C-strings

1 std::vector
2 Command‐line argument
3 Inheritance
4 Polymorphism
5 UML Diagrams
6 More on Polymorphism
7 Type information
8 Exceptions

20 / 108

Inheritance
class Rectangle
{
public:

Rectangle(double w, double h)
: width{w}, height{h} { }

double area() const
{
return height * width;

}
double get_height() const
{
return height;

}
double get_width() const
{
return width;

}
private:

double width;
double height;

};

class Triangle
{
public:
Triangle(double w, double h)
: width{w}, height{h} { }

double area() const
{
return height * width / 2;

}
double get_height() const
{
return height;

}
double get_width() const
{
return width;

}
private:
double width;
double height;

};

21 / 108

Inheritance
Is there a problem?

‚ There is a lot of code repetition here.

‚ We want to factor out common code, just as we did with
similar functions.

‚ In the example above, Rectangle and Triangle share
everything except the implementation of area().

‚ How do we do this?

22 / 108

Inheritance
What is inheritance?

width

height

get_width()

get_height()

area()

Rectangle

width

height

get_width()

get_height()

area()

Triangle

22 / 108

Inheritance
What is inheritance?

width

height

get_width()

get_height()

area()

Rectangle

width

height

get_width()

get_height()

area()

Triangle

common

22 / 108

Inheritance
What is inheritance?

width

height

get_width()

get_height()

Shape

area()

Rectangle

width

height

get_width()

get_height()

Shape

area()

Triangle

23 / 108

Inheritance
Terminology

‚ The class that contains the shared functionality is called
a Base class.

‚ A class that inherits another class (a base class) is called
a Derived class.

‚ A derived class inherits all the members (both functions
and variables) from its base class.

‚ Sometimes we say that the derived class extends the
base class, i.e. it takes everything from the base class
and then add more things on top of that.

24 / 108

Inheritance
Syntax

class Base
{
// ...

};

class Derived : public Base
{
// ...

};

24 / 108

Inheritance
Syntax

‚ Derived inherits from Base.

‚ This is done by adding : public Base at the end of the
class declaration.

‚ I.e. by writing: class Derived : public Base

25 / 108

Inheritance
// common code
class Shape
{
public:

Shape(double w, double h)
: width{w}, height{h} { }

double get_height() const
{
return height;

}

double get_width() const
{
return width;

}

private:

double width;
double height;

};

25 / 108

Inheritance
// common code
class Shape
{
public:

Shape(double w, double h)
: width{w}, height{h} { }

double get_height() const
{
return height;

}

double get_width() const
{
return width;

}

private:

double width;
double height;

};

class Rectangle : public Shape
{
public:
Rectangle(double w, double h)
: width{w}, height{h} { }

double area() const
{
return width * height;

}
};

class Triangle : public Shape
{
public:
Triangle(double w, double h)
: width{w}, height{h} { }

double area() const
{
return width * height / 2;

}
};

26 / 108

Inheritance

Shape.cc: In constructor ‘Rectangle::Rectangle(double, double)’:
Shape.cc: error: ‘double Shape::width’ is private within this context

: width{w}, height{h} { }
^~~~~

Shape.cc: note: declared private here
double width;

^~~~~
Shape.cc: error: ‘double Shape::height’ is private within this context

: width{w}, height{h} { }
^~~~~~

Shape.cc: note: declared private here
double height;

^~~~~~

27 / 108

Inheritance
Delegating constructor

‚ width and height are private in Shape.

‚ This means that Rectangle does not have access to
them.

‚ The constructor can therefore not initialize those
members.

‚ But, we can call the constructor of Shape which does in
fact have access to them to initalize these objects.

‚ You do this by adding Shape{w, h} to the start of the
member initialization list.

27 / 108

Inheritance
Delegating constructor

Rectangle(double w, double h)
: Shape{w, h} { }

28 / 108

Inheritance
// common code
class Shape
{
public:

Shape(double w, double h)
: width{w}, height{h} { }

double get_height() const
{
return height;

}

double get_width() const
{
return width;

}

private:

double width;
double height;

};

class Rectangle : public Shape
{
public:
Rectangle(double w, double h)
: Shape{w, h} { }

double area() const
{
return width * height;

}
};

class Triangle : public Shape
{
public:
Triangle(double w, double h)
: Shape{w, h} { }

double area() const
{
return width * height / 2;

}
};

29 / 108

Inheritance

Shape.cc: In member function ‘double Rectangle::area() const’:
Shape.cc: error: ‘double Shape::width’ is private within this context

return width * height;
^~~~~

Shape.cc: note: declared private here
double width;

^~~~~
Shape.cc: error: ‘double Shape::height’ is private within this context

return width * height;
^~~~~~

Shape.cc: note: declared private here
double height;

^~~~~~

30 / 108

Inheritance
protected

‚ As mentioned before; width and height are private in
Shape.

‚ This means that neither Rectangle::area nor
Triangle::area have access to these variables.

‚ There are two ways to solve it: replace each access to
width with get_width() and likewise for height,

‚ OR we make sure that width and height are available
for Rectangle and Triangle.

31 / 108

Inheritance
// common code
class Shape
{
public:

Shape(double w, double h)
: width{w}, height{h} { }

double get_height() const
{
return height;

}

double get_width() const
{
return width;

}

protected:

double width;
double height;

};

class Rectangle : public Shape
{
public:
Rectangle(double w, double h)
: Shape{w, h} { }

double area() const
{
return width * height;

}
};

class Triangle : public Shape
{
public:
Triangle(double w, double h)
: Shape{w, h} { }

double area() const
{
return width * height / 2;

}
};

32 / 108

Inheritance
protected

‚ protected is the third and final access specifier for
members in a class.

‚ It is the same as private, but with one difference: these
members are also accessible by all derived classes.

‚ Which means: protected things are secrets kept within
the family (inheritance hierarchy), while private things
are secrets kept by the individual (class).

33 / 108

Inheritance
Data members in derived class

class Named_Rectangle : public Rectangle
{
public:
Named_Rectangle(int width, int height, std::string const& name)
: Rectangle{width, height}, name{name}

{ }
private:
std::string name{};

};

34 / 108

Inheritance
Initialization & Destruction

Named_Rectangle r {12, 13, "My Rectangle"};

34 / 108

Inheritance
Initialization & Destruction

Named_Rectangle r {12, 13, "My Rectangle"};

Named_Rectangle

34 / 108

Inheritance
Initialization & Destruction

Named_Rectangle r {12, 13, "My Rectangle"};

Shape

Named_Rectangle

34 / 108

Inheritance
Initialization & Destruction

Named_Rectangle r {12, 13, "My Rectangle"};

width 12

Shape

Named_Rectangle

34 / 108

Inheritance
Initialization & Destruction

Named_Rectangle r {12, 13, "My Rectangle"};

width 12

height 13

Shape

Named_Rectangle

34 / 108

Inheritance
Initialization & Destruction

Named_Rectangle r {12, 13, "My Rectangle"};

width 12

height 13

Shape

name My Rectangle

Named_Rectangle

34 / 108

Inheritance
Initialization & Destruction

Named_Rectangle r {12, 13, "My Rectangle"};

width 12

height 13

Shape

Named_Rectangle

34 / 108

Inheritance
Initialization & Destruction

Named_Rectangle r {12, 13, "My Rectangle"};

width 12

height 13

Shape

34 / 108

Inheritance
Initialization & Destruction

Named_Rectangle r {12, 13, "My Rectangle"};

width 12

Shape

34 / 108

Inheritance
Initialization & Destruction

Named_Rectangle r {12, 13, "My Rectangle"};

Shape

34 / 108

Inheritance
Initialization & Destruction

Named_Rectangle r {12, 13, "My Rectangle"};

35 / 108

Inheritance
Initialization & Destruction

‚ The top base class of the hierarchy will be constructed
first and then its derived class.

‚ Each data member will be construct top‐to‐bottom in
declaration order (regardless of the order in the data
member initialization list).

‚ The objects will be destructed in reverse order of
construction by first destroying each data member
bottom‐to‐top and then recursively destroying the base
class.

36 / 108

Inheritance
Binding to references

void print_height(Triangle& triangle)
{
cout << triangle.get_height() << endl;

}

void print_height(Rectangle& triangle)
{
cout << triangle.get_height() << endl;

}

36 / 108

Inheritance
Binding to references

void print_height(Shape& shape)
{
cout << shape.get_height() << endl;

}

37 / 108

Inheritance
Binding to references

‚ The implementation for both versions of
print_height() are exactly the same.

‚ Since get_height() for Rectangle and Triangle is
implemented in Shape, we can get away with just
looking at the Shape part of the objects.

‚ By taking the parameter as a Shape& we can bind both
Rectangle and Triangle in the same function.

38 / 108

Inheritance
area()

void print_area(Shape& shape)
{
cout << shape.area() << endl;

}

38 / 108

Inheritance
area()

Shape.cc: In function ‘void print_area(Shape&)’:
Shape.cc: error: ‘class Shape’ has no member named ‘area’

cout << shape.area() << endl;
^~~~

39 / 108

Inheritance
area()

‚ The parameter shape is of type Shape&, meaning we can
only access things that resides in Shape.

‚ This means that we cannot call area since it hasn’t been
declared in Shape.

40 / 108

Inheritance
Let’s add area() to Shape

class Shape
{
public:

// ...
double area() const
{
return 0;

}
// ...

};

class Rectangle : public Shape
{
public:
// ...
double area() const
{
return width * height;

}
// ...

};

40 / 108

Inheritance
Let’s add area() to Shape

int main()
{
Rectangle r {10, 15};
cout << print_area(r) << endl; // print 0

}

41 / 108

Inheritance
Let’s add area() to Shape

‚ We can solve the problem by adding area() to Shape!

‚ However this poses a new problem. In print_area()
we always call Shape::area().

‚ This is not what we want, we want to call the area()
function of whichever type we pass in to the function...

‚ This problem can be solved with Polymorphism!

1 std::vector
2 Command‐line argument
3 Inheritance
4 Polymorphism
5 UML Diagrams
6 More on Polymorphism
7 Type information
8 Exceptions

43 / 108

Polymorphism
Many forms

Triangle r{...};
Shape& ref {r};

area()

Shape

area()

Triangle

ref

43 / 108

Polymorphism
Many forms

Triangle r{...};
Shape& ref {r};

area()

Shape

area()

Triangle

ref

44 / 108

Polymorphism
Many forms

‚ The way we solve the problem with print_area()
calling the wrong version is by letting derived classes
override the functionality of Shape::area().

‚ I.e. we want the implementation of Shape::area() to
be replaceable,

‚ because then the derived class could simply replace the
implementation of area() in Shape with its own
implementation of area().

‚ This is done by declaring Shape::area() as virtual.

45 / 108

Polymorphism
Many forms

class Shape
{
public:
// ...
virtual double area() const
{
return 0;

}
// ...

};

46 / 108

Polymorphism
Now it works!

int main()
{
Rectangle r {10, 15};
cout << print_area(r) << endl; // prints 150

}

46 / 108

Polymorphism
Now it works!

int main()
{
Rectangle r {10, 15};
cout << print_area(r) << endl; // prints 150

}

It works!!

47 / 108

Polymorphism
When can we use polymorphism?

Shape s{};
Rectangle r{10, 15};
Triangle t{3, 4};

Shape* ptr {&s};
ptr->area(); // returns 0

ptr = &r;
ptr->area(); // returns 150

ptr = &t;
ptr->area(); // returns 6

48 / 108

Polymorphism
Pointers & Polymorphism

ptr

area()

Shape

area()

Shape

area()

Shape

area()

Rectangle

area()

Shape

area()

Triangle

48 / 108

Polymorphism
Pointers & Polymorphism

ptr

area()

Shape

area()

Shape

area()

Shape

area()

Rectangle

area()

Shape

area()

Triangle

48 / 108

Polymorphism
Pointers & Polymorphism

ptr

area()

Shape

area()

Shape

area()

Shape

area()

Rectangle

area()

Shape

area()

Triangle

48 / 108

Polymorphism
Pointers & Polymorphism

ptr

area()

Shape

area()

Shape

area()

Shape

area()

Rectangle

area()

Shape

area()

Triangle

49 / 108

Polymorphism
There are pitfalls...

class Cuboid : public Shape
{
public:
Cuboid(double width, double height, double depth)
: Shape{width, height}, depth{depth}

{ }

double area() const
{
return 2.0 * (width * height + width * depth + height * depth);

}

private:
double depth;

};

49 / 108

Polymorphism
There are pitfalls...

Cuboid c{5, 7, 3};
Shape s {c}; // slicing

width 5

height 7

area()

Shape

depth 3

area()

Cuboid

49 / 108

Polymorphism
There are pitfalls...

Cuboid c{5, 7, 3};
Shape s {c}; // slicing

width 5

height 7

area()

Shape

depth 3

area()

Cuboid

49 / 108

Polymorphism
There are pitfalls...

Cuboid c{5, 7, 3};
Shape s {c}; // slicing

width 5

height 7

area()

Shape

depth 3

area()

Cuboid

width 5

height 7

area()

Shape

49 / 108

Polymorphism
There are pitfalls...

Cuboid c{5, 7, 3};
Shape s {c}; // slicing

width 5

height 7

area()

Shape

depth 3

area()

Cuboid

width 5

height 7

area()

Shape

50 / 108

Polymorphism
There are pitfalls...

‚ It is possible to copy from a derived type into a the Base
class

‚ However, a variable has a fixed size, so when the derived
class has more members than the base class, these will
be lost.

‚ This is called slicing since we slice away everything that
does not fit in the Shape‐object.

51 / 108

Polymorphism
There are pitfalls...

Cuboid c {2,3,4};
Shape s {c};
cout << s.area() << endl; // prints 0

51 / 108

Polymorphism
There are pitfalls...

Cuboid c {2,3,4};
Shape& s {c};
cout << s.area() << endl; // prints 24

52 / 108

Polymorphism
Rule of thumb

When calling a member function:

1. through a non‐reference

2. through a non‐pointer

3. that is non‐virtual

4. otherwise

52 / 108

Polymorphism
Rule of thumb

When calling a member function:

1. through a non‐reference => Call the member function

2. through a non‐pointer

3. that is non‐virtual

4. otherwise

52 / 108

Polymorphism
Rule of thumb

When calling a member function:

1. through a non‐reference => Call the member function

2. through a non‐pointer

3. that is non‐virtual

4. otherwise

52 / 108

Polymorphism
Rule of thumb

When calling a member function:

1. through a non‐reference => Call the member function

2. through a non‐pointer => Call the member function

3. that is non‐virtual

4. otherwise

52 / 108

Polymorphism
Rule of thumb

When calling a member function:

1. through a non‐reference => Call the member function

2. through a non‐pointer => Call the member function

3. that is non‐virtual

4. otherwise

52 / 108

Polymorphism
Rule of thumb

When calling a member function:

1. through a non‐reference => Call the member function

2. through a non‐pointer => Call the member function

3. that is non‐virtual => Call the member function

4. otherwise

52 / 108

Polymorphism
Rule of thumb

When calling a member function:

1. through a non‐reference => Call the member function

2. through a non‐pointer => Call the member function

3. that is non‐virtual => Call the member function

4. otherwise

52 / 108

Polymorphism
Rule of thumb

When calling a member function:

1. through a non‐reference => Call the member function

2. through a non‐pointer => Call the member function

3. that is non‐virtual => Call the member function

4. otherwise => Call the overriden version

53 / 108

Polymorphism
Conclusion

Always use pointers or
references when dealing
with polymorphic objects!

54 / 108

Polymorphism
Conclusion

‚ If we always use pointers of references:

‚ we are guaranteed to always call the correct version,

‚ we avoid the problems with slicing,

‚ we don’t have to copy objects if not necessary.

55 / 108

Polymorphism
Another good reason for using polymorphism

std::vector<Shape*> shapes {
new Triangle{3, 4},
new Rectangle{5, 6},
new Cuboid{3, 5, 7}

};

for (Shape* shape : shapes)
{
cout << shape->area() << endl;

}

56 / 108

Polymorphism
Another good reason for using polymorphism

‚ If we have a shared base class with virtual functions:

‚ We can have base class pointer to objects of derived
classes

‚ This means we can store different types inside an
std::vector.

‚ This is useful because we can now iterate over objects of
different types and get different results based on the
“real” type of the objects.

1 std::vector
2 Command‐line argument
3 Inheritance
4 Polymorphism
5 UML Diagrams
6 More on Polymorphism
7 Type information
8 Exceptions

58 / 108

UML Diagrams
Background

‚ Inheritance and polymorphism are not exclusive to C++

‚ Other languages have the same feature, albeit with
some variations in the details of how it works.

‚ But these features are central to the idea of object
oriented programming.

‚ Because of this it is important to have a common
language that all programmers can understand, not just
C++ programmers.

59 / 108

UML Diagrams

UnifiedModeling Language

60 / 108

UML Diagrams
What is UML?

‚ A visual representation of how software
implementations are organized.

‚ Embeds entities and their relationships.

‚ It is language agnostic which means it tries to
communicate design‐ideas rather than specific
implementation details.

‚ It is a huge modelling tool, but in this course we only
look at a very small subset.

61 / 108

UML Diagrams
Classes in UML

class MyClass
{
public:

MyClass(int x);
void do_stuff();
virtual int calculate(int y);

private:
void helper();
int data;

protected:
int z;

};

MyClass

‐ data : int
z : int

+ MyClass(x : int)
+ do_stuff() : void
+ calculate(y : int) : int
‐ helper() : void

61 / 108

UML Diagrams
Classes in UML

class MyClass
{
public:

MyClass(int x);
void do_stuff();
virtual int calculate(int y);

private:
void helper();
int data;

protected:
int z;

};

MyClass

‐ data : int
z : int

+ MyClass(x : int)
+ do_stuff() : void
+ calculate(y : int) : int
‐ helper() : void

Class name

61 / 108

UML Diagrams
Classes in UML

class MyClass
{
public:

MyClass(int x);
void do_stuff();
virtual int calculate(int y);

private:
void helper();
int data;

protected:
int z;

};

MyClass

‐ data : int
z : int

+ MyClass(x : int)
+ do_stuff() : void
+ calculate(y : int) : int
‐ helper() : void

Data members

61 / 108

UML Diagrams
Classes in UML

class MyClass
{
public:

MyClass(int x);
void do_stuff();
virtual int calculate(int y);

private:
void helper();
int data;

protected:
int z;

};

MyClass

‐ data : int
z : int

+ MyClass(x : int)
+ do_stuff() : void
+ calculate(y : int) : int
‐ helper() : void

Member functions

61 / 108

UML Diagrams
Classes in UML

class MyClass
{
public:

MyClass(int x);
void do_stuff();
virtual int calculate(int y);

private:
void helper();
int data;

protected:
int z;

};

MyClass

‐ data : int
z : int

+ MyClass(x : int)
+ do_stuff() : void
+ calculate(y : int) : int
‐ helper() : void

private

61 / 108

UML Diagrams
Classes in UML

class MyClass
{
public:

MyClass(int x);
void do_stuff();
virtual int calculate(int y);

private:
void helper();
int data;

protected:
int z;

};

MyClass

‐ data : int
z : int

+ MyClass(x : int)
+ do_stuff() : void
+ calculate(y : int) : int
‐ helper() : void

public

61 / 108

UML Diagrams
Classes in UML

class MyClass
{
public:

MyClass(int x);
void do_stuff();
virtual int calculate(int y);

private:
void helper();
int data;

protected:
int z;

};

MyClass

‐ data : int
z : int

+ MyClass(x : int)
+ do_stuff() : void
+ calculate(y : int) : int
‐ helper() : void

protected

61 / 108

UML Diagrams
Classes in UML

class MyClass
{
public:

MyClass(int x);
void do_stuff();
virtual int calculate(int y);

private:
void helper();
int data;

protected:
int z;

};

MyClass

‐ data : int
z : int

+ MyClass(x : int)
+ do_stuff() : void
+ calculate(y : int) : int
‐ helper() : void

virtual

62 / 108

UML Diagrams
Explanation

‚ UML is meant to express common ideas

‚ In the diagram shown in the previous slides we saw that
a class in UML consists of three sections:

‚ The first section contains the class name

‚ The second section contains a list of all data
members (called attributes in UML)

‚ The third section contains a list of all member
functions (called operations in UML)

62 / 108

UML Diagrams
Explanation

‚ Each member (attribute of operation in UML) has a
visibility specified at the start of the member:

‚ Public is represented by +

‚ Private is reprsented by -

‚ Protected is represented by #

‚ Virtual member functions are marked with italics

62 / 108

UML Diagrams
Explanation

Note that types are declared after the name in UML.

63 / 108

UML Diagrams
Class relationships

‚ Inheritance

‚ Composition

‚ Aggregation

‚ Association

63 / 108

UML Diagrams
Class relationships

‚ Inheritance

‚ Represents that one class inherits from another
class

‚ B is an A

‚ Composition

‚ Aggregation

‚ Association

63 / 108

UML Diagrams
Class relationships

‚ Inheritance

‚ Composition

‚ Represents that one class stores an instance of
another class

‚ B stores an A

‚ Aggregation

‚ Association

63 / 108

UML Diagrams
Class relationships

‚ Inheritance

‚ Composition

‚ Aggregation

‚ Represents that one class refers to an instance of
another class

‚ B refers to an A

‚ Association

63 / 108

UML Diagrams
Class relationships

‚ Inheritance

‚ Composition

‚ Aggregation

‚ Association

‚ Represents any other relationship two classes
might have.

‚ B uses an A

64 / 108

UML Diagrams
Class relationships

Inheritance

class A
{

// ...
};
class B : public A
{

// ...

};

A

...

...

B

...

...

64 / 108

UML Diagrams
Class relationships

Composition

class A
{

// ...
};
class B : public A
{

// ...
private:

A my_a;
};

A

...

...

B

‐ my_a : A

...

64 / 108

UML Diagrams
Class relationships

Aggregation

class A
{

// ...
};
class B : public A
{

// ...
private:

A* my_a_ptr;
};

A

...

...

B

‐ my_a_ptr : A*

...

64 / 108

UML Diagrams
Class relationships

Association

class A
{

// ...
};
class B : public A
{

// ...
public:

void fun(A a);
};

A

...

...

B

...

+ fun(a : A) : void

65 / 108

UML Diagrams
Example, shapes

Shape

width : double
height : double

+ Shape(w : double, h : double)
+ get_height() const : double
+ get_width() const : double
+ area() const = 0 : double

Rectangle

+ Rectangle(w : double, h : double)
+ area() const : double

Cuboid

‐ depth : double

+ Cuboid(w : double, h : double, d : double)
+ area() const : double

66 / 108

UML Diagrams
Example, linked list

List

‐ first : Node*

+ insert(value : int) : void
+ remove(value : int) : void
...

Node

+ value : int
+ next : Node*

1 std::vector
2 Command‐line argument
3 Inheritance
4 Polymorphism
5 UML Diagrams
6 More on Polymorphism
7 Type information
8 Exceptions

68 / 108

More on Polymorphism
Example

class Complex_Shape : public Shape
{
public:

// ...
double area() const
{
double sum{0.0};
for (Shape* shape : shapes)
{
sum += shape->area();

}
return sum;

}
private:

std::vector<Shape*> shapes;
};

68 / 108

More on Polymorphism
Example

class Complex_Shape : public Shape
{
public:

// ...
double area() const
{
double sum{0.0};
for (Shape* shape : shapes)
{
sum += shape->area();

}
return sum;

}
private:

std::vector<Shape*> shapes;
}; shapes:

68 / 108

More on Polymorphism
Example

{
Complex_Shape shape { ... };
cout << shape.area() << endl;

} // what happens here?

shapes:

68 / 108

More on Polymorphism
Example

{
Complex_Shape shape { ... };
cout << shape.area() << endl;

} // what happens here?

68 / 108

More on Polymorphism
Example

{
Complex_Shape shape { ... };
cout << shape.area() << endl;

} // what happens here?

Memory leak

69 / 108

More on Polymorphism
So we create a destructor!

class Complex_Shape : public Shape
{
public:

// ...
~Complex_Shape()
{
for (Shape* shape : shapes)
{
delete shape;

}
}
// ...

};

70 / 108

More on Polymorphism
So we create a destructor!

‚ When having manually managed memory in a vector we
have to delete it manually in the destructor.

‚ So of course we need one for Complex_Shape since it
keeps a record of various shapes.

71 / 108

More on Polymorphism
What about now?

Shape* ptr {new Complex_Shape{...}};
delete ptr;

area()

Shape

area()

shapes

Complex_Shape

ptr

71 / 108

More on Polymorphism
What about now?

Shape* ptr {new Complex_Shape{...}};
delete ptr;

area()

Shape

area()

shapes

Complex_Shape

ptr

71 / 108

More on Polymorphism
What about now?

Shape* ptr {new Complex_Shape{...}};
delete ptr;

area()

shapes

Complex_Shape

ptr

71 / 108

More on Polymorphism
What about now?

Shape* ptr {new Complex_Shape{...}};
delete ptr;

area()

shapes

Complex_Shape

ptr

71 / 108

More on Polymorphism
What about now?

Shape* ptr {new Complex_Shape{...}};
delete ptr;

area()

shapes

Complex_Shape

ptr

Memory leak

72 / 108

More on Polymorphism
What about now?

‚ When deleting ptr the compiler only sees the
Shape‐portion of the object.

‚ This means that it will call the destructor for Shape, even
though it is really a Complex_Shape.

‚ So the problem is essentially that the compiler gets
tricked into thinking you are working with a Shape
object.

‚ We solved this problem earlier by adding virtual to our
functions.

‚ Let’s try that!

73 / 108

More on Polymorphism
virtual‐destructor

class Shape
{
public:

// ...
virtual ~Shape() = default;
// ...

};

74 / 108

More on Polymorphism
What about now?

Shape* ptr {new Complex_Shape{...}};
delete ptr;

destructor

Shape

destructor

shapes

ptr

Complex_Shape

74 / 108

More on Polymorphism
What about now?

Shape* ptr {new Complex_Shape{...}};
delete ptr;

destructor

Shape

destructor

shapes

ptr

Complex_Shape

74 / 108

More on Polymorphism
What about now?

Shape* ptr {new Complex_Shape{...}};
delete ptr;

destructor

Shape

destructor

shapes

ptr

Complex_Shape

74 / 108

More on Polymorphism
What about now?

Shape* ptr {new Complex_Shape{...}};
delete ptr;

ptr

74 / 108

More on Polymorphism
What about now?

Shape* ptr {new Complex_Shape{...}};
delete ptr;

ptr Nice!

75 / 108

More on Polymorphism
What about now?

‚ By declaring the destructor as virtual we are allowing
derived classes to override the behaviour with their own
implementation.

‚ This means that whenever the destructor is called
through a pointer or a reference it will call the
appropriate destructor.

‚ Note: The destructor of a class must also destroy the
base class, but this is handled by the compiler so we
don’t have to think about it.

76 / 108

More on Polymorphism
Conclusion

Always declare the
destructor of a

polymorphic base class as
virtual!

77 / 108

More on Polymorphism
Sometimes humans make mistakes...

class My_Shape : public Shape
{
public:
// ...
double arae()
{
return 10.0;

}
// ...

};

77 / 108

More on Polymorphism
Sometimes humans make mistakes...

Shape* ptr {new My_Shape{}};
cout << ptr->area() << endl;
delete ptr;

77 / 108

More on Polymorphism
Sometimes humans make mistakes...

Shape* ptr {new My_Shape{}};
cout << ptr->area() << endl; // prints 0 (?!)
delete ptr;

77 / 108

More on Polymorphism
Sometimes humans make mistakes...

class My_Shape : public Shape
{
public:
// ...
double arae()
{
return 10.0;

}
// ...

};

Aha! A misspelling!

77 / 108

More on Polymorphism
Sometimes humans make mistakes...

class My_Shape : public Shape
{
public:
// ...
double area()
{
return 10.0;

}
// ...

};

77 / 108

More on Polymorphism
Sometimes humans make mistakes...

Shape* ptr {new My_Shape{}};
cout << ptr->area() << endl;
delete ptr;

77 / 108

More on Polymorphism
Sometimes humans make mistakes...

Shape* ptr {new My_Shape{}};
cout << ptr->area() << endl; // STILL 0 ?!
delete ptr;

77 / 108

More on Polymorphism
Sometimes humans make mistakes...

class My_Shape : public Shape
{
public:
// ...
double area() const
{
return 10.0;

}
// ...

};

We forgot const!

77 / 108

More on Polymorphism
Sometimes humans make mistakes...

Shape* ptr {new My_Shape{}};
cout << ptr->area() << endl; // prints 10
delete ptr;

78 / 108

More on Polymorphism
Sometimes humans make mistakes...

‚ When overriding virtual functions the signature must
match exactly

‚ The name, the parameters, specifiers etc. it all must
match with the base class version of the function.

‚ If it doesn’t, the compiler will create a normal function
in the derived class with these new properties.

‚ This is not a syntax error, it is just a semantic error.

‚ We have to make sure they match otherwise the
compiler gets confused...

79 / 108

More on Polymorphism
Can’t the compiler help us with these simple mistakes?

class My_Shape : public Shape
{
public:
// ...
double arae() override
{
return 10.0;

}
// ...

};

79 / 108

More on Polymorphism
Can’t the compiler help us with these simple mistakes?

shape.cc: error: ‘double My_Shape::arae()’ marked ‘override’,
but does not override

double arae() override
^~~~

80 / 108

More on Polymorphism
Can’t the compiler help us with these simple mistakes?

‚ If you mark a member function as override you tell the
compiler that you intended for this member function to
override a virtual function in the base class.

‚ This means that the compiler will check whether or not
it succeded in overriding the function.

‚ If something is wrong, the compiler tell us and we can fix
it!

‚ If we don’t use override, the code might compile with
the wrong behaviour which is really bad.

81 / 108

More on Polymorphism
Rule of thumb

Always mark functions
that are meant to override

as override!

82 / 108

More on Polymorphism
Let’s go back to Shape

class Shape
{
public:

// ...
virtual ~Shape() = default;
virtual double area() const
{
return 0;

}
// ...

};

83 / 108

More on Polymorphism
Let’s go back to Shape

‚ Does it really make sense that Shape::area returns 0?

‚ What does it mean to take the area of a general shape?

‚ Wouldn’t it be better to just skip the implementation?

84 / 108

More on Polymorphism
pure‐virtual function

class Shape
{
public:

// ...
virtual ~Shape() = default;
virtual double area() const = 0;

};

85 / 108

More on Polymorphism
pure‐virtual function

‚ You can add = 0 at the end of a virtual function
declaration to mark it as a pure‐virtual function.

‚ This means that this function doesn’t have an
implementation.

86 / 108

More on Polymorphism
Abstract class

A class is abstract if it contains one or more pure‐virtual
functions

87 / 108

More on Polymorphism
Abstract class

Shape s1{1, 3}; // Error: abstract
Triangle t{1,3}; // OK: not abstract
Shape s2{t}; // Error: abstract
Shape& s3{t}; // OK: reference allowed
Shape* s4{&t}; // OK: pointer allowed

88 / 108

More on Polymorphism
Abstract class

‚ No object of an abstract class is allowed to exist.

‚ This means that we cannot create Shape in any way
possible.

‚ The reason is that it contains functions that would crash
the program if called (because they do not have an
implementation).

89 / 108

More on Polymorphism
Abstract class

‚ We can however have a pointer or reference of type
Shape since these may refer to a derived class of Shape.

‚ All derived classes of an abstract class are also abstract
classes until all pure‐virtual functions have been
overriden.

‚ Abstract classes are meant to represent general concept
that are used as a base class to more concrete things
(such as specific shapes).

90 / 108

More on Polymorphism
Importing things from the base class

class Shape
{
public:

Shape(double w, double h)
: width{w}, height{h}

{
}

// ...

protected:

double width;
double height;

};

class Rectangle : public Shape
{
public:

// create an identical constructor
// as the one in Shape
using Shape::Shape;

// make width public in Rectangle
using Shape::width;

private:

// make height private in Rectangle
using Shape::height;

};

1 std::vector
2 Command‐line argument
3 Inheritance
4 Polymorphism
5 UML Diagrams
6 More on Polymorphism
7 Type information
8 Exceptions

92 / 108

Type information
Static vs Dynamic type

Shape* ptr {new Triangle{3, 5}};
cout << ptr->area() << endl;

delete ptr;
ptr = new Rectangle{3, 5};

Static:
Dynamic:

92 / 108

Type information
Static vs Dynamic type

Shape* ptr {new Triangle{3, 5}};
cout << ptr->area() << endl;

delete ptr;
ptr = new Rectangle{3, 5};

Static:
Dynamic:

92 / 108

Type information
Static vs Dynamic type

Shape* ptr {new Triangle{3, 5}};
cout << ptr->area() << endl;

delete ptr;
ptr = new Rectangle{3, 5};

Static: Shape*

Dynamic:

92 / 108

Type information
Static vs Dynamic type

Shape* ptr {new Triangle{3, 5}};
cout << ptr->area() << endl;

delete ptr;
ptr = new Rectangle{3, 5};

Static: Shape*

Dynamic:

92 / 108

Type information
Static vs Dynamic type

Shape* ptr {new Triangle{3, 5}};
cout << ptr->area() << endl;

delete ptr;
ptr = new Rectangle{3, 5};

Static: Shape*

Dynamic: Triangle

92 / 108

Type information
Static vs Dynamic type

Shape* ptr {new Triangle{3, 5}};
cout << ptr->area() << endl;

delete ptr;
ptr = new Rectangle{3, 5};

Static: Shape*

Dynamic: Triangle

92 / 108

Type information
Static vs Dynamic type

Shape* ptr {new Triangle{3, 5}};
cout << ptr->area() << endl;

delete ptr;
ptr = new Rectangle{3, 5};

Static: Shape*

Dynamic: Rectangle

93 / 108

Type information
Static vs Dynamic type

‚ The static type of a variable is the type it is declared as
(it never changes)

‚ The dynamic type is the type of the object a pointer
points to

‚ The dynamic type can change to any class in the
hierarchy of the static type.

94 / 108

Type information
Example

class Cuboid : public Shape
{
public:
// ...
virtual double volume() const
{
return width * height * depth;

}
//...

};

94 / 108

Type information
Example

Shape* ptr {new Cuboid{3, 4, 5}};

// doesn't work, volume is not
// declared in Shape
cout << ptr->volume() << endl;

95 / 108

Type information
Example

‚ Which functions you can call is directly related to the
static type.

‚ I.e. it doesn’t matter that the dynamic type of ptr is
Cuboid, we can’t call volume through a Shape pointer.

‚ Therefore we must, temporarily change the static type
to match the dynamic type.

96 / 108

Type information
Example

Shape* ptr {new Cuboid{3, 4, 5}};

cout << static_cast<Cuboid*>(ptr)->volume()
<< endl;

97 / 108

Type information
Example

‚ We can use static_cast to (temporarily) change ptr
into a Cuboid*, that way we can call volume().

‚ But this is very dangerous...

98 / 108

Type information
When it all comes crashing down...

Shape* ptr {new Rectangle{3, 4}};

cout << static_cast<Cuboid*>(ptr)->volume()
<< endl;

98 / 108

Type information
When it all comes crashing down...

Shape* ptr {new Rectangle{3, 4}};

cout << static_cast<Cuboid*>(ptr)->volume()
<< endl;

Segmentation Fault

99 / 108

Type information
When it all comes crashing down...

‚ We can cast ptr to a pointer to any derived class,

‚ However, this becomes a problem if the type we are
casting to is not compatible with the dynamic type...

‚ This will, in most cases, lead to the crashing of your
program...

‚ Would be nice if we could check first if it was possible
before we cast...

100 / 108

Type information
dynamic_cast

Shape* ptr1 {new Cuboid{3, 4, 5}};
Shape* ptr2 {new Rectangle{3, 4}};

Cuboid* c1 {dynamic_cast<Cuboid*>(ptr1)};
Cuboid* c2 {dynamic_cast<Cuboid*>(ptr2)};

// c1 is a pointer to a valid Cuboid object

// c2 == nullptr, since ptr2 does not
// point to a valid Cuboid object

101 / 108

Type information
dynamic_cast

‚ dynamic_cast is like static_cast, but before it
performs the conversion it will test that the dynamic
type is compatible (i.e. is derived from or equal to the
type we are casting to)

‚ if they are compatible it will return a valid pointer with
the specified static type,

‚ if they are not compatible it will return nullptr.

102 / 108

Type information
Checking if dynamic type is compatible

Shape* ptr {...};

Cuboid* cuboid {dynamic_cast<Cuboid*>(ptr)};
if (cuboid != nullptr)
{
// only print volume if it is a cuboid
cout << cuboid->volume() << endl;

}

103 / 108

Type information
Also works with references!

Cuboid c {3,4,5};
Shape& s {c};

cout << dynamic_cast<Cuboid&>(s).volume() << endl;

103 / 108

Type information
Also works with references!

Rectangle r {3,4};
Shape& s {c};

cout << dynamic_cast<Cuboid&>(s).volume() << endl;

103 / 108

Type information
Also works with references!

$ g++ shape.cc
$./a.out
terminate called after throwing an instance of 'std::bad_cast'
what(): std::bad_cast

Aborted (core dumped)

1 std::vector
2 Command‐line argument
3 Inheritance
4 Polymorphism
5 UML Diagrams
6 More on Polymorphism
7 Type information
8 Exceptions

105 / 108

Exceptions
What just happend?!

‚ References cannot be empty

‚ What do we do to signal error?

‚ Exceptions!

105 / 108

Exceptions
What just happend?!

‚ References cannot be empty

‚ What do we do to signal error?

‚ Exceptions!

105 / 108

Exceptions
What just happend?!

‚ References cannot be empty

‚ What do we do to signal error?

‚ Exceptions!

105 / 108

Exceptions
What just happend?!

‚ References cannot be empty

‚ What do we do to signal error?

‚ Exceptions!

106 / 108

Exceptions
Model

int main()
{
try
{
fun1();
// ...

}
catch (std::exception& e)
{
cerr << e.what();

}
}

void fun1()
{
// ...
fun2();
// ...
return;

}

void fun2()
{
return;

}

106 / 108

Exceptions
Model

int main()
{
try
{
fun1();
// ...

}
catch (std::exception& e)
{
cerr << e.what();

}
}

void fun1()
{
// ...
fun2();
// ...
return;

}

void fun2()
{
return;

}

106 / 108

Exceptions
Model

int main()
{
try
{
fun1();
// ...

}
catch (std::exception& e)
{
cerr << e.what();

}
}

void fun1()
{
// ...
fun2();
// ...
return;

}

void fun2()
{
return;

}

106 / 108

Exceptions
Model

int main()
{
try
{
fun1();
// ...

}
catch (std::exception& e)
{
cerr << e.what();

}
}

void fun1()
{
// ...
fun2();
// ...
return;

}

void fun2()
{
return;

}

106 / 108

Exceptions
Model

int main()
{
try
{
fun1();
// ...

}
catch (std::exception& e)
{
cerr << e.what();

}
}

void fun1()
{
// ...
fun2();
// ...
return;

}

void fun2()
{
return;

}

106 / 108

Exceptions
Model

int main()
{
try
{
fun1();
// ...

}
catch (std::exception& e)
{
cerr << e.what();

}
}

void fun1()
{
// ...
fun2();
// ...
return;

}

void fun2()
{
throw std::exception{""};

}

106 / 108

Exceptions
Model

int main()
{
try
{
fun1();
// ...

}
catch (std::exception& e)
{
cerr << e.what();

}
}

void fun1()
{
// ...
fun2();
// ...
return;

}

void fun2()
{
throw std::exception{""};

}

106 / 108

Exceptions
Model

int main()
{
try
{
fun1();
// ...

}
catch (std::exception& e)
{
cerr << e.what();

}
}

void fun1()
{
// ...
fun2();
// ...
return;

}

void fun2()
{
throw std::exception{""};

}

106 / 108

Exceptions
Model

int main()
{
try
{
fun1();
// ...

}
catch (std::exception& e)
{
cerr << e.what();

}
}

void fun1()
{
// ...
fun2();
// ...
return;

}

void fun2()
{
throw std::exception{""};

}

107 / 108

Exceptions
Model

‚ An exception is an object we throw.

‚ Throwing an exception will abort the current function,

‚ it will move backwards in the function call chain until it
hits a try‐catch block.

‚ Throwing is seperate from returning.

‚ We should only throw exceptions when something went
wrong.

108 / 108

Exceptions
dynamic_cast

#include <stdexcept>

int main()
{
Rectangle r {3,4};
Shape& s {c};

try
{
cout << dynamic_cast<Cuboid&>(s).volume() << endl;

}
catch (std::bad_cast& e)
{
cout << "s is not a Cuboid!" << endl;

}
catch (std::exception& e)
{
cout << "Unknown error." << endl;

}
}

www.liu.se

www.liu.se

	std::vector
	Command-line argument
	Inheritance
	Polymorphism
	UML Diagrams
	More on Polymorphism
	Type information
	Exceptions

