TDDE18 & 726G77

Inheritance & Polymorphism
Christoffer Holm

Department of Computer and information science

II LINKOPING
o UNIVERSITY

coNO UL B WN -

std: :vector
Command-line argument
Inheritance
Polymorphism

UML Diagrams

More on Polymorphism
Type information
Exceptions

II LINKOPING
o UNIVERSITY

std: :vector

Storage

® Linked storage

® Sequential Storage

3/108

LINKOPING
II.“ UNIVERSITY

std: :vector

Storage

® Linked storage
® Nodes linked together with pointers.
® This is what we did in the List lab.

® Very slow to access values in the middle of the
collection since we have to loop from the beginning
every time.

® Sequential Storage

3/108

LINKOPING
II.“ UNIVERSITY

std::vector
Storage

® Linked storage

® Sequential Storage

® |f we place everything next to each other in
memory, then we know where each element is.

® This is faster for accessing values in the middle.

® However, it is now slower to insert values between
two values and at the beginning.

® Thisis how std: :vector works!

3/108

LINKOPING
II.“ UNIVERSITY

4/108

std: :vector

Sequential Storage

std::vector<int> v {5, 3, 1, 2};

II LINKOPING
o UNIVERSITY

4/108

std: :vector

Sequential Storage

std::vector<int> v {5, 3, 1, 2};

[e] [11 [2] [3]

II LINKOPING
o UNIVERSITY

4/108

std: :vector

Sequential Storage

v.at(1) = 4,

[e] [11 [2] [3]

II LINKOPING
o UNIVERSITY

4/108

std: :vector

Sequential Storage

v.at(1) = 4,

[e] [11 [2] [3]

II LINKOPING
o UNIVERSITY

4/108

std: :vector

Sequential Storage

v.push_back(3);

[e] [11 [2] [3]

LINKOPING
II.“ UNIVERSITY

4/108

std: :vector

Sequential Storage

v.push_back(3);

[e] [1] [21 (3] [4]

LINKOPING
II.“ UNIVERSITY

4/108

std: :vector

Sequential Storage

v.back() = 6;

[e] [1] [21 (3] [4]

LINKOPING
II.“ UNIVERSITY

4/108

std: :vector

Sequential Storage

v.back() = 6;

[e] [1] [21 (3] [4]

LINKOPING
II.“ UNIVERSITY

4/108

std: :vector

Sequential Storage

v.pop_back();

[e] [1] [21 (3] [4]

LINKOPING
II.“ UNIVERSITY

4/108

std: :vector

Sequential Storage

v.pop_back();

[e] [11 [2] [3]

LINKOPING
II.“ UNIVERSITY

5/108

std: :vector

Sequential Storage

® std::vector is defined in #include <vector>
® Declared like this: std: :vector<T>.

® Astd::vector<T> contains a sequence of values that
has the data type T.

® For example: std: :vector<int> is a vector that stores
integers.

LINKOPING
II.“ UNIVERSITY

std: :vector

Sequential Storage
® Each elementina std::vector is indexed, beginning
with 0 being the first element.

® Element i in vector v can be accessed with either v[i]
orv.at(i).

® v.at(i) will check that element i exists, so it is
preferred over v[i].

® First element can be accessed with v.front() and last
with v.back().

5/108

LINKOPING
II.“ UNIVERSITY

5/108

std: :vector

Sequential Storage

® |tis possible to insert values at the end with
v.push_back(3).

® To remove the last element, you write v.pop_back().

® To see how many elements there are, write v.size().

LINKOPING
II.“ UNIVERSITY

6/108

std: :vector

Looping through

vector<string> words {...};
for (int i{@}; i < words.size(); ++i)

{
}

cout << words.at(i) << endl;

LINKOPING
II.“ UNIVERSITY

6/108

std: :vector

Looping through

vector<string> words {...};
for (string word : words)

{

cout << word << endl;
}

LINKOPING
II.“ UNIVERSITY

6/108

std: :vector

Looping through

vector<string> words {...};
for (string const& word : words)

{
}

cout << word << endl;

LINKOPING
II.“ UNIVERSITY

7/108

std: :vector

Looping through

® There are multiple ways to loop through a vector

® The first is to use a counter that goes through each index
in order.

® The second way is what’s know as a range based
for-loop.

® Arange based for-loop looks like this: for (int e : v)

LINKOPING
II.“ UNIVERSITY

7/108

std: :vector
Looping through
® You can read it as: Loop through v, for each iteration the
current element is stored in e.
® However, each element is copied into e.

e for (int& e : v) does not copy the elementintoe,
and it allows us to change the values inside the loop.

® Since copying is unnecessary for most cases where we
want to read the elements, it is recommended that you
loop through v like this: for (int const& e : v)

LINKOPING
II.“ UNIVERSITY

8/108

std: :vector

Example

#include <vector>
#include <iostream>
using namespace std;
int main()
{
vector<int> values{};
int value{};

// read values until ctr1+D
while (cin >> value)
{

values.push_back(value);

// double each value
for (int& e : values)
{
e = 2%*e;
}
}

II LINKOPING
o UNIVERSITY

II LINKOPING
o UNIVERSITY

10/108

Command-line argument

Calling a program with arguments

$./a.out a b c

LINKOPING
II.“ UNIVERSITY

10/108

Command-line argument

Calling a program with arguments

$./a.out a b c

Arguments: a, b, ¢

LINKOPING
II.“ UNIVERSITY

11/108

Command-line argument

Calling a program with arguments

® Unix-systems are based on calling programs with various
arguments,

® This is in fact what “commands” are in the terminal:
programs that takes arguments.

® But how do we read these arguments in our own
programs?

LINKOPING
II.“ UNIVERSITY

12/108

Command-line argument

Reading arguments

int main(int argc, char* argv[])

// argc
// argv
}

number of arguments passed to the program
a pointer to an array of pointers to C-strings

II LINKOPING
o UNIVERSITY

13/108

Command-line argument

argv

$ a.out a b c

ult \0O

\

argv: argc:

LINKOPING
II.“ UNIVERSITY

14/108

Command-line argument
argv

® The arguments are passed into your program as
C-strings.

® A C-stringis an array of char.

® |tis called a C-string because this is how strings work in
C.

® The end of a C-string is indicated with the special
character '\o"'.

® Note: The name of the executable file is the argument
atindex 0.

LINKOPING
II.“ UNIVERSITY

15/108

Command-line argument

Example

int main(int argc, char** argv)
for (int i{@}; i < argc; ++i)

cout << argv[i] << endl;

}

}

LINKOPING
II.“ UNIVERSITY

15/108

Command-line argument

Example

$./a.out 10 20 30
./a.out

10

20

30

LINKOPING
II.“ UNIVERSITY

16/108

Command-line argument

Example

® We can access the i:th argument with argv[i].
® Notice that these are strings!

* How do we interpret them as something else?

LINKOPING
II.“ UNIVERSITY

Command-line argument

Converting arguments

® std::stoi(argv[1]) -convertargv[1] to int
® std::stod(argv[1]) - convert argv[1] to double

® Using std::stringstream:

std::stringstream ss{};
Ss << argv[1];

int number;
ss >> number;

17/108

LINKOPING
II.“ UNIVERSITY

18/108

Command-line argument

Cool trick

vector<string> args { argv, argv + argc };
// now all arguments reside in the vector
// as std::string instead of C-strings

LINKOPING
II.“ UNIVERSITY

II LINKOPING
o UNIVERSITY

Inheritance

20/108

class Rectangle

{
public:
Rectangle(double w, double h)
: width{w}, height{h} { }

double area() const
return height * width;

}
double get_height() const
{

return height;
}
double get_width() const

return width;
¥
private:
double width;
double height;
Y

class Triangle

{
public:
Triangle(double w, double h)
: width{w}, height{h} { }

double area() const
return height * width / 2;

}
double get_height() const
{

return height;
}
double get_width() const

return width;
¥
private:
double width;
double height;
1

II LINKOPING
o UNIVERSITY

21/108

Inheritance

Is there a problem?

® There is a lot of code repetition here.

® We want to factor out common code, just as we did with
similar functions.

® |nthe example above, Rectangle and Triangle share
everything except the implementation of area().

* How do we do this?

LINKOPING
II.“ UNIVERSITY

22/108

Inheritance

What is inheritance?

width [] width []
height [] height []

get_width() get_width()

get_height() get_height()
area() area()
Rectangle Triangle

II LINKOPING
o UNIVERSITY

Inheritance

What is inheritance?

width []
height []

get_width()
get_height()

common

22/108

area()

Rectangle

width []
height []

get_width()
get_height()

area()

Triangle

II LINKOPING
o UNIVERSITY

22/108

Inheritance

What is inheritance?

width []
height []

get_width()
get_height()

Shape
area()

width []
height []

get_width()
get_height()

Rectangle

Shape
area()

Triangle

II LINKOPING
o UNIVERSITY

Inheritance
Terminology

® The class that contains the shared functionality is called
a Base class.

® A class that inherits another class (a base class) is called
a Derived class.

e A derived class inherits all the members (both functions
and variables) from its base class.

® Sometimes we say that the derived class extends the
base class, i.e. it takes everything from the base class
and then add more things on top of that.

23/108

LINKOPING
II.“ UNIVERSITY

24/108

Inheritance

Syntax

class Base

{
}i

7 ooc

class Derived : public Base

{
¥r

/] .

LINKOPING
II.“ UNIVERSITY

24/108

Inheritance

Syntax

® Derived inherits from Base.

® This is done by adding : public Base at the end of the
class declaration.

® |.e. by writing: class Derived : public Base

LINKOPING
II.“ UNIVERSITY

Inheritance

// common code
class Shape

public:

Shape(double w, double h)
: width{w}, height{h} { }

double get_height() const
{

return height;

}

double get_width() const
{

return width;
private:
double width;

double height;
3

25/108

II LINKOPING
o UNIVERSITY

Inheritance

25/108

// common code
class Shape

public:

Shape(double w, double h)
: width{w}, height{h} { }

double get_height() const
{

return height;

}

double get_width() const
{

return width;
private:
double width;

double height;
3

class Rectangle : public Shape
{
public:
Rectangle(double w, double h)
: width{w}, height{h} { }
double area() const
return width * height;
1
class Triangle : public Shape
{
public:
Triangle(double w, double h)
: width{w}, height{h} { }
double area() const

return width * height / 2;
}

II LINKOPING
o UNIVERSITY

26/108

Inheritance

Shape.cc: In constructor ‘Rectangl Rectangle(double, double)’:
Shape.cc: ‘double Shape::width’ is private within this context

{w}, height{h} { }

Shape.cc: note: declared private here
double width;

Shape.cc: ‘double Shape::height’ is private within this context

: width{w}, {h} { }

Shape.cc: note: declared private here
double height;

LINKOPING
UNIVERSITY

Inheritance

Delegating constructor

width and height are private in Shape.

This means that Rectangle does not have access to
them.

The constructor can therefore not initialize those
members.

But, we can call the constructor of Shape which does in
fact have access to them to initalize these objects.

You do this by adding Shape{w, h} to the start of the
member initialization list.

27/108

LINKOPING
UNIVERSITY

27/108

Inheritance

Delegating constructor

Rectangle(double w, double h)
: Shape{w, h} { }

LINKOPING
II.“ UNIVERSITY

Inheritance

28/108

// common code
class Shape

public:

Shape(double w, double h)
: width{w}, height{h} { }

double get_height() const
{

return height;

}

double get_width() const
{

return width;
private:
double width;

double height;
3

class Rectangle : public Shape
{
public:
Rectangle(double w, double h)
: Shape{w, h} { }
double area() const
return width * height;
1
class Triangle : public Shape
{
public:
Triangle(double w, double h)
: Shape{w, h} { }

double area() const

return width * height / 2;
}

II LINKOPING
o UNIVERSITY

29/108

Inheritance

Shape.cc: In member function ‘double Rectangle::area() const’:
Shape.cc: ‘double Shape::width’ is private within this context
return * height;

Shape.cc: note: declared private here
double width;

Shape.cc: ‘double Shape::height’ is private within this context
return width * ;

Shape.cc: note: declared private here
double height;

LINKOPING
UNIVERSITY

30/108

Inheritance
protected
® As mentioned before; width and height are private in
Shape.

® This means that neither Rectangle::area nor
Triangle: :area have access to these variables.

® There are two ways to solve it: replace each access to
width with get_width() and likewise for height,

® OR we make sure that width and height are available
for Rectangle and Triangle.

LINKOPING
II.“ UNIVERSITY

Inheritance

31/108

// common code
class Shape

public:

Shape(double w, double h)
: width{w}, height{h} { }

double get_height() const
{

return height;

}

double get_width() const
{

return width;
protected:
double width;

double height;
3

class Rectangle : public Shape
{
public:
Rectangle(double w, double h)
: Shape{w, h} { }
double area() const
return width * height;
1
class Triangle : public Shape
{
public:
Triangle(double w, double h)
: Shape{w, h} { }
double area() const

return width * height / 2;
}

II LINKOPING
o UNIVERSITY

Inheritance

protected

® protected is the third and final access specifier for
members in a class.

® |tisthe same as private, but with one difference: these
members are also accessible by all derived classes.

® Which means: protected things are secrets kept within
the family (inheritance hierarchy), while private things
are secrets kept by the individual (class).

32/108

LINKOPING
II.“ UNIVERSITY

Inheritance

Data members in derived class

33/108

class Named_Rectangle : public Rectangle

{
public:
Named_Rectangle(int width, int height, std::string const& name)
: Rectangle{width, height}, name{name}
{3
private:
std::string name{};

i

LINKOPING
UNIVERSITY

Inheritance

Initialization & Destruction

34/108

Named_Rectangle r {12, 13,

"My Rectangle"};

LINKOPING
UNIVERSITY

34/108

Inheritance

Initialization & Destruction

Named_Rectangle r {12, 13, "My Rectangle"};

Named_Rectangle

II LINKOPING
o UNIVERSITY

34/108

Inheritance

Initialization & Destruction

Named_Rectangle r {12, 13, "My Rectangle"};

Shape

Named_Rectangle

II LINKOPING
o UNIVERSITY

34/108

Inheritance

Initialization & Destruction

Named_Rectangle r {12, 13, "My Rectangle"};

width 12

Shape

Named_Rectangle

II LINKOPING
o UNIVERSITY

34/108

Inheritance

Initialization & Destruction

Named_Rectangle r {12, 13, "My Rectangle"};

width 12
heignt

Shape

Named_Rectangle

II LINKOPING
o UNIVERSITY

34/108

Inheritance

Initialization & Destruction

Named_Rectangle r {12, 13, "My Rectangle"};

width 12
heignt

Shape

Named_Rectangle

II LINKOPING
o UNIVERSITY

34/108

Inheritance

Initialization & Destruction

Named_Rectangle r {12, 13, "My Rectangle"};

width 12
heignt

Shape

Named_Rectangle

II LINKOPING
o UNIVERSITY

34/108

Inheritance

Initialization & Destruction

Named_Rectangle r {12, 13, "My Rectangle"};

height

Shape

II LINKOPING
o UNIVERSITY

34/108

Inheritance

Initialization & Destruction

Named_Rectangle r {12, 13, "My Rectangle"};

Shape

II LINKOPING
o UNIVERSITY

34/108

Inheritance

Initialization & Destruction

Named_Rectangle r {12, 13, "My Rectangle"};

Shape

II LINKOPING
o UNIVERSITY

Inheritance

Initialization & Destruction

34/108

Named_Rectangle r {12, 13,

"My Rectangle"};

LINKOPING
UNIVERSITY

Inheritance

Initialization & Destruction

® The top base class of the hierarchy will be constructed
first and then its derived class.

® Each data member will be construct top-to-bottom in
declaration order (regardless of the order in the data
member initialization list).

® The objects will be destructed in reverse order of
construction by first destroying each data member
bottom-to-top and then recursively destroying the base
class.

35/108

LINKOPING
II.“ UNIVERSITY

36/108

Inheritance

Binding to references

void print_height(Triangle& triangle)
{

i

cout << triangle.get_height() << endl;

void print_height(Rectangle& triangle)
{

}

cout << triangle.get_height() << endl;

LINKOPING
II.“ UNIVERSITY

36/108

Inheritance

Binding to references

void print_height(Shape& shape)
{

}

cout << shape.get_height() << endl;

LINKOPING
II.“ UNIVERSITY

Inheritance

Binding to references

® The implementation for both versions of
print_height() are exactly the same.

® Since get_height() for Rectangle and Triangle is
implemented in Shape, we can get away with just
looking at the Shape part of the objects.

® By taking the parameter as a Shape& we can bind both
Rectangle and Triangle in the same function.

37/108

LINKOPING
II.“ UNIVERSITY

38/108

Inheritance

area()

void print_area(Shape& shape)

{
3

cout << shape.area() << endl;

LINKOPING
II.“ UNIVERSITY

38/108

Inheritance

area()

Shape.cc: In function ‘void print_area(Shape&)’:
Shape.cc: ‘class Shape’ has no member named ‘area’

cout << shape. () << endl;

II LINKOPING
o UNIVERSITY

39/108

Inheritance

area()

® The parameter shape is of type Shape&, meaning we can
only access things that resides in Shape.

® This means that we cannot call area since it hasn’t been
declared in Shape.

LINKOPING
II.“ UNIVERSITY

Inheritance

Let’s add area() to Shape

40/108

class Shape
public:
70 oo
double area() const

return 0;

//
Y

class Rectangle : public Shape
public:

A ooa

double area() const

return width * height;

77 caa

II LINKOPING
o UNIVERSITY

40/108

Inheritance

Let’s add area() to Shape

int main()

{
Rectangle r {10, 15};

cout << print_area(r) << endl; // print 0

}

LINKOPING
II.“ UNIVERSITY

41/108

Inheritance

Let’s add area() to Shape

® We can solve the problem by adding area() to Shape!

However this poses a new problem. In print_area()
we always call Shape: :area().

This is not what we want, we want to call the area()
function of whichever type we pass in to the function...

This problem can be solved with Polymorphism!

LINKOPING
II.“ UNIVERSITY

II LINKOPING
o UNIVERSITY

43/108

Polymorphism

Many forms

Triangle r{...};
Shape& ref {r};

Shape
ref[:} area()

area()

Triangle

LINKOPING
II.“ UNIVERSITY

43/108

Polymorphism

Many forms

Triangle r{...};
Shape& ref {r};

Shape

ref[:} area()i X

Triangle

LINKOPING
II.“ UNIVERSITY

Polymorphism

Many forms

® The way we solve the problem with print_area()
calling the wrong version is by letting derived classes
override the functionality of Shape: :area().

® |.e. we want the implementation of Shape: :area() to
be replaceable,

® because then the derived class could simply replace the
implementation of area() in Shape with its own
implementation of area().

® This is done by declaring Shape: :area() as virtual.

44/108

LINKOPING
II.“ UNIVERSITY

45/108

Polymorphism

Many forms

class Shape
{
public:

// ...

virtual double area() const

{

return 0;
}
// ...

}

LINKOPING
II.“ UNIVERSITY

46/108

Polymorphism

Now it works!

int main()

{
Rectangle r {10, 15};

cout << print_area(r) << endl; // prints 150

}

LINKOPING
II.“ UNIVERSITY

46/108

Polymorphism

Now it works!

int main()

{
Rectangle r {10, 15};

cout << print_area(r) << %ndly // prints 150

}

LINKOPING
II.“ UNIVERSITY

47/108

Polymorphism

When can we use polymorphism?

Shape s{};
Rectangle r{10, 15};
Triangle t{3, 4};

Shape* ptr {&s};
ptr->area(); // returns 0

ptr = &r;
ptr->area(); // returns 150

ptr = &t;
ptr->area(); // returns 6

LINKOPING
II.“ UNIVERSITY

48/108

Polymorphism

Pointers & Polymorphism

Shape Shape Shape
=77 (| =77
area() , ! area() ! ,1 | area() , X !
area() / area() /
Rectangle Triangle

ptr D

II LINKOPING
o UNIVERSITY

48/108

Polymorphism

Pointers & Polymorphism

Shape Shape Shape
=77 (| =77
area() , ! area() ! ,1 | area() , X !
area() / area() /
Rectangle Triangle

ptr

II LINKOPING
o UNIVERSITY

48/108

Polymorphism

Pointers & Polymorphism

Shape Shape Shape
=77 (| =77
area() , ! area() ! ,1 | area() , X !
area() / area() /
Rectangle Triangle

ptr

II LINKOPING
o UNIVERSITY

48/108

Polymorphism

Pointers & Polymorphism

Shape Shape Shape
=77 (| =77
area() , ! area() ! ,1 | area() , X !
area() / /area() /
Rectangle Triangle

II LINKOPING
o UNIVERSITY

49/108

Polymorphism

There are pitfalls...

class Cuboid : public Shape

{
public:
Cuboid(double width, double height, double depth)
: Shape{width, height}, depth{depth}
{13

double area() const
return 2.0 * (width * height + width * depth + height * depth);
private:

double depth;
};

II LINKOPING
o UNIVERSITY

49/108

Polymorphism

There are pitfalls...

Cuboid c{5, 7, 3};
Shape s {c}; // slicing

Shape
width
height
area() Lxl
depth
area()

Cuboid

LINKOPING
II.“ UNIVERSITY

49/108

Polymorphism

There are pitfalls...

Cuboid c{5, 7, 3};
Shape s {c}; // slicing

Shape
width
height
area() Lxl
depth
area()

Cuboid

LINKOPING
II.“ UNIVERSITY

Polymorphism

There are pitfalls...

49/108

Cuboid c{5, 7, 3};
Shape s {c}; // slicing

Shape

width

Shape

height

area() D%}
depth
area()

Cuboid

width
height

area()}::}

LINKOPING
II.“ UNIVERSITY

49/108

Polymorphism

There are pitfalls...

Cuboid c{5, 7, 3};
Shape s {c}; // slicing

Shape Shape

width width
height height

area() }:,%} area() [:‘
depth
area()

Cuboid

LINKOPING
II.“ UNIVERSITY

Polymorphism

There are pitfalls...

® |tis possible to copy from a derived type into a the Base
class

® However, a variable has a fixed size, so when the derived
class has more members than the base class, these will
be lost.

® This is called slicing since we slice away everything that
does not fit in the Shape-object.

50/108

LINKOPING
II.“ UNIVERSITY

51/108

Polymorphism

There are pitfalls...

Cuboid c {2,3,4};
Shape s {c};
cout << s.area() << endl; // prints 0

LINKOPING
II.“ UNIVERSITY

51/108

Polymorphism

There are pitfalls...

Cuboid c {2,3,4};
Shape& s {c};
cout << s.area() << endl; // prints 24

LINKOPING
II.“ UNIVERSITY

Polymorphism

Rule of thumb

When calling a member function:

1. through a non-reference

52/108

LINKOPING
II.“ UNIVERSITY

52/108

Polymorphism

Rule of thumb

When calling a member function:

1. through a non-reference => Call the member function

LINKOPING
II.“ UNIVERSITY

52/108

Polymorphism

Rule of thumb

When calling a member function:
1. through a non-reference => Call the member function

2. through a non-pointer

LINKOPING
II.“ UNIVERSITY

52/108

Polymorphism

Rule of thumb

When calling a member function:
1. through a non-reference => Call the member function

2. through a non-pointer => Call the member function

LINKOPING
II.“ UNIVERSITY

52/108

Polymorphism

Rule of thumb

When calling a member function:
1. through a non-reference => Call the member function
2. through a non-pointer => Call the member function

3. thatis non-virtual

LINKOPING
II.“ UNIVERSITY

52/108

Polymorphism

Rule of thumb

When calling a member function:
1. through a non-reference => Call the member function
2. through a non-pointer => Call the member function

3. that is non-virtual => Call the member function

LINKOPING
II.“ UNIVERSITY

52/108

Polymorphism

Rule of thumb

When calling a member function:

=

. through a non-reference => Call the member function
2. through a non-pointer => Call the member function

3. thatis non-virtual => Call the member function
4

. otherwise

LINKOPING
II.“ UNIVERSITY

52/108

Polymorphism

Rule of thumb

When calling a member function:

[y

. through a non-reference => Call the member function
2. through a non-pointer => Call the member function

3. thatis non-virtual => Call the member function
4

. otherwise => Call the overriden version

LINKOPING
II.“ UNIVERSITY

53/108

Polymorphism

Conclusion

Always use pointers or
references when dealing
with polymorphic objects!

LINKOPING
II.“ UNIVERSITY

54/108

Polymorphism

Conclusion

If we always use pointers of references:

® we are guaranteed to always call the correct version,

we avoid the problems with slicing,

we don’t have to copy objects if not necessary.

LINKOPING
II.“ UNIVERSITY

55/108

Polymorphism

Another good reason for using polymorphism

std: :vector<Shape*> shapes {
new Triangle{3, 4},
new Rectangle{5, 6},
new Cuboid{3, 5, 7}

}
for (Shape* shape : shapes)
{
cout << shape->area() << endl;
}

LINKOPING
II.“ UNIVERSITY

56/108

Polymorphism

Another good reason for using polymorphism

® |f we have a shared base class with virtual functions:

® We can have base class pointer to objects of derived
classes

® This means we can store different types inside an
std: :vector.

® This is useful because we can now iterate over objects of
different types and get different results based on the
“real” type of the objects.

LINKOPING
II.“ UNIVERSITY

II LINKOPING
o UNIVERSITY

UML Diagrams

Background

® |nheritance and polymorphism are not exclusive to C++

® Other languages have the same feature, albeit with
some variations in the details of how it works.

® But these features are central to the idea of object
oriented programming.

® Because of this it is important to have a common
language that all programmers can understand, not just
C++ programmers.

58/108

LINKOPING
II.“ UNIVERSITY

59/108

UML Diagrams

Unified Modeling Language

II LINKOPING
o UNIVERSITY

UML Diagrams
What is UML?
® Avisual representation of how software
implementations are organized.
® Embeds entities and their relationships.

® |tis language agnostic which means it tries to
communicate design-ideas rather than specific
implementation details.

® |tis a huge modelling tool, but in this course we only
look at a very small subset.

60/108

LINKOPING
II.“ UNIVERSITY

UML Diagrams

Classes in UML

class MyClass

{
public:
MyClass(int x);
void do_stuff();
virtual int calculate(int y);
private:
void helper();
int data;
protected:
int z;

MyClass

- data:int
#z:int

+ MyClass(x : int)

+ do_stuff() : void

+ calculate(y : int) : int
- helper() : void

61/108

II LINKOPING
o UNIVERSITY

UML Diagrams

Classes in UML

class MyClass

{
public:
MyClass(int x);
void do_stuff();
virtual int calculate(int y);
private:
void helper();
int data;
protected:
int z;

- data:int
#z:int

+ MyClass(x : int)

+ do_stuff() : void

+ calculate(y : int) : int
- helper() : void

61/108

Class name

II LINKOPING
o UNIVERSITY

UML Diagrams

Classes in UML

class MyClass

{
public:
MyClass(int x);
void do_stuff();
virtual int calculate(int y);
private:
void helper();
int data;
protected:
int z;

MyClass

- data:int
#z:int

+ MyClass(x : int)

+ do_stuff() : void

+ calculate(y : int) : int
- helper() : void

61/108

Data members

II LINKOPING
o UNIVERSITY

UML Diagrams

Classes in UML

class MyClass

{
public:
MyClass(int x);
void do_stuff();
virtual int calculate(int y);
private:
void helper();
int data;
protected:
int z;

MyClass

- data:int
#z:int

+ MyClass(x : int)

+ do_stuff() : void

+ calculate(y : int) : int
- helper() : void

61/108

Member functions

II LINKOPING
o UNIVERSITY

UML Diagrams

Classes in UML

class MyClass

{
public:
MyClass(int x);
void do_stuff();
virtual int calculate(int y);
private:
void helper();
int data;
protected:
int z;

MyClass

[Eldata : int
#z:int

+ MyClass(x : int)

+ do_stuff() : void

+ calculate(y : int) : int
[lhelper() : void

private

61/108

II LINKOPING
o UNIVERSITY

UML Diagrams

Classes in UML

class MyClass

{
public:
MyClass(int x);
void do_stuff();
virtual int calculate(int y);
private:
void helper();
int data;
protected:
int z;

MyClass

- data:int
#z:int

EMyClass(x : int)
[Fdo_stuff() : void
HAcalculate(y : int) : int
- helper() : void

public

61/108

II LINKOPING
o UNIVERSITY

UML Diagrams

Classes in UML

class MyClass

{
public:
MyClass(int x);
void do_stuff();
virtual int calculate(int y);
private:
void helper();
int data;
protected:
int z;

MyClass

- data:int
FAlz: int

+ MyClass(x : int)

+ do_stuff() : void

+ calculate(y : int) : int
- helper() : void

protected

61/108

II LINKOPING
o UNIVERSITY

UML Diagrams

Classes in UML

class MyClass

{
public:
MyClass(int x);
void do_stuff();
virtual int calculate(int y);
private:
void helper();
int data;
protected:
int z;

MyClass

- data:int
#z:int

+ MyClass(x : int)
+ do_stuff() : void
- helper() : void

virtual

61/108

II LINKOPING
o UNIVERSITY

UML Diagrams

Explanation

® UML is meant to express common ideas

® In the diagram shown in the previous slides we saw that
a class in UML consists of three sections:

® The first section contains the class name

® The second section contains a list of all data
members (called attributes in UML)

® The third section contains a list of all member
functions (called operations in UML)

62/108

LINKOPING
II.“ UNIVERSITY

62/108

UML Diagrams

Explanation

® Each member (attribute of operation in UML) has a
visibility specified at the start of the member:

® Public is represented by +
® Private is reprsented by -
® Protected is represented by #

® Virtual member functions are marked with italics

LINKOPING
II.“ UNIVERSITY

62/108

UML Diagrams

Explanation

Note that types are declared after the name in UML.

LINKOPING
II.“ UNIVERSITY

63/108

UML Diagrams

Class relationships

Inheritance

® Composition

Aggregation

Association

LINKOPING
II.“ UNIVERSITY

63/108

UML Diagrams

Class relationships

® |nheritance

® Represents that one class inherits from another
class

®* BisanA
® Composition
® Aggregation

® Association

LINKOPING
II.“ UNIVERSITY

63/108

UML Diagrams

Class relationships

® |nheritance
® Composition

® Represents that one class stores an instance of
another class

® Bstoresan A
® Aggregation

® Association

LINKOPING
II.“ UNIVERSITY

63/108

UML Diagrams

Class relationships

® |nheritance
® Composition
® Aggregation

® Represents that one class refers to an instance of
another class

® BreferstoanA

® Association

LINKOPING
II.“ UNIVERSITY

UML Diagrams

Class relationships

® Inheritance
® Composition
® Aggregation
® Association

® Represents any other relationship two classes
might have.

® BusesanA

63/108

LINKOPING
II.“ UNIVERSITY

64 /108

UML Diagrams

Class relationships

Inheritance

class A A
{

//
}
class B : public A
{

// N
3

LINKOPING
II.“ UNIVERSITY

UML Diagrams

Class relationships

Composition

class A
{

//
3

class B : public A
{
//
private:
A my_a;
3

-my_a:A

64 /108

LINKOPING
II.“ UNIVERSITY

UML Diagrams

Class relationships

Aggregation

class A
{

//
3

class B : public A
{
//
private:
A* my_a_ptr;
Iy

-my_a_ptr: A*

64 /108

LINKOPING
II.“ UNIVERSITY

UML Diagrams

Class relationships

Association

class A
{

//
}

class B : public A
{
// ..
public:
void fun(A a);

}i

+fun(a: A) : void

64 /108

LINKOPING
II.“ UNIVERSITY

UML Diagrams

Example, shapes

Shape

width : double
height : double

+ Shape(w : double, h : double)
+ get_height() const : double

+ get_width() const : double
+area() const = 0 : double

65/108

Rectangle

Cuboid

- depth : double

+ Rectangle(w : double, h : double)
+ area() const : double

+ Cuboid(w : double, h : double, d : double)
+ area() const : double

LINKOPING
UNIVERSITY

UML Diagrams

Example, linked list

List

- first : Node*

Node

+insert(value : int) : void
+ remove(value : int) : void

+value : int
+next : Node*

66/108

LINKOPING
UNIVERSITY

II LINKOPING
o UNIVERSITY

More on Polymorphism

Example

class Complex_Shape : public Shape

{
public:
70 oo
double area() const

double sum{0.0};
for (Shape* shape : shapes)

sum += shape->area();

return sum;
}
private:
std::vector<Shape*> shapes;

}

68/108

II LINKOPING
o UNIVERSITY

More on Polymorphism

Example

class Complex_Shape : public Shape

{
public:
70 oo
double area() const

double sum{0.0};
for (Shape* shape : shapes)

sum += shape->area();

return sum;
}
private:
std::vector<Shape*> shapes;

}

shapes:

68/108

II LINKOPING
o UNIVERSITY

More on Polymorphism

Example

{
Complex_Shape shape { ... };
cout << shape.area() << endl;
} // what happens here?

shapes:

68/108

LINKOPING
II.“ UNIVERSITY

More on Polymorphism

Example

{
Complex_Shape shape { ... };
cout << shape.area() << endl;
} // what happens here?

68/108

II LINKOPING
o UNIVERSITY

More on Polymorphism

Example

{
Complex_Shape shape { ... };
cout << shape.area() << endl;
} // what happens here?

[\

Memory leak

68/108

II LINKOPING
o UNIVERSITY

69/108

More on Polymorphism

So we create a destructor!

class Complex_Shape : public Shape
{
public:
70 ooo
~Comp lex_Shape()
for (Shape* shape : shapes)

delete shape;

II LINKOPING
o UNIVERSITY

70/108

More on Polymorphism

So we create a destructor!

® When having manually managed memory in a vector we
have to delete it manually in the destructor.

® So of course we need one for Complex_Shape since it
keeps a record of various shapes.

LINKOPING
II.“ UNIVERSITY

More on Polymorphism

What about now?

Shape* ptr {new Complex_Shape{...}};
delete ptr;

71/108

ptr D

Complex_Shape

II LINKOPING
o UNIVERSITY

More on Polymorphism

What about now?

Shape* ptr {new Complex_Shape{...}};
delete ptr;

71/108

ptr [:}

Complex_Shape

II LINKOPING
o UNIVERSITY

More on Polymorphism

What about now?

Shape* ptr {new Complex_Shape{...}};
delete ptr;

ptr [:}

area()

shapes [:j

Complex_Shape

71/108

II LINKOPING
o UNIVERSITY

More on Polymorphism

What about now?

Shape* ptr {new Complex_Shape{...}};
delete ptr;

area()

shapes [:j

Complex_Shape

71/108

II LINKOPING
o UNIVERSITY

More on Polymorphism

What about now?

Shape* ptr {new Complex_Shape{...}};
delete ptr;

Memory leak

per (3

area()

\\shapes D/

CompTex—Shape

71/108

LINKOPING
II.“ UNIVERSITY

More on Polymorphism
What about now?

® When deleting ptr the compiler only sees the
Shape-portion of the object.

® This means that it will call the destructor for Shape, even
though it is really a Complex_Shape.

® So the problem is essentially that the compiler gets
tricked into thinking you are working with a Shape
object.

® We solved this problem earlier by adding virtual to our
functions.

72/108

LINKOPING
II.“ UNIVERSITY

73/108

More on Polymorphism

virtual-destructor

class Shape
public:

7 soo
virtual ~Shape() = default;
7Y ooa

}

II LINKOPING
o UNIVERSITY

More on Polymorphism

What about now?

Shape* ptr {new Complex_Shape{...}};
delete ptr;

74/108

Shape

ptr [:}

|
destructor ! X :
| |

destructor

shapes [:j

Complex_Shape

II LINKOPING
o UNIVERSITY

More on Polymorphism

What about now?

Shape* ptr {new Complex_Shape{...}};
delete ptr;

74/108

Shape

ptr [:}

|
destructor ! X :
| |

destructor

shapes [:j

Complex_Shape

II LINKOPING
o UNIVERSITY

More on Polymorphism

What about now?

Shape* ptr {new Complex_Shape{...}};
delete ptr;

74/108

Shape

ptr [:}

|
destructor ! X :
| |

destructor

shapes [:j

Complex_Shape

II LINKOPING
o UNIVERSITY

More on Polymorphism

What about now?

Shape* ptr {new Complex_Shape{...}};
delete ptr;

ptr [:]

74/108

II LINKOPING
o UNIVERSITY

More on Polymorphism

What about now?

Shape* ptr {new Complex_Shape{...}};
delete ptr;

ptr [:]

74/108

II LINKOPING
o UNIVERSITY

More on Polymorphism

What about now?

® By declaring the destructor as virtual we are allowing
derived classes to override the behaviour with their own
implementation.

® This means that whenever the destructor is called
through a pointer or a reference it will call the
appropriate destructor.

® Note: The destructor of a class must also destroy the
base class, but this is handled by the compiler so we
don’t have to think about it.

75/108

LINKOPING
II.“ UNIVERSITY

More on Polymorphism

Conclusion

Always declare the
destructor of a
polymorphic base class as
virtual!

76/108

LINKOPING
II.“ UNIVERSITY

77/108

More on Polymorphism

Sometimes humans make mistakes...

class My _Shape : public Shape
{
public:
// ...
double arae()
{
return 10.0;
}
/7 ...

}

LINKOPING
II.“ UNIVERSITY

77/108

More on Polymorphism

Sometimes humans make mistakes...

Shape* ptr {new My_Shape{}};
cout << ptr->area() << endl;
delete ptr;

LINKOPING
II.“ UNIVERSITY

77/108

More on Polymorphism

Sometimes humans make mistakes...

Shape* ptr {new My_Shape{}};
cout << ptr->area() << endl; // prints 0 (?!)
delete ptr;

LINKOPING
II.“ UNIVERSITY

77/108

More on Polymorphism

Sometimes humans make mistakes...

class My_Shape : public Shape

{
public:

7Y aac
double [arae|) Aha! A misspelling!
{

return 10.0;

b
/7.

i

LINKOPING
II.“ UNIVERSITY

77/108

More on Polymorphism

Sometimes humans make mistakes...

class My _Shape : public Shape
{
public:
// ...
double area()
{
return 10.0;
}
/7 ...

}

LINKOPING
II.“ UNIVERSITY

77/108

More on Polymorphism

Sometimes humans make mistakes...

Shape* ptr {new My_Shape{}};
cout << ptr->area() << endl;
delete ptr;

LINKOPING
II.“ UNIVERSITY

77/108

More on Polymorphism

Sometimes humans make mistakes...

Shape* ptr {new My_Shape{}};
cout << ptr->area() << endl; // STILL 0 ?!
delete ptr;

LINKOPING
II.“ UNIVERSITY

77/108

More on Polymorphism

Sometimes humans make mistakes...

class My_Shape : public Shape

{
public:

40 oo-
double area() We forgot const!
{

return 10.0;

b
/7.

i

LINKOPING
II.“ UNIVERSITY

77/108

More on Polymorphism

Sometimes humans make mistakes...

Shape* ptr {new My_Shape{}};
cout << ptr->area() << endl; // prints 10
delete ptr;

LINKOPING
II.“ UNIVERSITY

More on Polymorphism

Sometimes humans make mistakes...

When overriding virtual functions the signature must
match exactly

The name, the parameters, specifiers etc. it all must
match with the base class version of the function.

If it doesn’t, the compiler will create a normal function
in the derived class with these new properties.

This is not a syntax error, it is just a semantic error.

We have to make sure they match otherwise the
compiler gets confused...

78/108

LINKOPING
UNIVERSITY

79/108

More on Polymorphism

Can’t the compiler help us with these simple mistakes?

class My _Shape : public Shape
{
public:

// ...

double arae() override

{

return 10.0;
}
/7 ...

}

LINKOPING
II.“ UNIVERSITY

79/108

More on Polymorphism

Can’t the compiler help us with these simple mistakes?

shape.cc: ‘double My_Shape::arae()’ marked ‘override’,
but does not override

double () override

II LINKOPING
o UNIVERSITY

More on Polymorphism
Can’t the compiler help us with these simple mistakes?

¢ |If you mark a member function as override you tell the
compiler that you intended for this member function to
override a virtual function in the base class.

® This means that the compiler will check whether or not
it succeded in overriding the function.

¢ |f something is wrong, the compiler tell us and we can fix
it!

* |f we don’t use override, the code might compile with
the wrong behaviour which is really bad.

80/108

LINKOPING
II.“ UNIVERSITY

81/108

More on Polymorphism

Rule of thumb

Always mark functions
that are meant to override
as override!

LINKOPING
II.“ UNIVERSITY

82/108

More on Polymorphism

Let’s go back to Shape

class Shape

{
public:

// ...
virtual ~Shape() = default;
virtual double area() const

{

b
/7.

i

return 0;

LINKOPING
II.“ UNIVERSITY

83/108

More on Polymorphism

Let’s go back to Shape

® Does it really make sense that Shape: :area returns 0?
® \What does it mean to take the area of a general shape?

® Wouldn't it be better to just skip the implementation?

LINKOPING
II.“ UNIVERSITY

84/108

More on Polymorphism

pure-virtual function

class Shape

{
public:

/...
virtual ~Shape() = default;
virtual double area() const = 0;

i¥

LINKOPING
II.“ UNIVERSITY

85/108

More on Polymorphism

pure-virtual function

® You can add = 0 at the end of a virtual function
declaration to mark it as a pure-virtual function.

® This means that this function doesn’t have an
implementation.

LINKOPING
II.“ UNIVERSITY

86/108

More on Polymorphism

Abstract class

A class is abstract if it contains one or more pure-virtual
functions

LINKOPING
II.“ UNIVERSITY

87/108

More on Polymorphism

Abstract class

Shape s1{1, 3}; // Error: abstract
Triangle t{1,3}; // OK: not abstract
Shape s2{t}; // Error: abstract
Shape& s3{t}; // OK: reference allowed
Shape* s4{&t}; // OK: pointer allowed

LINKOPING
II.“ UNIVERSITY

More on Polymorphism

Abstract class

® No object of an abstract class is allowed to exist.

® This means that we cannot create Shape in any way
possible.

® The reason is that it contains functions that would crash
the program if called (because they do not have an
implementation).

88/108

LINKOPING
II.“ UNIVERSITY

89/108

More on Polymorphism

Abstract class

® We can however have a pointer or reference of type
Shape since these may refer to a derived class of Shape.

e All derived classes of an abstract class are also abstract
classes until all pure-virtual functions have been
overriden.

¢ Abstract classes are meant to represent general concept
that are used as a base class to more concrete things
(such as specific shapes).

LINKOPING
II.“ UNIVERSITY

More on Polymorphism

Importing things from the base class

90/108

class Shape
{
public:

Shape(double w, double h)
: width{w}, height{h}

{
3}
//
protected:
double width;

double height;
Y

class Rectangle : public Shape

{

public:
// create an identical constructor
// as the one in Shape
using Shape: :Shape;

// make width public in Rectangle
using Shape::width;

private:
// make height private in Rectangle

using Shape::height;
1

II LINKOPING
o UNIVERSITY

II LINKOPING
o UNIVERSITY

92/108

Type information

Static vs Dynamic type

Shape* ptr {new Triangle{3, 5}};

cout << ptr->area() << endl; Static:
delete ptr; : .
ptr = new Rectangle{3, 5}; DynamlC "

II LINKOPING
o UNIVERSITY

92/108

Type information

Static vs Dynamic type

ptr {new Triangle{3, 5}};
cout << ptr->area() << endl;

Static:
delete ptr; : .
ptr = new Rectangle{3, 5}; Dynamic:

II LINKOPING
o UNIVERSITY

92/108

Type information

Static vs Dynamic type

ptr {new Triangle{3, 5}};
cout << ptr->area() << endl;

Static: Shape*
delet tr; : .
pire:engerectangle{& 5}; DynamlC "

II LINKOPING
o UNIVERSITY

92/108

Type information

Static vs Dynamic type

ptr {new [riangle(s, 5}

cout << ptr->area() << endl;

Static: Shape*
delet tr; : .
pire:engerectangle{& 5}; DynamlC "

II LINKOPING
o UNIVERSITY

92/108

Type information

Static vs Dynamic type

BRape™] ptr {new [Frianglels, 5}};
cout << ptr->area() << endl;

Static: Shape*

delete ptr;
ptr = new Rectangle{3, 5};

Dynamic: Triangle

II LINKOPING
o UNIVERSITY

Type information

Static vs Dynamic type

ptr {new Triangle{3, 5}};

cout << ptr->area() << endl;

delete ptr;
ptr = new Rectangle|(s, s};

Static: Shape*
Dynamic: Triangle

92/108

II LINKOPING
o UNIVERSITY

92/108

Type information

Static vs Dynamic type

ptr {new Triangle{3, 5}};
cout << ptr->area() << endl;

Static: Shape*

delete ptr;
ptr = new Rectangle|(s, s};

Dynamic: Rectangle

II LINKOPING
o UNIVERSITY

93/108

Type information

Static vs Dynamic type

® The static type of a variable is the type it is declared as
(it never changes)

® The dynamic type is the type of the object a pointer
points to

® The dynamic type can change to any class in the
hierarchy of the static type.

LINKOPING
II.“ UNIVERSITY

94 /108

Type information

Example

class Cuboid : public Shape
{
public:

// ...

virtual double volume() const

{

return width * height * depth;
}
/).

}

LINKOPING
II.“ UNIVERSITY

94 /108

Type information

Example

Shape* ptr {new Cuboid{3, 4, 5}};

// doesn't work, volume is not
// declared in Shape
cout << ptr->volume() << endl;

LINKOPING
II.“ UNIVERSITY

Type information

Example

® Which functions you can call is directly related to the
static type.

® |.e. it doesn’t matter that the dynamic type of ptr is
Cuboid, we can’t call volume through a Shape pointer.

® Therefore we must, temporarily change the static type
to match the dynamic type.

95/108

LINKOPING
II.“ UNIVERSITY

96/108

Type information

Example

Shape* ptr {new Cuboid{3, 4, 5}};

cout << static_cast<Cuboid*>(ptr)->volume()
<< endl;

LINKOPING
II.“ UNIVERSITY

97/108

Type information

Example

® We can use static_cast to (temporarily) change ptr
into a Cuboid*, that way we can call volume().

® But this is very dangerous...

LINKOPING
II.“ UNIVERSITY

98/108

Type information

When it all comes crashing down...

Shape* ptr {new Rectangle{3, 4}};

cout << static_cast<Cuboid*>(ptr)->volume()
<< endl;

LINKOPING
II.“ UNIVERSITY

98/108

Type information

When it all comes crashing down...

Shape* ptr“{mew-Rectangle{3, 4}};

cout << static_cast<Cuboid/>(ptr)->volume()
<< endl;

LINKOPING
II.“ UNIVERSITY

99/108

Type information

When it all comes crashing down...

® We can cast ptr to a pointer to any derived class,

® However, this becomes a problem if the type we are
casting to is not compatible with the dynamic type...

® This will, in most cases, lead to the crashing of your
program...

® Would be nice if we could check first if it was possible
before we cast...

LINKOPING
II.“ UNIVERSITY

100/108

Type information

dynamic_cast

Shape* ptrl {new Cuboid{3, 4, 5}},;
Shape* ptr2 {new Rectangle{3, 4}};

Cuboid* c1 {dynamic_cast<Cuboid*>(ptr1)};
Cuboid* c2 {dynamic_cast<Cuboid*>(ptr2)};

// ¢l is a pointer to a valid Cuboid object

// c2 == nullptr, since ptr2 does not
// point to a valid Cuboid object

LINKOPING
II.“ UNIVERSITY

Type information

dynamic_cast

® dynamic_cast is like static_cast, but before it
performs the conversion it will test that the dynamic
type is compatible (i.e. is derived from or equal to the
type we are casting to)

® if they are compatible it will return a valid pointer with
the specified static type,

¢ if they are not compatible it will return nullptr.

101/108

LINKOPING
II.“ UNIVERSITY

102/108

Type information

Checking if dynamic type is compatible

Shape* ptr {...};

Cuboid* cuboid {dynamic_cast<Cuboid*>(ptr)};
if (cuboid != nullptr)
{
// only print volume if it is a cuboid
cout << cuboid->volume() << endl;

3

LINKOPING
II.“ UNIVERSITY

103 /108

Type information

Also works with references!

Cuboid c {3,4,5};
Shape& s {c};

cout << dynamic_cast<Cuboid&>(s).volume() << endl;

LINKOPING
II.“ UNIVERSITY

103 /108

Type information

Also works with references!

Rectangle r {3,4};
Shape& s {c};

cout << dynamic_cast<Cuboid&>(s).volume() << endl;

LINKOPING
II.“ UNIVERSITY

103 /108

Type information

Also works with references!

$ g++ shape.cc
$./a.out
terminate called after throwing an instance of 'std::bad_cast'

what(): std::bad_cast
Aborted (core dumped)

II LINKOPING
o UNIVERSITY

II LINKOPING
o UNIVERSITY

105/108

Exceptions

What just happend?!

LINKOPING
II.“ UNIVERSITY

105/108

Exceptions

What just happend?!

e References cannot be empty

LINKOPING
II.“ UNIVERSITY

Exceptions

What just happend?!

e References cannot be empty

* What do we do to signal error?

105/108

LINKOPING
II.“ UNIVERSITY

Exceptions

What just happend?!

e References cannot be empty
* What do we do to signal error?

® Exceptions!

105/108

LINKOPING
II.“ UNIVERSITY

Exceptions

Model

int main()
try

funi();
70 oon

catch (std::exception& e)

cerr << e.what();

void funi()

70 can
fun2();
// ...
return;

106 /108

void fun2()

return;

II LINKOPING
o UNIVERSITY

Exceptions

Model

int main()
try
{ /
funi();
70 oon
catch (std::exception& e)

cerr << e.what();

pvoid funi()
{

70 can
fun2();
// ...
return;

106 /108

void fun2()

return;

II LINKOPING
o UNIVERSITY

106 /108

Exceptions
Model
int main()
Ery //}\éoid funi()
P éﬁnéo;//ﬁoi:t:::%()
catch (std: :exception& e) Covarns '

cerr << e.what();

II LINKOPING
o UNIVERSITY

106 /108

Exceptions
Model
int main()

Ery | _——»void funi()
funl();/ E // /}Void fun2()
S fun2();,—f—”’__—__f_return;

catch (std::exception& e) /7 ---14"""

return;

cerr << e.what();

II LINKOPING
o UNIVERSITY

106 /108

Exceptions

Model

int main()

try

pvoid funi()
{

: ||
funi() ;/ void fun2()
fu |_—

70 ooo
} o {‘-‘--\~"“--___ funz();——””’__——_E—return;
catch (std: 70 aoc 4_____— 3

:exception& e) TS
7

}

cerr << e.what();

II LINKOPING
o UNIVERSITY

Exceptions

Model

int main()
try

funi();
70 oon

catch (std::exception& e)

cerr << e.what();

void funi()

70 can
fun2();
// ...
return;

106 /108

void fun2()

throw std::exception{""};

II LINKOPING
o UNIVERSITY

106 /108

Exceptions
Model
int main()
try 3
{ | _——»void funi()
funl();/ { Py void fun2()
v ()8 throw std::exception{""};
catch (std::exception& e) 7 occ a !
o return;

cerr << e.what(); }

II LINKOPING
o UNIVERSITY

106 /108

Exceptions
Model
int main()
Ery //}\éoid fun1() .
i i€ s stasncpeionces
catch (std::exceptiong e) ﬁétl'm'” iexceptiont;
}

cerr << e.what();

II LINKOPING
o UNIVERSITY

Exceptions

Model

int main()

try

{ /—
funi();
70 oon

catch (std::exception& e)

{
&r« e.what();

| _——»void funi()

{
77 oo
fun2();—””"
I oo

return;

106 /108

}void fun2()

throw Std::exception{"”};~‘\\

II LINKOPING
o UNIVERSITY

107 /108

Exceptions

Model

® An exception is an object we throw.
® Throwing an exception will abort the current function,

¢ it will move backwards in the function call chain until it
hits a try-catch block.

® Throwing is seperate from returning.

® We should only throw exceptions when something went
wrong.

LINKOPING
II.“ UNIVERSITY

Exceptions

dynamic_cast

108 /108

#include <stdexcept>
int main()

Rectangle r {3,4};
Shape& s {c};

try
{
cout << dynamic_cast<Cuboid&>(s).volume()
}
catch (std::bad_cast& e)
cout << "s is not a Cuboid!" << endl;

catch (std::exception& e)

cout << "Unknown error." << endl;

<< endl;

LINKOPING
UNIVERSITY

II LINKOPING
o UNIVERSITY

www.liu.se

	std::vector
	Command-line argument
	Inheritance
	Polymorphism
	UML Diagrams
	More on Polymorphism
	Type information
	Exceptions

