
TDDE18 & 726G77
Classes & Pointers

Christoffer Holm

Department of Computer and information science



1 Classes
2 List lab
3 Special Member Functions



2 / 71

Classes
What is a class?

struct Date
{
int day;
int month;
int year;

};

bool operator<(Date d1, Date d2)
{
// ...

}

Date next_date(Date d)
{
// ...

}



2 / 71

Classes
What is a class?

struct Date
{
int day;
int month;
int year;

};

bool operator<(Date d1, Date d2)
{
// ...

}

Date next_date(Date d)
{
// ...

}

class Date
{
public:
int day;
int month;
int year;

bool operator<(Date d)
{
// ...

}

Date next_date()
{
// ...

}
};



3 / 71

Classes
What is a class?

‚ A class is like a struct.

‚ With classes we couple data and functionality.

‚ That is; we store the functions and the data in a neatly
packaged structure called a class.



4 / 71

Classes
How does it work?

Date today {27, 9, 2019};
Date tomorrow {next_date(today)};

if (today < tomorrow)
{
// ...

}



4 / 71

Classes
How does it work?

Date today {27, 9, 2019};
Date tomorrow {next_date(today)};

if (today < tomorrow)
{
// ...

}

Date today {27, 9, 2019};
Date tomorrow {today.next_date()};

if (today < tomorrow)
{
// ...

}



4 / 71

Classes
How does it work?

Date today {27, 9, 2019};
Date tomorrow {next_date(today)};

if (operator<(today, tomorrow))
{
// ...

}

Date today {27, 9, 2019};
Date tomorrow {today.next_date()};

if (today.operator<(tomorrow))
{
// ...

}



5 / 71

Classes
How does it work?

‚ The functions that are declared inside a class are called
member functions.

‚ They are not like ordinary functions, because they have
a hidden argument.

‚ The hidden argument is the object we are calling this
function from.

‚ A member function is called like this: obj.function()
where obj is the current object we are calling this
function on (the hidden parameter).



6 / 71

Classes
this

struct Date
{
// ...

};

void increase_year(Date& date)
{
++(date.year);

}
// ...

class Date
{
// ...

void increase_year()
{
++(this->year);

}
// ...

};



6 / 71

Classes
this

struct Date
{
// ...

};

void increase_year(Date& date)
{
++(date.year);

}
// ...

class Date
{
// ...

void increase_year()
{
++year;

}
// ...

};



7 / 71

Classes
this

‚ You can access this hidden parameter through the this
keyword.

‚ Instead of accessing data members (fields) through . we
use -> for this.

‚ However, most of the time we don’t need to use this at
all.

‚ As long as there is no ambiguity what is meant we can
just skip this-> completely.



8 / 71

Classes
When is thismandatory?

class Date
{
// ...
void set_year(int year)
{
year = year;

}
};



8 / 71

Classes
When is thismandatory?

class Date
{
// ...
void set_year(int year)
{
this->year = year;

}
};



8 / 71

Classes
When is thismandatory?

class Date
{
// ...
void set_year(int y)
{
year = y;

}
};



9 / 71

Classes
When is thismandatory?

‚ When there is a more local variable with the same name
as the member you are trying to access.

‚ In this example we have two things called year, the data
member in the class and the parameter.

‚ The parameter is closer (more local), so the compiler will
automatically choose that whenever we just write year.

‚ In this case we have to further specify that it is the
member we want, which we do by using this.



10 / 71

Classes
Why though?

Date today {27, 9, 2019};

today.day = 48; // should not be allowed



11 / 71

Classes
Why though?

‚ When coupling data and functionality we want the user
of our class to only use the specified functions.

‚ The user should not have the power to modify data
fields however they want.

‚ In this case this would allow the user to set a
nonsensical value to data members.

‚ Therefore it would be nice to hide things inside our class.

‚ This is done with access levels.



12 / 71

Classes
private & public

class Date
{
public:

bool operator<(Date const& d) const
{
// ...

}

Date next_date()
{
// ...

}

private:
int day;
int month;
int year;

};



12 / 71

Classes
private & public

class Date
{
public:

bool operator<(Date const& d) const
{
// ...

}

Date next_date()
{
// ...

}

private:
int day;
int month;
int year;

};

int main()
{

Date today {27, 9, 2019};
// not allowed
today.day = 48;

}



12 / 71

Classes
private & public

class Date
{
public:

bool operator<(Date const& d) const
{
// ...

}

Date next_date()
{
// ...

}

private:
int day;
int month;
int year;

};

int main()
{
// will not work
Date today {27, 9, 2019};
// not allowed
today.day = 48;

}



13 / 71

Classes
private & public

‚ We can start blocks of access levels.

‚ All functions and data members placed after a public
declaration will be freely available from outside of the
class through an object.

‚ All members placed after a private declaration will only
be accessible from inside the member functions.

‚ I.e. private allows us to hide away things that only the
class is allowed to see.



14 / 71

Classes
private & public

‚ However there is a problem.

‚ Once the data members are private the compiler
cannot initialize those data members as they are now
private, meaning only a member function has access to
them.

‚ Fortunately we can create special member functions
called constructors that handles the initialization of data
members.



15 / 71

Classes
Constructors

class Date
{
public:

Date(int d, int m, int y)
// member initialization list
: day{d}, month{m}, year{y}

{
}

// ...

private:
int day;
int month;
int year;

};



15 / 71

Classes
Constructors

class Date
{
public:

Date(int d, int m, int y)
// member initialization list
: day{d}, month{m}, year{y}

{
}

// ...

private:
int day;
int month;
int year;

};

int main()
{
// works!
Date today {27, 9, 2019};
// not allowed
today.day = 48;

}



16 / 71

Classes
Constructors

‚ Constructors work like normal functions with 2
exceptions:

‚ A constructor is only called when an object is created,

‚ they initializes variables inside themember initialization
list.



17 / 71

Classes
Constructors

‚ You can declare multiple constructors as long as they
have a unique set of parameters.

‚ When initializing the object the user passes in
parameters and the appropriate constructor will be
called based on the parameters passed in.



18 / 71

Classes
Member initialization list

‚ The member initialization list is a comma‐separated list
of all the data members that this constructor is
supposed to initialize.

‚ Each member in the list must be initialized with either
{...} or (...).



19 / 71

Classes
Declaration & Definition

class Date; // class declaration
class Date // class definition
{

// ...
Date(int d, int m, int y); // declare a construtor
void increase_year(); // declare a member function
// ...

private: // data members
int day;
int month;
int year;

};

Date::Date(int d, int m, int y) // define a construtor
: day{d}, month{m}, year{y} // member initialization list

{ }

void Date::increase_year() // define a member function
{

++year;
}



20 / 71

Classes
Declaration & Definition

‚ It is possible to declare a class before defining it, just as
we can do with functions.

‚ You can also declare member functions before defining
them.

‚ To define a member function after the class has been
defined you add the ClassName:: before the member
function name to communicate which class this member
function resides in.



21 / 71

Classes
constmember functions

class Date
{
// ...
int get_day()
{
day = 7; // allowed
return day;

}
};



21 / 71

Classes
constmember functions

class Date
{
// ...
int get_day() const
{
day = 7; // NOT allowed
return day;

}
};



22 / 71

Classes
constmember functions

‚ Inside a member function you have access to private
data members.

‚ This means that a function can modify these members
however they want.

‚ If another programmer decides to use your function
they might not expect it to modify anything.

‚ You can declare your member functions as const which
disallows they modification of data members inside this
specific function.



23 / 71

Classes
constmember functions

You might want to do this for two major reasons:

1. This makes sure that you, the programmer doesn’t
accidentally change a variable when you are not
supposed to.

2. It also communicates to other programmers that this
member function won’t change the state of the object,
meaning it is always safe to call in all contexts.



24 / 71

Classes
constmember functions

class Date
{
// ...
int get_day()
{
return day;

}
// ...

};

Date d1{27, 9, 2019};
cout << d1.get_day() << endl;

Date const d2{28, 9, 2019};

// doesn't work
cout << d2.get_day() << endl;



24 / 71

Classes
constmember functions

class Date
{
// ...
int get_day() const
{
return day;

}
// ...

};

Date d1{27, 9, 2019};
cout << d1.get_day() << endl;

Date const d2{28, 9, 2019};

// works!
cout << d2.get_day() << endl;



25 / 71

Classes
constmember functions

‚ If an object is declared as const then no data members
can be modified.

‚ This means that only member functions that are
declared as const are allowed to be called from these
objects, with the exception of constructors and the
destructor.



26 / 71

Classes
Inner class

class Outer
{
public:

void fun();

class Inner
{
public:

void fun();

};

};

void Outer::fun()
{
// ...

}

void Outer::Inner::fun()
{
// ...

}

Outer o{};
o.fun();

Outer::Inner i{}; // works!
i.fun();



26 / 71

Classes
Inner class

class Outer
{
public:

void fun();

private:

class Inner
{
public:

void fun();

};

};

void Outer::fun()
{
// ...

}

void Outer::Inner::fun()
{
// ...

}

Outer o{};
o.fun();

Outer::Inner i{}; // doesn't work
i.fun();



27 / 71

Classes
Inner class

‚ It is possible to declare classes inside other classes.

‚ These classes adhere to the access level they are placed
in.

‚ Meaning an inner class declared as private is not
accessible from the outside.

‚ To define member functions of an inner class you first
have to access the outer class, and then the inner class.

‚ So you write Outer::Inner:: before the function name.



28 / 71

Classes
friend

bool same_month(Date d1, Date d2);
class Date
{

// ...

private:

int day;
int month;
int year;

friend bool same_month(Date d1, Date d2);
};

bool same_month(Date d1, Date d2)
{
return d1.year == d2.year && d1.month == d2.month;

}



29 / 71

Classes
friend

‚ It is possible to declare a function as a friend to your
class.

‚ This allows that friend to access the private members.

‚ Should only be used if absolutely necessary, since it
couples the class with a function that is not a member.



1 Classes
2 List lab
3 Special Member Functions



31 / 71

List lab

‚ In lab 3 you are going to create a linked list.

‚ This is a list that consists of values that the user inserts.

‚ Each value is stored in a node which then points to the
next value in the list.

‚ On the next slide is a simple implementation of a node.



32 / 71

List lab
Node

struct Node
{
int value;
Node* next;

};

Node n2 {2, nullptr};
Node n1 {8, &n2};

Node* first {&n1};



32 / 71

List lab
Node

struct Node
{
int value;
Node* next;

};

Node n2 {2, nullptr};
Node n1 {8, &n2};

Node* first {&n1};

first

value 8

next

value 2

next



32 / 71

List lab
Node

struct Node
{
int value;
Node* next;

};

Node n2 {2, nullptr};
Node n1 {8, &n2};

Node* first {&n1};

first 8 2



33 / 71

List lab
Node

‚ first points to whichever element is first in the list.

‚ Each Node then points to the next element in the list.

‚ Once the next pointer is nullptr we have reached the
end of the list.



34 / 71

List lab
Accessing data in Node

Node n2 {2, nullptr};
Node n1 {8, &n2};

Node* first {&n1};

cout << (*first).value << endl;



34 / 71

List lab
Accessing data in Node

Node n2 {2, nullptr};
Node n1 {8, &n2};

Node* first {&n1};

cout << first->value << endl;



35 / 71

List lab
Accessing data in Node

‚ You access data members in an object that a pointer
points to by either:

‚ Dereferencing the pointer to get normal access
((*first).value), or

‚ Using the -> operator (first->value).

‚ These two ways are exactly the same.

‚ It is recommended to use ->, since it is easier on the
eyes.



36 / 71

List lab
List

class List
{
public:

// ...

private:
Node* first{};

};



37 / 71

List lab
insert

class List
{
public:

void remove();
void insert(int value)
{
Node* tmp{new Node{value}};
tmp->next = first;
first = tmp;

}

private:
Node* first{};

};

first



37 / 71

List lab
insert

class List
{
public:

void remove();
void insert(int value)
{
Node* tmp{new Node{value}};
tmp->next = first;
first = tmp;

}

private:
Node* first{};

};

first 9



37 / 71

List lab
insert

class List
{
public:

void remove();
void insert(int value)
{
Node* tmp{new Node{value}};
tmp->next = first;
first = tmp;

}

private:
Node* first{};

};

first 9

tmp



37 / 71

List lab
insert

class List
{
public:

void remove();
void insert(int value)
{
Node* tmp{new Node{value}};
tmp->next = first;
first = tmp;

}

private:
Node* first{};

};

first 9

tmp



37 / 71

List lab
insert

class List
{
public:

void remove();
void insert(int value)
{
Node* tmp{new Node{value}};
tmp->next = first;
first = tmp;

}

private:
Node* first{};

};

first 9

tmp



37 / 71

List lab
insert

class List
{
public:

void remove();
void insert(int value)
{
Node* tmp{new Node{value}};
tmp->next = first;
first = tmp;

}

private:
Node* first{};

};

first 9 4



37 / 71

List lab
insert

class List
{
public:

void remove();
void insert(int value)
{
Node* tmp{new Node{value}};
tmp->next = first;
first = tmp;

}

private:
Node* first{};

};

first 9 4

tmp



37 / 71

List lab
insert

class List
{
public:

void remove();
void insert(int value)
{
Node* tmp{new Node{value}};
tmp->next = first;
first = tmp;

}

private:
Node* first{};

};

first 9 4

tmp



37 / 71

List lab
insert

class List
{
public:

void remove();
void insert(int value)
{
Node* tmp{new Node{value}};
tmp->next = first;
first = tmp;

}

private:
Node* first{};

};

first 9 4

tmp



37 / 71

List lab
insert

class List
{
public:

void remove();
void insert(int value)
{
Node* tmp{new Node{value}};
tmp->next = first;
first = tmp;

}

private:
Node* first{};

};

first 9 4



38 / 71

List lab
insert

‚ We have to allocate a new Node at insertion, why?

‚ If tmp is a normal variable, then it will disappear once
the insert function has finished.

‚ But we want it to persist until we want to remove it.

‚ Therefore we have to allocate nodes with new.



39 / 71

List lab
A problem!

class List
{
public:

void remove()
{
first = first->next;

}
void insert(int value);

private:
Node* first{};

};

first 9 4



39 / 71

List lab
A problem!

class List
{
public:

void remove()
{
first = first->next;

}
void insert(int value);

private:
Node* first{};

};

first 9 4

Remove



39 / 71

List lab
A problem!

class List
{
public:

void remove()
{
first = first->next;

}
void insert(int value);

private:
Node* first{};

};

first 9 4



39 / 71

List lab
A problem!

class List
{
public:

void remove()
{
first = first->next;

}
void insert(int value);

private:
Node* first{};

};

first 9 4



39 / 71

List lab
A problem!

class List
{
public:

void remove()
{
first = first->next;

}
void insert(int value);

private:
Node* first{};

};

first 9 4

Memory leak



40 / 71

List lab
A problem!

‚ When removing a node it does not disappear by itself.

‚ Since we called new to create it, we have to call delete
on the node for it to actually disappear.

‚ The pointer that kept track of our memory got lost,
meaning there is no way for us to access it again.

‚ If this is done repeatedly by our program our memory
will slowly be filled up by these inaccessible objects.

‚ This type of problem is calledmemory leak.



41 / 71

List lab
Let’s try again!

class List
{
public:

void remove()
{
Node* tmp = first;
first = first->next;
delete tmp;

}
void insert(int value);

private:
Node* first{};

};

first 9 4



41 / 71

List lab
Let’s try again!

class List
{
public:

void remove()
{
Node* tmp = first;
first = first->next;
delete tmp;

}
void insert(int value);

private:
Node* first{};

};

first 9 4

Remove



41 / 71

List lab
Let’s try again!

class List
{
public:

void remove()
{
Node* tmp = first;
first = first->next;
delete tmp;

}
void insert(int value);

private:
Node* first{};

};

first 9 4

tmp



41 / 71

List lab
Let’s try again!

class List
{
public:

void remove()
{
Node* tmp = first;
first = first->next;
delete tmp;

}
void insert(int value);

private:
Node* first{};

};

first 9 4

tmp



41 / 71

List lab
Let’s try again!

class List
{
public:

void remove()
{
Node* tmp = first;
first = first->next;
delete tmp;

}
void insert(int value);

private:
Node* first{};

};

first 9

tmp



41 / 71

List lab
Let’s try again!

class List
{
public:

void remove()
{
Node* tmp = first;
first = first->next;
delete tmp;

}
void insert(int value);

private:
Node* first{};

};

first 9



42 / 71

List lab
Let’s try again!

‚ Now we can insert and remove values correctly in our
list without any memory leaks.

‚ This was done because we delete the node that gets
removed, thus giving that memory back to the operating
system.

‚ But there is still a problem... What happens when the
list is destroyed?

‚ Then everything will leak since we haven’t called delete
on the nodes that are left.



1 Classes
2 List lab
3 Special Member Functions



44 / 71

Special Member Functions
Destructor

class List
{
public:

List() // constructor
: first{nullptr}

{
}

~List() // destructor
{
// go through each node in our list and call delete on them

}

void remove();
void insert(int value);

private:
Node* first{};

};



45 / 71

Special Member Functions
Destructor

‚ The constructor gets called when an object is created,

‚ There is a related function we can create called the
destructor.

‚ The destructor is instead called when the object is
destroyed.

‚ In the destructor we should remove anything that
doesn’t get removed by itself.

‚ The destructor has the same name as the class, but with
a ~ added to the start.



46 / 71

Special Member Functions
Constructors & destructors

{
List my_list{}; // the constructor is called

// do things with the list

} // the destructor is called



47 / 71

Special Member Functions
Constructors & destructors

‚ When a List is created the constructor is called.

‚ Once the List falls out of scope, the destructor is called
(this happens when the variable is destroyed).



48 / 71

Special Member Functions
Copies

int main()
{
List my_list{};
my_list.insert(5);
my_list.insert(2);
{
// copy my_list into copy
List copy {my_list};

}
}

first

my_list

first

copy

2 5



48 / 71

Special Member Functions
Copies

int main()
{
List my_list{};
my_list.insert(5);
my_list.insert(2);
{
// copy my_list into copy
List copy {my_list};

}
}

first

my_list

first

copy

2 5



48 / 71

Special Member Functions
Copies

int main()
{
List my_list{};
my_list.insert(5);
my_list.insert(2);
{
// copy my_list into copy
List copy {my_list};

}
}

first

my_list



48 / 71

Special Member Functions
Copies

int main()
{
List my_list{};
my_list.insert(5);
my_list.insert(2);
{
// copy my_list into copy
List copy {my_list};

}
}

first

my_list



48 / 71

Special Member Functions
Copies

int main()
{
List my_list{};
my_list.insert(5);
my_list.insert(2);
{
// copy my_list into copy
List copy {my_list};

}
}

first

my_list

Already removed



49 / 71

Special Member Functions
Copies

‚ We can copy objects in C++ and our list is no exception.

‚ The compiler doesn’t understand how to properly copy
our list.

‚ It will simply say that they point to exactly the same lists.

‚ This happens because the compiler will just copy the
first pointer, not its content.

‚ This is called a shallow copy.



50 / 71

Special Member Functions
Deep copies

first

my_list

2 5

first

copy



50 / 71

Special Member Functions
Deep copies

first

my_list

2 5

first

copy

2



50 / 71

Special Member Functions
Deep copies

first

my_list

2 5

first

copy

2 5



51 / 71

Special Member Functions
Deep copies

‚ A deep copy is when we copy everything, not just the
pointers.

‚ In this particular case it is when we copy each node in
my_list into copy (in the same order).



52 / 71

Special Member Functions
Copy constructor

class List
{
public:

List(); // default constructor

List(List const& other)
{
// perform a deep copy of the lists

}

~List(); // destructor
void remove();
void insert(int value);

private:
Node* first{};

};



53 / 71

Special Member Functions
Copy constructor

‚ A copy constructor is a special constructor that tells the
compiler how it is supposed to copy our class.

‚ It is the constructor that takes an object of the same
class as a const&.

‚ The compile calls this constructor whenever it wants to
copy an object of your class.



54 / 71

Special Member Functions
Copy assignment

List my_list{};
my_list.insert(5);
my_list.insert(2);

List copy{};
copy.insert(1);
copy.insert(4);

// copy assignment
copy = my_list;



55 / 71

Special Member Functions
Copy assignment

‚ Copy assignment is how we copy objects into each other
after they have been created.

‚ They suffer from the same problem as the copy
constructor;

‚ namely that they have to perform a deep copy, which
the compiler doesn’t know how to do.

‚ But they suffer from one other problem...



56 / 71

Special Member Functions
Copy assignment

first

my_list

2 5

first

copy

4 1



56 / 71

Special Member Functions
Copy assignment

first

my_list

2 5

first

copy

4 1

2 5



56 / 71

Special Member Functions
Copy assignment

first

my_list

2 5

first

copy

4 1

2 5



56 / 71

Special Member Functions
Copy assignment

first

my_list

2 5

first

copy

4 1

2 5

Memory leak



56 / 71

Special Member Functions
Copy assignment

first

my_list

2 5

first

copy



57 / 71

Special Member Functions
Copy assignment

‚ The list we are copying to might already contain
elements.

‚ If just perform a deep copy than the previous elements
will be lost (i.e. we get a memory leak).

‚ This is a big problem. So when doing copy assignment,
we have to make sure that we remove the previous
elements.



58 / 71

Special Member Functions
Copy assignment

first

my_list

2 5

first

copy

4 1



58 / 71

Special Member Functions
Copy assignment

first

my_list

2 5

first

copy

4 1

2 5



58 / 71

Special Member Functions
Copy assignment

first

my_list

2 5

first

copy

2 5



58 / 71

Special Member Functions
Copy assignment

first

my_list

2 5

first

copy

2 5



59 / 71

Special Member Functions
Copy assignment operator

class List
{
public:

List(); // default constructor
List(List const& other); // copy constructor
~List(); // destructor

List& operator=(List const& other)
{
// remove previous list and deep copy other
return *this;

}

// ...
};



60 / 71

Special Member Functions
Copy assignment operator

‚ The copy assignment operator is a special operator
overload that allows us to specify what happens during
copy assignment.

‚ This operatormust be declared inside the class.

‚ It must also return a reference to the list that was just
assigned to.

‚ This is done by returning *this.

‚ Here we dereference this which is a pointer to the
object we are inside right now.



61 / 71

Special Member Functions
Temporary objects

List get_list()
{
List list{};
list.insert(5);
list.insert(3);
return list;

}

List my_list {get_list()};

first

my_list



61 / 71

Special Member Functions
Temporary objects

List get_list()
{
List list{};
list.insert(5);
list.insert(3);
return list;

}

List my_list {get_list()};

first

my_list

first

list



61 / 71

Special Member Functions
Temporary objects

List get_list()
{
List list{};
list.insert(5);
list.insert(3);
return list;

}

List my_list {get_list()};

first

my_list

first

list

3 5



61 / 71

Special Member Functions
Temporary objects

List get_list()
{
List list{};
list.insert(5);
list.insert(3);
return list;

}

List my_list {get_list()};

first

my_list

first

list

3 5

first



61 / 71

Special Member Functions
Temporary objects

List get_list()
{
List list{};
list.insert(5);
list.insert(3);
return list;

}

List my_list {get_list()};

first

my_list

first

list

3 5

first 3 5



61 / 71

Special Member Functions
Temporary objects

List get_list()
{
List list{};
list.insert(5);
list.insert(3);
return list;

}

List my_list {get_list()};

first

my_list

first

list

first 3 5



61 / 71

Special Member Functions
Temporary objects

List get_list()
{
List list{};
list.insert(5);
list.insert(3);
return list;

}

List my_list {get_list()};

first

my_list

first 3 5



61 / 71

Special Member Functions
Temporary objects

List get_list()
{
List list{};
list.insert(5);
list.insert(3);
return list;

}

List my_list {get_list()};

first

my_list

first 3 5

3 5



61 / 71

Special Member Functions
Temporary objects

List get_list()
{
List list{};
list.insert(5);
list.insert(3);
return list;

}

List my_list {get_list()};

first

my_list

first

3 5



61 / 71

Special Member Functions
Temporary objects

List get_list()
{
List list{};
list.insert(5);
list.insert(3);
return list;

}

List my_list {get_list()};

first

my_list

3 5



62 / 71

Special Member Functions
Temporary objects

‚ Inside get_list we create a new List object.

‚ Then we return it as a copy.

‚ The object we return is temporary.

‚ We then copy that temporary object into my_list.

‚ There are a lot of copies being made here...



63 / 71

Special Member Functions
Temporary objects

List get_list()
{
List list{};
list.insert(5);
list.insert(3);
return list;

}

List my_list {get_list()};

first

my_list



63 / 71

Special Member Functions
Temporary objects

List get_list()
{
List list{};
list.insert(5);
list.insert(3);
return list;

}

List my_list {get_list()};

first

my_list

first

list



63 / 71

Special Member Functions
Temporary objects

List get_list()
{
List list{};
list.insert(5);
list.insert(3);
return list;

}

List my_list {get_list()};

first

my_list

first

list

3 5



63 / 71

Special Member Functions
Temporary objects

List get_list()
{
List list{};
list.insert(5);
list.insert(3);
return list;

}

List my_list {get_list()};

first

my_list

first

list

3 5

first



63 / 71

Special Member Functions
Temporary objects

List get_list()
{
List list{};
list.insert(5);
list.insert(3);
return list;

}

List my_list {get_list()};

first

my_list

first

list

3 5

first



63 / 71

Special Member Functions
Temporary objects

List get_list()
{
List list{};
list.insert(5);
list.insert(3);
return list;

}

List my_list {get_list()};

first

my_list

first

list

3 5

first



63 / 71

Special Member Functions
Temporary objects

List get_list()
{
List list{};
list.insert(5);
list.insert(3);
return list;

}

List my_list {get_list()};

first

my_list

3 5

first



63 / 71

Special Member Functions
Temporary objects

List get_list()
{
List list{};
list.insert(5);
list.insert(3);
return list;

}

List my_list {get_list()};

first

my_list

3 5

first



63 / 71

Special Member Functions
Temporary objects

List get_list()
{
List list{};
list.insert(5);
list.insert(3);
return list;

}

List my_list {get_list()};

first

my_list

3 5

first



63 / 71

Special Member Functions
Temporary objects

List get_list()
{
List list{};
list.insert(5);
list.insert(3);
return list;

}

List my_list {get_list()};

first

my_list

3 5



64 / 71

Special Member Functions
Temporary objects

‚ In C++ there is a way to reduce these copies.

‚ We could just steal the content from the temporary list
by changing the pointers.

‚ Make sure to set the temporary first pointer to
nullptr since othewise the destructor of the temporary
list will remove the content.

‚ This is calledmove; we move memory from one object
to another.



65 / 71

Special Member Functions
Temporary objects

‚ The compiler knows when you are trying to copy
temporary objects.

‚ So it would be nice if we could tell the compiler how to
perform these move operations.

‚ We can introduce something called aMove constructor
to tell the compiler how we perform a move.



66 / 71

Special Member Functions
Move constructor

class List
{
public:

List(); // default constructor
List(List const& other); // copy constructor

List(List&& other)
{
// perform the move by shuffling the first pointers

}

~List(); // destructor

List& operator=(List const& other); // copy assignment operator

// ...
};



67 / 71

Special Member Functions
Move assignment

List get_list()
{
List list{};
list.insert(5);
list.insert(3);
return list;

}

List my_list{};
my_list.insert(4);
my_list.insert(2);

my_list = get_list();



68 / 71

Special Member Functions
Move assignment operator

class List
{
public:

List(); // default constructor
List(List const& other); // copy constructor
List(List&& other); // move constructor

~List(); // destructor

List& operator=(List const& other); // copy assignment operator

List& operator=(List&& other)
{
// remove old content of the list
// move content from other to this object

}

// ...
};



69 / 71

Special Member Functions
Special Member Functions

class List
{
public:

List(); // default constructor
List(List const& other); // copy constructor
List(List&& other); // move constructor
~List(); // destructor
List& operator=(List const& other); // copy assignment operator
List& operator=(List&& other); // move assignment operator

// ...
};



70 / 71

Special Member Functions
Nice initialization

List list1 {1, 2, 3};
List list2 {4, 5};
List list3 {6, 7, 8, 9};

#include <initializer_list>

class List
{
public:
List(std::initializer_list<int> list)
{
for (int i : list)
{
insert(i);

}
}

};



71 / 71

Special Member Functions
Nice initialization

‚ It is possible to create a special constructor that takes an
arbitrary amount of values.

‚ These values must all share the same type.

‚ This is done by creating a constructor that takes
std::initializer_list as argument.

‚ To go through the initializer list you must use a special
type of for‐loop, we will talk more about it later. For
now, just know that it iterates through the list and places
the current value inside the variable i.

‚ This type of loop is called a range‐based for‐loop.



www.liu.se

www.liu.se

	Classes
	List lab
	Special Member Functions

