
TDDE18 & 726G77
Functions & struct

Christoffer Holm

Department of Computer and information science

1 / 106

Last lecture we learned most things needed to actually write
a functioning program.

From now on we only aim to make it easier for us to program!

1 Functions
2 More on variables
3 More on functions
4 Operator Overloading
5 Stream flags
6 File separation
7 Testing
8 Time lab

3 / 106

Functions
Blocks

{ // start of block

// body of block

} // end of block

4 / 106

Functions
Blocks

‚ In C++, a block is a chunk of code surrounded by { and }.

‚ It represents a series of statements that are related.

‚ Good to use for creating sections.

‚ Is also closely related to a concept called scope...

5 / 106

Functions
Scope

int x{}; // global scope
int main()
{
int y{}; // local scope

}

6 / 106

Functions
Scope

‚ A scope defines when and where a named entity
(example: a variable) is accessible

‚ Two main categories of scope

‚ global scope is all entities that are accessible everywhere

‚ local scope is when the entity is only accessible in a part
of the code (i.e. not everywhere)

7 / 106

Functions
Scope & Blocks

int x{0};
{
int x{1};
{
cout << x << " ";
int x{2};
cout << x << " ";

}
cout << x << " ";

}
cout << x << " ";

7 / 106

Functions
Scope & Blocks

int x{0};
{
int x{1};
{
cout << x << " ";
int x{2};
cout << x << " ";

}
cout << x << " ";

}
cout << x << " ";

$./a.out
1 2 1 0

8 / 106

Functions
Scope & Blocks

‚ A block always opens a new local scope

‚ Each named entity created inside the scope only exists
until the end of the block

‚ All named entites defined outside of the scope is
available as long as no othermore local named entity
has the same name

‚ Things not created inside a block is automatically
defined in the global scope

9 / 106

Functions
Scope & Blocks

int x{0}; // global

int main()
{
int y{1};
{
int z{2};
cout << x << ' ' << y ' ' << z << endl;

}
}

10 / 106

Functions
Scope & Blocks

‚ In the previous example:

‚ x is available in the entire program

‚ y is available in the entire main block

‚ z is only available inside the inner block

11 / 106

Functions

What is the difference between x and y in the previous
example? Aren’t both available in exactly the same parts of

the program?

They are not, because of functions!

11 / 106

Functions

What is the difference between x and y in the previous
example? Aren’t both available in exactly the same parts of

the program?

They are not, because of functions!

12 / 106

Functions
Functions

‚ A function is a named block that can be executed
(called) in other parts of the program.

‚ Is only executed when called.

‚ Used to reduce repetition in the code.

13 / 106

Functions
(Tedious) Example

#include <iostream>
using namespace std;
int main()
{
string name1;
string name2;
cout << "Person 1, your name: ";
cin >> name1;
cout << "Person 2, your name: ";
cin >> name2;

}

14 / 106

Functions
(Tedious) Example

‚ In the previous example we are prompting people to
enter their names.

‚ The code is almost identical for both people.

‚ Imagine that there are 100 people instead, now this
would be annoying to write.

‚ Even worse: imagine you want to change something in
the functionality? Nightmare

15 / 106

Functions
What are functions?

return_type function_name(parameters)
{
// statements
return result;

}

16 / 106

Functions
What are functions?

‚ A function has a return type, a name and parameters

‚ It takes data through the parameters and gives us a
result by returning it

‚ Through the parameters we specify what we want to
send to the function (what data types the values should
be, how many values there are etc.)

‚ The return type specifies what type of data we get back
from the function

17 / 106

Functions
Back to our example

string read_name(int i)
{
string result{};
cout << "Person " << i

<< ", your name: ";
cin >> result;
return result;

}

int main()
{
string name1;
string name2;
name1 = read_name(1);
name2 = read_name(2);
return 0;

}

18 / 106

Functions
Back to our example

‚ A lot to unpack here.

‚ i is a parameter to read_name, which means it is a local
variable that is only available inside the function.

‚ We call read_name by writing its name and then
specifying what value i should have inside the function.

‚ name1 and name2 are only available in main while i and
result are only available inside read_name.

18 / 106

Functions
Back to our example

‚ read_name gives back a string when it has been called.

‚ At the end of the function we specify which value should
be handed back by returning a specific value (in this case
whatever happens to be stored inside result).

‚ This is done with the return keyword.

‚ In main we are assigning the result of different calls to
read_name to the variables name1 and name2.

18 / 106

Functions
Back to our example

‚ Whenever a function is called, the execution of the
program jumps into the called function and executes
each line there.

‚ Once the function returns it takes the value with it and
jumps back to the point where the function was called
and continue from there.

‚ main is a function that the operating system calls when
you start your program. The value returned from it is
code to the operating system that signals how it went (0
if everything went as expected).

19 / 106

Functions
Procedure

void foo()
{
cout << "a procedure" << endl;

}

20 / 106

Functions
Procedure

‚ A function that doesn’t return a value.

‚ Doesn’t need a return statement.

‚ Has void as return‐type.

‚ void is not a type we can assign to variables.

21 / 106

Functions
Declaration and definition

void function(); // declaration

// ...

void function()
{
// ...

}

22 / 106

Functions
Declaration and definition

‚ C++ is processed by the compiler from top to bottom.

‚ We can tell the compiler that we intend to use a
function before we definie it.

‚ This is done by declaring the function.

‚ Giving the function a body later on is called the
functions definition.

‚ This allows us to separate our code.

23 / 106

Functions
Declaration and definition

void hello(); // declaration

int main()
{
hello();

}

void hello() // definition
{
cout << "hello" << endl;

}

24 / 106

Functions
Parameter passing

void hello(string name)
{
cout << "hello "

<< name << endl;
}

int main()
{
string user{"Christoffer"};
hello(user);

}
user Christoffer

main

name

Christoffer

hello

24 / 106

Functions
Parameter passing

void hello(string name)
{
cout << "hello "

<< name << endl;
}

int main()
{
string user{"Christoffer"};
hello(user);

}
user Christoffer

main

name

Christoffer

hello

24 / 106

Functions
Parameter passing

void hello(string name)
{
cout << "hello "

<< name << endl;
}

int main()
{
string user{"Christoffer"};
hello(user);

}
user Christoffer

main

name Christoffer

hello

25 / 106

Functions
Parameter passing

‚ When passing a value to a function C++ will copy that
value into the function.

‚ This means that inside the function you are free to
modify the parameter without it changing the value
outside of the function.

1 Functions
2 More on variables
3 More on functions
4 Operator Overloading
5 Stream flags
6 File separation
7 Testing
8 Time lab

27 / 106

More on variables
Data types

‚ built‐in types

‚ Object types

‚ Pointers

27 / 106

More on variables
Data types

‚ built‐in types

‚ int

‚ double

‚ bool

‚ etc.

‚ Object types

‚ Pointers

27 / 106

More on variables
Data types

‚ built‐in types

‚ Object types

‚ string

‚ struct (today!)

‚ class (later)

‚ Pointers

27 / 106

More on variables
Data types

‚ built‐in types

‚ Object types

‚ Pointers

‚ Comes later on!

28 / 106

More on variables
Compound data type

string name{};
int age{};
cout << "Enter your name and age: ";
cin >> name >> age;
cout << "Your name is " << name

<< " and you are " << age
<< " years old!" << endl;

29 / 106

More on variables
Compound data type

‚ This is a perfectly fine example of us storing information
about a person!

‚ However, it might get a bit annoying if we want to store
information about more people.

30 / 106

More on variables
Compound data type

string name1{};
string name2{};
int age1{};
int age2{};
cout << "Person 1, enter your name and age: ";
cin >> name1 >> age1;
cout << "Person 2, enter your name and age: ";
cin >> name2 >> age2;

31 / 106

More on variables

Now imagine 100 people!

32 / 106

More on variables
Compound data type

name Christoffer

age 30

string name{};
int age{};

name = "Christoffer";
age = 30;

32 / 106

More on variables
Compound data type

name Christoffer

age 30

Person

32 / 106

More on variables
Compound data type

name Christoffer

age 30

Person

struct Person
{
string name{};
int age{};

};

Person p;

p.name = "Christoffer";
p.age = 30;

33 / 106

More on variables
Compound data type

Person p1 {"Christoffer", 30};
Person p2 {"Oskar", 31};

33 / 106

More on variables
Compound data type

Person p1 {"Christoffer", 30};
Person p2 {"Oskar", 31};

name Christoffer

age 30

Person p1

name Oskar

age 31

Person p2

33 / 106

More on variables
Compound data type

Person p1 {"Christoffer", 30};
Person p2 {"Oskar", 31};

p1.age++;

name Christoffer

age 30

Person p1

name Oskar

age 31

Person p2

33 / 106

More on variables
Compound data type

Person p1 {"Christoffer", 30};
Person p2 {"Oskar", 31};

p1.age++;

name Christoffer

age 31

Person p1

name Oskar

age 31

Person p2

34 / 106

More on variables
Compound data type

‚ A struct defines a type.

‚ You can create several variables of a struct that has its
own collection of values.

‚ Such a variable is called an object.

‚ You can access each variable (field) inside the object
with the . operator.

‚ You can also modify these fields as you do with normal
variables.

35 / 106

More on variables
Copy

Person teacher{"Christoffer", 30};
Person copied_teacher{teacher};

copied_teacher.age++;

cout << teacher.age << endl;

36 / 106

More on variables
Copy

‚ It is possible to copy variables, including structs.

‚ This will create a new instance which has the same
values as the original.

‚ However, changing the copy will leave the original intact
and likewise vice versa.

37 / 106

More on variables
References

string word{"hello"};
string& greeting{word};

greeting = "hi";

cout << word << endl;

37 / 106

More on variables
References

string word{"hello"};
string& greeting{word};

greeting = "hi";

cout << word << endl;

What will be printed?

38 / 106

More on variables
References

‚ We can create an alias to a variable through references.

‚ An alias is a different name to the same entity; so in the
example we have two names for the same variable:
word and greeting (where greeting is the alias).

‚ This is quite powerful when used together with
functions (as we will see later)!

39 / 106

More on variables
Constant references

string word{"hello"};
string const& greeting{word};

word = "hi"; // works
greeting = "hello"; // Compilation error

40 / 106

More on variables
Constant references

‚ Constant references are aliases which disallows changes
through them.

‚ This means that we can modify the value through the
original variable but not through the alias.

‚ Useful if we want to have a read‐only variant of a
variable.

41 / 106

More on variables

Rule of thumb: Always add const, and remove it only if you
have to modify the value!

1 Functions
2 More on variables
3 More on functions
4 Operator Overloading
5 Stream flags
6 File separation
7 Testing
8 Time lab

43 / 106

More on functions
Parameter Passing

void read_name(string& name)
{
cout << "Your name: ";
cin >> name;

}

int main()
{
string my_name;
read_name(my_name);
cout << my_name << endl;

}

my_name

Christoffer

main

name

read_name

43 / 106

More on functions
Parameter Passing

void read_name(string& name)
{
cout << "Your name: ";
cin >> name;

}

int main()
{
string my_name;
read_name(my_name);
cout << my_name << endl;

}

my_name

Christoffer

main

name

read_name

43 / 106

More on functions
Parameter Passing

void read_name(string& name)
{
cout << "Your name: ";
cin >> name;

}

int main()
{
string my_name;
read_name(my_name);
cout << my_name << endl;

}

my_name Christoffer

main

name

read_name

44 / 106

More on functions
Parameter Passing

‚ If a parameter is declared as a reference then it
becomes an alias for a variable from outside the scope
of the function.

‚ This means that we can read and modify my_name from
inside the read_name function by just modifying the
name alias.

45 / 106

More on functions
Constant Reference

void print(string message)
{
cout << message << endl;

}

int main()
{
string my_msg{"Long message!"};
print(my_msg);

}
my_msg Long message!

main

message

Long message!

print

45 / 106

More on functions
Constant Reference

void print(string message)
{
cout << message << endl;

}

int main()
{
string my_msg{"Long message!"};
print(my_msg);

}
my_msg Long message!

main

message

Long message!

print

45 / 106

More on functions
Constant Reference

void print(string message)
{
cout << message << endl;

}

int main()
{
string my_msg{"Long message!"};
print(my_msg);

}
my_msg Long message!

main

message Long message!

print

45 / 106

More on functions
Constant Reference

void print(string const& message)
{
cout << message << endl;

}

int main()
{
string my_msg{"Long message!"};
print(my_msg);

}
my_msg Long message!

main

message

Long message!

print

45 / 106

More on functions
Constant Reference

void print(string const& message)
{
cout << message << endl;

}

int main()
{
string my_msg{"Long message!"};
print(my_msg);

}
my_msg Long message!

main

message

Long message!

print

46 / 106

More on functions
Constant Reference

‚ Some types, for example string are quite expensive to
copy.

‚ stringmust copy each character, and if it is a long text
that will be quite a lot of copying.

‚ In that case it might be better to share a variable with a
function instead of copying.

46 / 106

More on functions
Constant Reference

‚ However, it should not be a normal reference since we
do not want to accidentally overwrite or change the
value of the original variable.

‚ In that case it is good to use const&.

‚ Rule of thumb: if it is a non‐builtin type you should
never pass it as a copy, use const& instead.

47 / 106

More on functions
Function overloading

// version 1
int add(int a, int b)
{
return a + b;

}

// version 2
double add(double a,

double b)
{
return a + b;

}

int main()
{
// will call version 1
add(1, 2);

// will call version 2
add(3.4, 5.6);

}

47 / 106

More on functions
Function overloading

// version 1
int add(int a, int b)
{
return a + b;

}

// version 2
double add(double a,

double b)
{
return a + b;

}

‚ Functions can have the
same name in C++.

‚ But then the compiler
must be able to
determine which version
should be called.

‚ This means that the
parameters matter.

47 / 106

More on functions
Function overloading

// version 1
int add(int a, int b)
{
return a + b;

}

// version 2
double add(double a,

double b)
{
return a + b;

}

‚ The compiler will pick
version 1 if we pass in
int as parameters and
version 2 if we pass in
double.

‚ Each overload must have
a unique set of
parameter types.

47 / 106

More on functions
Function overloading

// version 1
int add(int a, int b)
{
return a + b;

}

// version 2
double add(double a,

double b)
{
return a + b;

}

‚ Note: the compiler
cannot distinguish the
return type of the
function so the compiler
doesn’t take it into
consideration.

48 / 106

More on functions
Which version?

double triangle_area(int base , double height); // a
double triangle_area(int side1, int side2 , int side3); // b
double triangle_area(int side1, int side2 , double angle); // c
double triangle_area(int side , double angle1, double angle2); // d

triangle_area(1, 1, 1);
triangle_area(1, 1);
triangle_area(1, 1.0, 1.0);
triangle_area(1, 1, 1.0);

48 / 106

More on functions
Which version?

double triangle_area(int base , double height); // a
double triangle_area(int side1, int side2 , int side3); // b
double triangle_area(int side1, int side2 , double angle); // c
double triangle_area(int side , double angle1, double angle2); // d

triangle_area(1, 1, 1); // b
triangle_area(1, 1); // a
triangle_area(1, 1.0, 1.0); // d
triangle_area(1, 1, 1.0); // c

49 / 106

More on functions
Which version?

‚ Note that the compiler looks at the amount of
parameters and the types.

‚ The compiler deduces this information based on the
values passed into the function when we are calling it.

50 / 106

More on functions
Default‐parameters

void ignore(int n, char stop)
{
cin.ignore(n, stop);

}

ignore(100, ':');

50 / 106

More on functions
Default‐parameters

void ignore(int n)
{
ignore(n, '\n');

}

ignore(100, ':');
ignore(100);

50 / 106

More on functions
Default‐parameters

void ignore()
{
ignore(1024);

}

ignore(100, ':');
ignore(100);
ignore();

50 / 106

More on functions
Default‐parameters

void ignore(int n = 1024, char stop = '\n')
{
cin.ignore(n, stop);

}

ignore(100, ':');
ignore(100);
ignore();

51 / 106

More on functions
Default‐parameters

‚ Sometimes we want optional parameters.

‚ Useful if there are some default‐values we can assign to
these parameters, but still want the caller to be able to
give their own values.

‚ One way we can do this is to create different overloads
where some parameters are missing.

‚ However this gets tedious pretty quickly.

‚ Therefore we can use something called
default‐parameters.

51 / 106

More on functions
Default‐parameters

‚ default‐parameters must be at the end of the parameter
list.

‚ They are declared by assigning a default value to the
parameter in the parameter list.

‚ The compiler will match the parameters from left to
right, meaning we can only have optional parameters in
a sequence at the end of the list.

‚ Default parameters should only be in the declaration,
not the definition.

52 / 106

More on functions
Default‐parameters

void ignore(int n = 1024, char stop = '\n');

int main()
{
ignore(100, ':');
ignore(100);
ignore();

}

void ignore(int n, char stop)
{
cin.ignore(n, stop);

}

1 Functions
2 More on variables
3 More on functions
4 Operator Overloading
5 Stream flags
6 File separation
7 Testing
8 Time lab

54 / 106

Operator Overloading
Example

struct Person
{
string first_name;
string last_name;

};

54 / 106

Operator Overloading
Example

int main()
{
Person p1{"Christoffer", "Holm"};
Person p2{"Klas", "Arvidsson"};

if (p1.first_name < p2.first_name)
{
cout << p1.first_name << " "

<< p1.last_name << endl;
}

}

55 / 106

Operator Overloading
Easier way

int main()
{
Person p1{"Christoffer", "Holm"};
Person p2{"Klas", "Arvidsson"};

if (p1 < p2)
{
cout << p1 << endl;

}
}

56 / 106

Operator Overloading
Easier way

‚ We can define how the normal operators are supposed
to work with our struct.

‚ This allows us to create code that is easier to
understand,

‚ since now we can specify for example what is means to
see if one person is < another.

‚ This is useful to determine how these objects could be
sorted.

57 / 106

Operator Overloading
To make it work

bool operator<(Person const& p1, Person const& p2)
{
return p1.first_name < p2.first_name;

}

58 / 106

Operator Overloading
To make it work

‚ Not all operators can be overloaded.

‚ Here is a list: https://en.cppreference.com/
w/cpp/language/operators

‚ An operator overload is just a function with a special
name.

‚ Every operator is defined with the name operator
followed by the operator you wish to overload.

‚ For example operator+, operator==, operator<< etc.

https://en.cppreference.com/w/cpp/language/operators
https://en.cppreference.com/w/cpp/language/operators

58 / 106

Operator Overloading
To make it work

‚ The type of the first parameter to the operator is usually
the object you want to overload this operator for.

‚ The return type and the rest of the arguments depend
on the specific operator.

‚ Two types of operator: Unary and Binary.

59 / 106

Operator Overloading
How does it work?

if (p1 < p2)
{
// ...

}

59 / 106

Operator Overloading
How does it work?

if (p1 < p2)
{
// ...

}

if (operator<(p1, p2))
{
// ...

}

60 / 106

Operator Overloading
How does it work?

‚ When the compiler sees an expression involving an
operator it will look for a function with the special
operator name.

‚ If it exists, the compiler will the translate the operator
expression to a function call to that special operator
function.

‚ Note that normal function rules apply to operators as
well.

61 / 106

Operator Overloading
Binary operator

My_Type a;
My_Type b;
a+b;
a<b;
a==b;

61 / 106

Operator Overloading
Binary operator

My_Type a;
My_Type b;
a+b;
a<b;
a==b;

My_Type a;
My_Type b;
operator +(a, b);
operator <(a, b);
operator==(a, b);

62 / 106

Operator Overloading
Binary operator

‚ Binary operators are those operators that involves two
values (a and b in the previous example).

‚ These operators take two parameters: the first
corresponds to the value to the left of the operator
while the second corresponds to the value right of the
operator.

‚ The return type can be whatever you want, but it should
make sense!

63 / 106

Operator Overloading
Unary operator

My_Type a;
-a;
++a;
a++;

63 / 106

Operator Overloading
Unary operator

My_Type a;
-a;
++a;
a++;

My_Type a;
operator-(a);
operator++(a);
operator++(a);

63 / 106

Operator Overloading
Unary operator

My_Type a;
-a;
++a;
a++;

‚ ++a and a++ are not the
same expression.

‚ So their
operator‐overload should
be different.

‚ But how?
‚ C++ has a solution.

63 / 106

Operator Overloading
Unary operator

My_Type a;
-a;
++a;
a++;

My_Type a;
operator-(a);
operator++(a);
operator++(a, 0);

63 / 106

Operator Overloading
Unary operator

My_Type a;
-a;
++a;
a++;

‚ The compiler adds a 0 as
the second parameter to
the postfix‐version of all
increment and
decrement operators.

‚ This is only so that the
operator overloading
between these versions
can be distinguished.

‚ The 0 does not mean
anything.

64 / 106

Operator Overloading
Unary operator example

struct My_Int
{
int data;

};

My_Int& operator++(My_Int& i);
My_Int operator++(My_Int& i, int);

64 / 106

Operator Overloading
Unary operator example

My_Int& operator++(My_Int& i)
{
++i.data;
return i;

}

64 / 106

Operator Overloading
Unary operator example

My_Int operator++(My_Int& i, int)
{
My_Int tmp{i};
++i;
return tmp;

}

65 / 106

Operator Overloading
Unary operator example

‚ Prefix increment (and decrement) will increment (or
decrement) the value and then return the new value.

‚ C++ dictates that the return type should be a reference
in this case, as to reduce copies.

‚ Postfix increment (and decrement) will increment (or
decrement) the value and then return the previous
value.

‚ Therefore we must return a copy of the object since the
original object has changed value.

66 / 106

Operator Overloading
Operator Overloading

‚ It is a good idea to add your logic in as few operators as
possible and then reuse these operators to implement
the others.

‚ In the previous example we implemented the increment
logic in the prefix‐increment operator and then in the
postfix‐increment operator we simply use the
prefix‐version.

‚ This way if we have to change the behaviour it is enough
to do it in one place.

67 / 106

Operator Overloading
Overloading printing operators

Person p1{"Christoffer Holm"};
cout << p1 << endl;

67 / 106

Operator Overloading
Overloading printing operators

Person p1{"Christoffer Holm"};
((cout << p1) << endl);

67 / 106

Operator Overloading
Overloading printing operators

Person p1{"Christoffer Holm"};
(operator<<(cout, p1)) << endl);

67 / 106

Operator Overloading
Overloading printing operators

Person p1{"Christoffer Holm"};
operator<<(operator<<(cout, p1), endl);

67 / 106

Operator Overloading
Overloading printing operators

Person p1{"Christoffer Holm"};
operator<<(operator<<(cout, p1), endl);

What should our operator<< return to make it work?

68 / 106

Operator Overloading
What is cout?

‚ The type of cout is ostream.

‚ We need to capture cout and return it in our
operator<<.

69 / 106

Operator Overloading
Overloading printing operators

ostream& operator<<(ostream& os, Person const& p)
{
os << p.first_name << " " << p.last_name;
return os;

}

70 / 106

Operator Overloading
This is called chaining

Person p1{"Christoffer Holm"};
cout << p1 << endl;

70 / 106

Operator Overloading
This is called chaining

Person p1{"Christoffer Holm"};
((cout << p1) << endl);

70 / 106

Operator Overloading
This is called chaining

Person p1{"Christoffer Holm"};
(operator<<(cout, p1)) << endl);

70 / 106

Operator Overloading
This is called chaining

Person p1{"Christoffer Holm"};
cout << endl;

71 / 106

Operator Overloading
Overloading reading operator

Person p;
int x;
cin >> p >> x;

71 / 106

Operator Overloading
Overloading reading operator

Person p;
int x;
((cin >> p) >> x);

71 / 106

Operator Overloading
Overloading reading operator

Person p;
int x;
((operator>>(cin, p)) >> x);

71 / 106

Operator Overloading
Overloading reading operator

Person p;
int x;
operator>>((operator>>(cin, p), x);

72 / 106

Operator Overloading
Overloading reading operator

‚ cin is of type istream.

‚ Just as with the printing operator, we want chaining for
our operator.

‚ We are reading into variables, so every parameter
should be a reference.

73 / 106

Operator Overloading
Overloading reading operator

istream& operator>>(istream& is, Person& p)
{
is >> p.first_name >> p.last_name;
return is;

}

1 Functions
2 More on variables
3 More on functions
4 Operator Overloading
5 Stream flags
6 File separation
7 Testing
8 Time lab

75 / 106

Stream flags
What happens?

int x;
string word;
cout << "Enter int: ";
cin >> x;
cout << x << endl;
cout << "Enter word: ";
cin >> word;
cout << word << endl;

75 / 106

Stream flags
What happens?

int x;
string word;
cout << "Enter int: ";
cin >> x;
cout << x << endl;
cout << "Enter word: ";
cin >> word;
cout << word << endl;

Enter int: 5
5
Enter word: hello
hello

75 / 106

Stream flags
What happens?

int x;
string word;
cout << "Enter int: ";
cin >> x;
cout << x << endl;
cout << "Enter word: ";
cin >> word;
cout << word << endl;

Enter int: a
0
Enter word:

75 / 106

Stream flags
What happens?

int x;
string word;
cout << "Enter int: ";
cin >> x;
cout << x << endl;
cout << "Enter word: ";
cin >> word;
cout << word << endl;

Why does this happen?

76 / 106

Stream flags
Why does this happen?

‚ If an operation fails; in this case trying to read an int
but finding the letter 'a' instead,

‚ then an error flag is raised inside the stream,

‚ as long as this flag is raised the operations will
immediately fail meaning nothing will happen.

77 / 106

Stream flags
What flags are there?

fail Stream operation failed
eof device has reached the end
bad irrecoverable stream error
good no errors

78 / 106

Stream flags
What flags are there?

‚ Multiple flags can be set at once,

‚ except good; it is set when no other flag is set.

‚ This means that several errors can occur at once

‚ Do note that these flags are set after a stream operation
fails.

‚ The stream does not magically detect an error if no
operation has been performed.

79 / 106

Stream flags
So how do we fix it?

int x;
string word;
cin >> x;
cin.clear();
cin >> word;

80 / 106

Stream flags
So how do we fix it?

‚ cin.clear() will clear any and all flags that are raised.

‚ You can also check if a specific flag is raised:

81 / 106

Stream flags
Checking for specific flag

if (cin.fail())
{
// the fail flag

}
if (cin.eof())
{
// the eof flag

}
if (cin.bad())
{
// the bad flag

}

82 / 106

Stream flags
Setting the flags

cin.setstate(ios_base::failbit);
cin.setstate(ios_base::eofbit);
cin.setstate(ios_base::badbit);
cin.setstate(ios_base::goodbit);

83 / 106

Stream flags
Setting the flags

‚ When creating your own operator>> you may want to
set error flags.

‚ This is done with cin.setstate.

‚ You can set the flags by passing in specific values called
failbit, eofbit, badbit and goodbit.

1 Functions
2 More on variables
3 More on functions
4 Operator Overloading
5 Stream flags
6 File separation
7 Testing
8 Time lab

85 / 106

File separation
Modular thinking

‚ Related functions can be gathered inside a file.

‚ This is called amodule (Not to be confused with the new
C++20 Modules).

‚ Modules can be compiled separately from the main
program, this will result in an object file.

‚ The declaration of functions that should be available in
your module are placed in a header file.

86 / 106

File separation
Modular thinking

‚ The actual definition of these functions are placed in an
implementation file.

‚ Header files and implementation should have the same
name, except for the file extension.

‚ Then all modules can be compiled together with your
program to create an executable file.

87 / 106

File separation
Types of files

‚ Implementation files (.cc)

‚ Executable files

‚ Header files (.h)

‚ Object file (.o)

87 / 106

File separation
Types of files

‚ Implementation files (.cc)

‚ Executable files

‚ Header files (.h)

‚ Object file (.o)

87 / 106

File separation
Types of files

‚ Implementation files (.cc)

‚ Executable files

‚ Header files (.h)

‚ Object file (.o)

88 / 106

File separation
Types of files

‚ Implementation files contains definitions.

‚ Header files contains declarations.

‚ Executable files are the actual programs the computer
can run.

‚ Object files are smaller parts of the program that has
been precompiled. They cannot run on their own, but
can be combined together to create an executable file.

89 / 106

File separation
Example

test.h
#ifndef TEST_H
#define TEST_H
void test(int x = 0); // declaration
#endif//TEST_H

test.cc
#include "test.h"
#include <iostream>
using namespace std;
void test(int x) // definition
{
cout << x << endl;

}

main.cc
#include "test.h"

int main()
{
test();
test(1);

}

terminal
$ g++ test.cc main.cc
$./a.out
0
1

90 / 106

File separation
Example

‚ test.h has what is known as a header‐guard.

‚ #ifndef TEST_Hmeans: if the symbol TEST_H is not
defined, then compile everything, otherwise skip to the
#endif and continue compilation from there.

‚ #define TEST_H creates the symbol TEST_H.

‚ This is done to ensure that we doesn’t accidentally
declare the same things twice. Which happens if we
accidentally include the same file more than once.

90 / 106

File separation
Example

‚ #include "test.h" is replaced with the content of the
test.h file.

‚ This is how importing modules works, the compiler will
recieve a list of declarations (i.e. functions, structs and
other things that will be available).

‚ Note: these things are only declared, not defined.

90 / 106

File separation
Example

‚ The definition of these things are done inside a separate
implementation file (test.cc in this example).

‚ We also have the main.cc file which contains our
program that uses the testmodule.

‚ Both of these files includes the header file (test.h)
but only one of them gives the definition of the things
declared.

91 / 106

File separation
Dependency graph

test.h iostream

test.cc main.cc

a.out

92 / 106

File separation
Dependancy graph

‚ In the previous image we can see how it all comes
together.

‚ test.cc includes test.h

‚ main.cc includes test.h and iostream

‚ These cc‐files can then be compiled together to create
an executable file a.out

‚ We have two modules: test and main

1 Functions
2 More on variables
3 More on functions
4 Operator Overloading
5 Stream flags
6 File separation
7 Testing
8 Time lab

94 / 106

Testing

‚ When writing modules we should test them before we
use them.

‚ This is to make sure that they work in all cases.

‚ This can be done manually by creating a main‐program
that allows the user to enter inputs that tests each
functionality.

‚ However this is tedious work which we probably can do
better, and more accurately.

95 / 106

Testing
Testing modules

#include "Person.h"
#include <iostream>
using namespace std;
int main()
{
Person p1{"a", "a"};
Person p2{"b", "b"};
Person p3{"a", "a"};
if (p1 < p2)
{
cout << "operator< works!" << endl;

}

if (p1 == p3 && p1 != p2)
{
cout << "operator== works!" << endl;

}
}

96 / 106

Testing
Testing modules

‚ We should always test all functionality in our modules.

‚ This can be done by writing alot examples where we test
various functions and functionality.

97 / 106

Testing
Testing stream operations

#include "Person.h"
#include <iostream>

using namespace std;
int main()
{
Person ans{"Christoffer", "Holm"};
Person p;
cout << "Enter 'Christoffer Holm': ";
cin >> p;
if (p == ans)
{
cout << "operator>> works!" << endl;

}
}

97 / 106

Testing
Testing stream operations

#include "Person.h"
#include <iostream>
#include <sstream>
using namespace std;
int main()
{
Person ans{"Christoffer", "Holm"};
Person p;
istringstream iss{"Christoffer Holm"};
iss >> p;
if (p == ans)
{
cout << "operator>> works!" << endl;

}
}

98 / 106

Testing
Testing stream operations

‚ You could test stream operators by letting the user enter
appropriate data and see that it works.

‚ However, after a while this gets tedious since we have to
test all cases over and over again, writing the same
things over and over again into the terminal.

‚ What we can do then is to simulate cin and cout to
automatically test operator>> and operator<<.

98 / 106

Testing
Testing stream operations

‚ cin can be simulated with istringstream.

‚ It is defined in <sstream>.

‚ It works exactly like cin, with the difference that you
specify what has been entered into the simulated cin
when you create istringstream.

99 / 106

Testing
Testing stream operations

#include <iostream>
#include <sstream>
using namespace std;
int main()
{
Person p{"Christoffer", "Holm"};
ostringstream oss{};
oss << p;
if (oss.str() == "Christoffer Holm")
{
cout << "operator<< works!" << endl;

}
}

100 / 106

Testing
Testing stream operations

‚ You can simulate cout with ostringstream.

‚ It works exactly like cout with the exception that it
prints to a string instead of to the terminal.

‚ This allows us to retrieve the written output with
oss.str() and to check that it was correct.

101 / 106

Testing
cath.hpp

#define CATCH_CONFIG_MAIN
#include "catch.hpp"

TEST_CASE("testing < and ==")
{
Person p1{"a", "a"};
Person p2{"b", "b"};
Person p3{"a", "b"};
CHECK(p1 == p3);
CHECK_FALSE(p1 == p2);
CHECK(p1 < p2);
CHECK_FALSE(p2 < p1);

}

101 / 106

Testing
cath.hpp

#define CATCH_CONFIG_MAIN
#include "catch.hpp"

TEST_CASE("testing < and ==")
{
Person p1{"a", "a"};
Person p2{"b", "b"};
Person p3{"a", "b"};
REQUIRE(p1 == p3);
REQUIRE_FALSE(p1 == p2);
REQUIRE(p1 < p2);
REQURE_FALSE(p2 < p1);

}

102 / 106

Testing
catch.hpp

‚ catch.hpp is a testing framework (a module) that we
will use in this course.

‚ It makes it a lot easier for us to test our modules.

‚ The framework will create a good main‐function for you
with tests and nice output messages.

‚ All you have to do is create the test cases.

102 / 106

Testing
catch.hpp

‚ To start using catch.hpp you have to download the
header file catch.hpp from here:
https://github.com/catchorg/Catch2

‚ Place the file in the same directory as your program.

‚ Define the symbol CATCH_CONFIG_MAIN and then
include catch.hpp.

https://github.com/catchorg/Catch2

102 / 106

Testing
catch.hpp

‚ To create a test case you use the command TEST_CASE
which takes a string that is supposed to contain a short
description of what this test case is testing.

‚ Then you open a block and everything inside this block
will be bundled together as one testcase.

‚ Then you add conditional statements which you
surround with either the keyword CHECK or REQUIRE.

102 / 106

Testing
catch.hpp

‚ CHECK simply tests whether the statement inside is true
(there is a CHECK_FALSE version that tests if it is false).
Either way, once it has been tested it will move on to the
next test.

‚ REQUIRE works the same way, except that it will stop all
tests if this one fails.

‚ That is all the basic tools you need to use catch.hpp.

1 Functions
2 More on variables
3 More on functions
4 Operator Overloading
5 Stream flags
6 File separation
7 Testing
8 Time lab

104 / 106

Time lab
Lab 2

‚ The Time lab (lab2) covers everything we have discussed
in these lectures: struct, functions, operator
overloading, testing etc.

‚ It is a lot harder than lab 1 so plan your time accordingly.
‚ The goal of the lab is to create your own module.
‚ That means you are not creating a program but instead a

smaller part of a program that can be used for many
different programs.

‚ Testing is a part of the lab so we expect you to write
good testcases.

105 / 106

Time lab
Labs

‚ Lab1 Deadline: September 10th

‚ Lab2 Deadline: September 25th

‚ Complementary work

106 / 106

Time lab
Teaching session

‚ First teaching session: September 13th at 08:15‐10:00

‚ There will be one session in English (always given in the
highest numbered room in TimeEdit)

‚ Content will be about lab 2

www.liu.se

www.liu.se

	Functions
	More on variables
	More on functions
	Operator Overloading
	Stream flags
	File separation
	Testing
	Time lab

