
TDDE18 & 726G77
Standard Templated Library – Algorithms

Different types of iterator

• Single pass iterator can only advance over the list a single element at
a time, and once an item has been iterated, it will never be iterated
again.

• Multi-pass iterators can “go back” to previous character, but you
might not be able to do so from the iterator object itself

Single-pass and multi-pass iterators

Single-pass iterators Multi-pass iterators

InputIterator ForwardIterator

OutputIterator BidirectionalIterator

RandomAccessIterator

Single pass iterators

• InputIterator
• Can read from the pointed-to element

• Only guarantee validity for single pass algorithms

• OutputIterator
• Can write to the pointed-to element

• Only guarantee validity for single pass algorithms

Multi-pass iterators

• ForwardIterator
• Can read data from pointed-to element

• Can be used in multipass algorithms

• BidirectionalIterator
• Is a ForwardIterator in both directions

• Can be incremented and decremented

• RandomAccessIterator
• Is a BirectionalIterator

• Can be moved to point to any element in constant time

ForwardIterator

• be dereferenced

• be incremented

• be compared with another iterator

// dereferencing

*it

it->

//incrementing

++it

it++

//compared

it == other_it

it != other_it
it

++

BidirectionalIterator

• Is a ForwardIterator

• With the added ability to decrement

// decrement

it--

--it

it

++--

RandomAccessIterator

• Is a BidirectionalIterator

• With the ability to jump to another address in
constant time

// Random Access

it += 3

it -= 5

it

++--

...

it += 3

Containers and their iterator type

ForwardIterator Bidirectional RandomAccess

forward_list list vector

map string

set

Algorithm requires different iterator type

Different types of functions

• STL algorithms uses different types of functions (function object) as
an input argument.
• UnaryOperation

• BinaryOperation

• Predicate

• Comparison

UnaryOperation

• UnaryOperation – unary operation function object that will be
applied.
Ret fun(T [const&] a); // signature

Ret must be a type that OutputIterator can reference to
const& are optional

char upperChar(char c) {

return std::toupper(c);

}

BinaryOperation

• BinaryOperation – binary operation function object will be applied
Ret fun(T1 [const&] a, T2 [const&] b); // signature

Ret must be a type that OutputIterator can reference to

const& are optional

int sum(int i, int j) {

return i + j;

}

Predicate

• Predicate – returns true for the required elements
bool pred(T [const&] a); // signature

const& are optional

bool less_than_five(int a) {

return a < 5;

}

Comparison

• Comparison function object – which returns true if the first argument
is less than (i.e is ordered before) the second
bool cmp(T1 [const&] a, T2 [const&] b); // signature

const& are optional

bool larger(int a, int b) {

return a > b;

}

How to use this?

bool larger(int a, int b) {

return a > b;

}

vector<int> a{3, 4, 5, 6, 7, 8};

sort(begin(a), end(a), larger);

std::transform

• transform applies the given function Operation operation to a range
and store the result in another range, beginning at d_first

ForwardIterator transform(InputIterator first, InputIterator last, OutputIterator
d_first, UnaryOperation operation);

std::tranform

char toUpper(char c) {

return std::toupper(c);

}

string s{“abcdef”};

transform(begin(s), end(s), begin(s), toUpper);

a b c d e f

A B C D E F

before transform

after transform

std::for_each

• Applies the given function object f to the result of dereferencing
every iterator in the range [first, last), in order

void for_each(InputIterator first, InputIterator last, UnaryFunction f);

std::for_each

void print_out(int n) {

cout << “ “ << n;

}

set<int> s{5, 4, 3, 99, 0, 1, 2};

for_each(begin(s), end(s), print_out);

Iterator adaptors for streams (1)

• Sometimes a class have the functionality you seek but not the right
interface for accessing that functionality.
• copy() algorithm requires a pair of input iterators as its first two parameters.

• An istream object can act as a source of such data values but it does
not have any iterators that the copy algorithm can use.

Iterator adaptors for streams (2)

• Sometimes a class have the functionality you seek but not the right
interface for accessing that functionality.
• copy() algorithm also have a version where it takes in three arguments. The

third of which is an output iterator that directs the copied values to their
proper destination.

• An ostream object can act as a destination of such data values but
output streams do not directly provide any output iterator

Iterator adaptors for streams (3)

• An adaptor class is one that acts like a “translator” by “adapting” the
messages you want to send to produce messages that the other class
object wants to receive.

• Iterator adaptors that iterates through streams (filestream, standard
input/output etc)
• istream_iterator – provides the interface that the copy() algorithm expects for

input

• ostream_iterator – provides the interface that the copy() algorithm expects
for output

ostream_iterator

• Is a single-pass iterator that writes successive object of type T

• Writes to ostream by calling operator<<

• Optional delimiter string is written to the output stream after every
write.

ostream_iterator

vector<int> v{1, 2, 3, 4, 5};

ostream_iterator<int> oos{cout, “ “};

copy(begin(v), end(v), oos);

istream_iterator

• Single-pass input iterator that reads successive object of type T

• Read from an istream object by calling operator>>

• Default constructor is known as the end-of-stream iterator.

istream_iterator

istream_iterator<int> iis{cin};

istream_iterator<int> eos{};

ostream_iterator<int> oos{cout, “ “};

copy(iis, eos, oos);

Iterator adaptors for insertion (1)

• Inserters (also called “insert iterators”) are “iterator adaptors” that
permit algorithms to operate in insert mode rather than overwrite
mode.

• They solve the problem that crops up when an algorithm tries to
write element to a destination container not already big enough to
hold them.

• They make the container larger if needed

Iterator adaptors for insertion (2)

• There are three kinds of inserters
• back_inserter – which can be used if the recipient container supports the

push_back() member function

• front_inserter – which can be used if the recipient container supports the
push_front() member function

• inserter – which can be used if the recipient container supports the insert()
member function.

back_inserter

• Call the push_back function of the container

vector<int> v1{1, 2, 3, 4, 5, 6};

vector<int> v2{};

copy(begin(v1), end(v1), back_inserter(v2));

front_inserter

• Call the push_front member function of the container

vector<int> v{1, 2, 3, 4, 5, 6};

list<int> l{};

copy(begin(v), end(v), front_inserter(l));

Useful iterator functions

• C++ give you a set of general functions that works on all iterator that
have those attributes
• advance

• distance

• next

• prev – only work on bidirectional and random access iterators

std::advance

• Increments the given iterator by n elements

• If n is negative, the iterator is decremented. The iterator must be a
BidirectionalIterator

vector<int> v{ 3, 1, 4 };

auto vi{v.begin()};

advance(vi, 2);

cout << *vi << '\n';

std::next

• Return the n-th successor of iterator it

vector<int> v{ 3, 1, 4 };

auto it{v.begin()}

it = next(it, 2);

cout << *it << endl;

// print out 4

std::prev

• Return the n-th predecessor of iterator it

• Iterator must be BidirectionalIterator or RandomAccessIterator

vector<int> v{ 3, 1, 4 };

auto it{v.end()};

it = prev(it, 2);

cout << *it << endl;

// print out 1

std::distance

• Returns the number of hops from first to last

• The value may be negative if random-access iterators are used and
first is reachable from last

difference_type distance(InputIterator first, InputIterator last);

vector<int> v{ 3, 1, 4 };

distance(begin(v), end(v)); // return 3

distance(end(v), begin(v)); // return -3

Lambda function

• Constructs an unnamed function object

• Able to capture variables in scope

• You can see this as an anonymous function

// empty lambda function that have no capture, no argument and nothing in
function body

[](){}

// if you want to call the lambda function as is then add parentheses after

[](){}()

Lambda function – return type

• The return type is deduced from return statements

[]() { return 1; } // returns data type int

[](double d) { return d} // return data type double

[]() { return new Node; } // return data type Node *

[](Person & p) { p.updateName(“Sam”); } // return data type void

Lambda function – how to use

vector<int> v{1, 2, 3, 4, 5};

sort(begin(v), end(v), [](int a, int b) { return a > b; });

// equivalent to

bool larger(int a, int b) {

return a > b;

}

sort(begin(v), end(v), larger);

Lambda function – capture variables

• Lambda functions cannot reach variables outside of its function body scope

vector<int> v{};

[] () { v.push_back(5); }() // error v is not captured

[v]() { v.push_back(5); }() // is a copy of v and its const

[=v]() { v.push_back(5); }() // captures v by copy

[&v]() { v.push_back(5); }() // captures v by reference

std::copy_if

• Copies the element in the range [first, last) to another range
beginning at d_first. Only copies the element in the range for which
the predicate pred returns true.

• The relative order of the elements that are copied is preserved.

• The behavior is undefined if the source and the destination ranges
overlap.

ForwardIterator copy_if(ForwardIterator from_first, ForwardIterator from_last,
ForwardIterator d_first, UnaryPredicate pred);

How to copy from cin to a vector all numbers that are larger than 5?

