TDDE18 & 726G7/7

Multilevel and Multiple inheritance



Different kind of inheritance — Multilevel

* |n C++ you can derive a class from a base class but you can also derive a
class from the derived class. This form of inheritance is known as multilevel
inheritance.

class Animal {

}s

class Mammal : public Animal {

Mammal

}s
class Bat : public Mammal {

s



Different kind of inheritance — Multilevel

class Animal {
public:
void move() {
cout << “Animal move.” << endl;

}
¥
class Mammal : public Animal {};
class Bat : public Mammal {};

Mammal

int main() {
Bat bat{};
bat.move(); // Animal move.




class Animal {
public:
void move() {
cout << “Animal move.” << endl;

};}
class Mammal : public Animal {
public:
void move() {
cout << “Mammal move.” << endl;

¥
class Bat : public Mammal {};

Mammal

int main() {
Bat bat{};
bat.move(); // Mammal move.




class Animal {
public:
void move() {

cout << “Animal move.” << endl;

};}

class Mammal : public Animal {
public:
void move() {

cout << “Mammal move.” << endl;

}s
class Bat : public Mammal {
public:

void move() {

cout << “Animal move” << endl;

}s

int main() {
Bat bat{};

bat.move(); // Mammal move.

Mammal




class Animal {
public:
void move() {

cout << “Animal move.” << endl;

};}

class Mammal : public Animal {
public:

void move() {
cout << “Mammal move.” << endl;

Missing dot

}s
class Bat : public Mammal {
public:

void move() {

cout << “Animal move” << endl;
}s

int main() {
Bat bat{};

bat.move(); // Mammal move.

Mammal




class Animal {
public:
void move() {

cout << “Animal move.” << endl;

};}

class Mammal : public Animal {
public:
void move() {

cout << “Mammal move.” << endl;

}s
class Bat : public Mammal {
public:
using Animal: :move;
}; Mammal

int main() {
Bat bat{};

bat.move(); // Animal move.




Calling base class function

class Animal {
public:
void move() {
cout << “Animal move.” << endl;

};}

class Mammal : public Animal {};

class Bat : public Mammal {

public:

void move() {

// Call Animal’s move function
// Call Mammal’s move function
// Do own stuff

Mammal

s



Calling base class function

class Animal {
public:
void move() {
cout << “Animal move.” << endl;

};}

class Mammal : public Animal {};

class Bat : public Mammal {

public:

void move() {

Animal: :move();
// Call Mammal’s move function
// Do own stuff

Mammal

s



Calling base class function

class Animal {
public:
void move() {
cout << “Animal move.” << endl;

};}
class Mammal : public Animal {};
class Bat : public Mammal {
public:
void move() {
Animal: :move();
Mammal: :move();
// Do own stuff

Mammal

s



Calling base class function

class Animal {
public:
void move() {
cout << “Animal move.” << endl;

};}
class Mammal : public Animal {};
class Bat : public Mammal {
public:
void move() {
Animal: :move();
Mammal: :move();
cout << “Bat move.” << endl;

Mammal

s



final specifier (1)

* When used in a virtual function declaration or definition, final
ensures that the function is virtual and specifies that it may not be
overridden by derived classes.

* When used in a class definition, final specifies that this class may not
act as a base class to another class (in other words, this class cannot
be derived from).

* final is an identifier with special meaning when used in a member
function declaration or class head.



final specifier (2)

class Base {

virtual void foo();

s

class A : public Base {

void bar() final; // Error: non-virtual function cannot be final

s



final specifier (3)

class Base {

virtual void foo();

s

class A : public Base {

void foo() final; // A::foo is overridden and it is the final override

s

class B : public A {

void foo() override; // Error: it's final in A

s



final specifier (4)

class Base {

virtual void foo();

s

class A final : public Base {
¥

class B : public A { // Error: A is final
}s



final specifier (5) — why?

* For efficiency: to avoid your function calls being virtual

* For safety: to ensure that your class is not used as a base class (for
example, cryptography)



Multiple inheritance

* Deriving direct from more than one class is usually called multiple

inheritance.

WingedAnimal




class Mammal {

public:
Mammal() {
cout << “Mammal’s constructor” << endl;
}
}s WingedAnimal

class WingedAnimal {

public:
WingedAnimal() {
cout << “WingedAnimal’s constructor” << endl;

}s;
class Bat : public Mammal, public WingedAnimal {};

int main() {
Bat b{}; // Mammal’s constructor
}s // WingedAnimal’s constructor



class Mammal {

public:
Mammal() {
cout << “Mammal’s constructor” << endl;
}
}s WingedAnimal

class WingedAnimal {

public:
WingedAnimal() {
cout << “WingedAnimal’s constructor” << endl;

}s;
class Bat : public WingedAnimal, public Mammal {};

int main() {
Bat b{}; // WingedAnimal’s constructor
s // Mammal’s constructor



Multiple inheritance - ambiguity

* The most difficult to avoid complication that arises when using
multiple inheritance is that sometimes the programmers interested in
using this technique to extend the existing code are forced to learn
some of the implementation’s details.

* Another problem that might appear when using this technique is the
creation of ambiguities:



Multiple inheritance - ambiguity

* The most obvious problem with multiple inheritance occurs during
function overriding.

* If you try to call the function using the object of the derived class,
compiler shows error. It's because the compiler doesn’t know which
function to call.



class Mammal {
public:

void move() {}
}s5
class WingedAnimal {

public: WingedAnimal

void move() {}

}s
class Bat : public WingedAnimal, public Mammal {};

int main() {
Bat b{};

b.move(); // Error! Which one?

s



class Mammal {
public:

void move() {}
}s5
class WingedAnimal {

public: WingedAnimal

void move() {}

}s
class Bat : public WingedAnimal, public Mammal {};

int main() {
Bat b{};

b.Mammal: :move();

}; '\

Solved by using scope resolution function




Dreaded diamond

The “dreaded diamond” refers to a class structure in which a particular
class appears more than once in a class’s inheritance hierarchy.



Dreaded diamond

class Base {

protected:
int data;

¥

class Derl

class Der2 :

class Join :

: public Base {};

public Base {};
public Derl, public Der2 {

void foo() {

data = 1; // Error: this is ambiguous

s

Derl Der2
\ /

\ /

Join



Dreaded diamond

class Base {};

class Derl :
class Der2 :

class Join :

int main() {

public Base {};
public Base {};

public Derl, public Der2 {};

Base * b{new Join{}};

Base
/\
/ \

/ \
Derl Der2
\ /

\ /



Dreaded diamond — bad solution

class Base {

protected:
int data;

¥

class Derl

class Der2 :

class Join :

: public Base {};

public Base {};

public Derl, public Der2 {

void foo() {

Derl:

s

:data = 1;



Dreaded diamond — bad solution

class Base {};

class Derl :
class Der2 :

class Join :

int main() {

public Base {};
public Base {};

public Derl, public Der2 {};

Derl * d{new Join{}};
Base * b{d};



Dreaded diamond — virtual keyword

class Base {

int data;
¥
class Derl : public virtual Base {};
class Der2 : public virtual Base {};
class Join : public Derl, public Der2 {

void foo() {

data = 1;

}

}s

int main() {
Base * b{new Join{}};

}



interface

* An interface is an abstract type that is used to specify behavior that
concrete classes must implement.

* Interfaces are used to encode similarities which the classes of various
types share, but do not necessarily constitute a class relationship.

* Give the ability to use an object without knowing its type of class, but
rather only that it implements a certain interface.

e Used a lot in programming language like Java and C#



interface

Below are the nature of interface and its C++ equivalents:

* interface can contain only body-less abstract methods; C++ equivalent
is pure virtual functions.

* interface can contain only static final data members; C++ equivalent is
static const data members which are compile time constants.

* Multiple interface can be implemented by a Java class, this facility is
needed because a Java class can inherit only 1 class; C++ supports
multiple inheritance straight away with help of virtual keyword when
needed.



interface

class IList {
void insert(int number) = 0;
void remove(int index) = 0;
static const string name{“List interface”};

5



Dynamic type control using typeid

* One way to find out the type of an object is to use typeid
if (typeid(*p) == typeid(Bat)) ...

* A typeid expression returns a type _info object (a class type)

* type checking is done by comparing two type_info objects



typeid expressions

typeid(*p) // p is a pointer to an object of some type
typeid(r) // r is a reference to an object of some type
typeid(T) // T is a type

typeid(p) // is usually a mistake if p is a pointer



typeinfo operations

== check if two type_info objects are equal
typeid(*p) == typeinfo(T)

= check if two type_info objects are not equal
typeid(*p) != typeinfo(T)

name() returns the type name as a string — may be an internal name
used by the compiler, a “mangled name”



TDDE18 & 726G7/7

Vector



Vector

* Vector are sequence containers.

 VVectors use contiguous storage locations for their elements, which
means that their elements can also be accessed using offsets.

* VVector can change size and capacity, in contrast to array which size is
fixed.

* Very efficient in accessing its elements and relatively efficient adding
or removing elements from its end.



Visualizing Vectors

vector<T> v{7};

O\

Datatype vector




Visualizing Vectors

vector<T> v{7};

N

Name




Visualizing Vectors

vector<T> v{7};

N

Size




Visualizing Vectors

vector<T> v{7};

O\

Templated argument




Visualizing Vectors

vector<T> v{7};

N

Element



Visualizing Vectors

vector<T> v{7};

[0] [1] [2] [3] [4] [5] [6]

e \Vectors are 0 indexed



Visualizing Vectors

vector<double> v{7};

e Every element in this vector is of type double
* The size of this vector are 7
* Constructing vectors with a given size will default initialize the elements



Vector member functions

vector<double> v{7};

vio] = 1;

v.at(l) = 2;

v.front(); // 1

v.back(); // ©

v.push _back(5);

v.back(); // 5

v.size(); // 8
v.pop_back(); // remove the 5



auto

* When declaring variables in block scope, in initialization statements of
for loops, etc., the keyword auto may be used as the type specifier.

* The compiler determines the type that will replace the keyword auto.

* auto may be accompanied by modifiers, such as const or &, which will
participate in the type deduction.

auto i{5}; // 1 will be of type int
auto i1{5.0}; // 1 will be of type double
auto b_ptr{new Bat{}}; // b_ptr will be of type pointer to bat



Using the vector

vector<int> v;

for (int 1{0}; i < v.size(); i++) {
// do something with v.at(i)



Using the vector

vector<int> v;

for (auto i{@}; 1 < v.size(); i++) {
// do something with v.at(i)



Using the vector

vector<int> v;

for (auto it{begin(v)}; it != end(v); it++) {
// do something with *it
// (it is almost the same thing as pointer)



Vector — indexing with begin(v)

begin(v) returns a pointer to the element at index 0

begin(v) + 1 returns a pointer to the element at index 1

\ A

begin(v); begin(v) + 1;



Vector — Iinsert

Vector’s insert takes an iterator (think pointer for now) as a first
argument. This argument tells the function where to insert the new
element.

\

begin(v) + 1;

v.insert(begin(v) + 1, 3);



Vector — Iinsert

When using insert, everything will be moved one index up

R I
/

New element

v.insert(begin(v) + 1, 3);



Vector — erase

Vector’s erase takes an iterator as a argument. This argument tells the
function where to erase in the vector.

\

begin(v) + 1;

v.erase(begin(v) + 1);



Vector — erase

When using insert, everything will be moved one index down

/

Erased element

v.erase(begin(v) + 1);



auto

* auto can also be used in a function declaration to indicate that the return type
will be deduced from the operand of its return statement.

auto foo() { // auto will be deduced to int
return 1;

}

auto foo() { // auto will be deduced to double
return 1.5;

}

auto foo() { // auto will be deduced to vector<int>

return vector<int>{5};



