
TDDE18 & 726G77
Inheritance and polymorphism

Introduction to inheritance

• Inheritance allows us to write functionality once instead of multiple
times for multiple classes.

• We can reference a group of classes

class Rectangle {

public:

Rectangle(double h, double w)

: height{h}, width{w} {}

double area() const {

return height * width;

}

double get_height() const {

return height;

}

double get_width() const {

return width;

}

private:

double height;

double width;

};

class Triangle {

public:

Triangle(double h, double w)

: height{h}, width{w} {}

double area() const {

return height * width / 2.0;

}

double get_height() const {

return height;

}

double get_width() const {

return width;

}

private:

double height;

double width;

};

Introduction to inheritance

• The two classes are totally different, but have a lot of functionality in
common.

• Replicate code should be avoided – they increase the risk for bugs

• C++ (and other object oriented languages) have support for creating a
common base class that other classes can share.

class Shape {

public:

Shape(double h, double w)

: height{h}, width{w} {}

double get_height() const {

return height;

}

double get_width() const {

return width;

}

private:

double width;

double height;

};

Inheritance syntax

The following syntax is used to create a subclass:

class <sub-class> : public <base-class> {

...

};

class Rectangle : public Shape {

public:

Rectangle(double h, double w)

: Shape{h, w} {}

double area() const {

return height * width;

}

};

class Triangle : public Shape {

public:

Triangle(double h, double w)

: Shape{h, w} {}

double area() const {

return height * width / 2.0;

}

};

Inheritance

• Inheritance allows us to use a previous class as a model for a new
class. All functionality in the original class will be kept (without
additional code), and we are allowed to add new functionality.

• The class we use as a model is called the “base class” and the new
class we create from this is called “derived class” or “subclass”.

• Inheritance can be done in many levels. One class may be derived
from some class, and at the same time base class to another class.

class Shape {

public:

Shape(double h, double w)

: height{h}, width{w} {}

double get_height() const {

return height;

}

double get_width() const {

return width;

}

private:

double height;

double width;

};

class Triangle : public Shape {

public:

Triangle(double h, double w)

: Shape{h, w} {}

double area() const {

return height * width / 2.0;

}

};

Compile error – wrong access modifier

class Shape {

public:

Shape(double h, double w)

: height{h}, width{w} {}

double get_height() const {

return height;

}

double get_width() const {

return width;

}

private:

double width;

double height;

};

class Triangle : public Shape {

public:

Triangle(double h, double w)

: Shape{h, w} {}

double area() const {

return get_height() * get_width() / 2.0;

}

};

Class access modifiers

• Public – A public member is accessible from anywhere outside of the
class.

• Private – A private member variable or function cannot be accessed,
or even viewed from outside the class.

• Protected – A protected member variable or function is very similar to
a private member but it provided one additional benefit that they can
be accessed in derived classes.

class Shape {

public:

Shape(double h, double w)

: height{h}, width{w} {}

double get_height() const {

return height;

}

double get_width() const {

return width;

}

protected:

double height;

double width;

};

class Triangle : public Shape {

public:

Triangle(double h, double w)

: Shape{h, w} {}

double area() const {

return height * width / 2.0;

}

};

Public inheritance

This rules apply for the normal public inheritance:

• private members of the base class will neither be accessible in the
sub class nor to anyone else

• protected members in the base class become protected also in the
subclass, and behave as private to anyone else

• public members in the base class will be public in the sub class

class Shape {

public:

Shape(double h, double w)

: height{h}, width{w} {}

double get_height() const {

return height;

}

double get_width() const {

return width;

}

protected:

double height;

double width;

};

class Triangle : public Shape {

public:

Triangle(double h, double w)

: Shape{h, w} {}

double area() const {

return height * width / 2.0;

}

// Everything public in Shape

protected:

// Everything protected in Shape

};

Private inheritance

This rules apply for the private inheritance:

• private members of the base class will neither be accessible in the
sub class nor to anyone else

• protected members in the base class become private in the subclass,
and behave as private to anyone else

• public members in the base class will be private in the sub class and
behave as private to anyone else

class Shape {

public:

Shape(double h, double w)

: height{h}, width{w} {}

double get_height() const {

return height;

}

double get_width() const {

return width;

}

protected:

double height;

double width;

};

class Triangle : private Shape {

public:

Triangle(double h, double w)

: Shape{h, w} {}

double area() const {

return height * width / 2.0;

}

private:

// Everything public and protected in Shape

};

Protected inheritance

This rules apply for the protected inheritance:

• private members of the base class will neither be accessible in the
sub class nor to anyone else

• protected members in the base class become protected in the
subclass, and behave as private to anyone else

• public members in the base class will become protected in the sub
class and behave as private to anyone else

class Shape {

public:

Shape(double h, double w)

: height{h}, width{w} {}

double get_height() const {

return height;

}

double get_width() const {

return width;

}

protected:

double height;

double width;

};

class Triangle : protected Shape {

public:

Triangle(double h, double w)

: Shape{h, w} {}

double area() const {

return height * width / 2.0;

}

protected:

// Everything public and protected in Shape

};

Inheritance table

We will only use public inheritance in the course, outlined in italic

Initialization of derived classes

• When creating an object of an derived, the inner part
(base class) must be initialized first.

• It is common for the constructor of the derived class
to call the constructor of the base class.

Shape

Triangle

Calling base constructor

This must be done with an initialization list

<sub-class>::<sub-class>(<param-list>)

: <base-class>(<argument-list>),

<member-name>(<argument>)

{

<constructor-code>

}

Initialization of derived classes

class Triangle : public Shape {

public:

Triangle(double h, double w)

: Shape{h, w} {}

...

};

Shape

Triangle

How to use a derived class

• Given the public member functions from both classes:

int main() {

Triangle t{12, 4};

cout << t.get_height() << “ “ << t.area() << endl;

}

Function arguments

void foo(Triangle const& t) {

cout << t.get_height() << endl;

}

void foo(Rectangle const& r) {

cout << r.get_height() << endl;

}

int main() {

Triangle t{12, 4};

foo(t);

Rectangle r{24, 8};

foo(r);

}

Function arguments

If we create a function that takes a reference to Shape then we can send both
Triangle and Rectangle. This gives us less duplicate code!

void foo(Shape const& s) {

cout << s.get_height() << endl;

}

int main() {

Triangle t{12, 4};

foo(t);

Rectangle r{24, 8};

foo(r);

}

What about the function area?

void foo(Shape const& s) {

cout << s.area() << endl;

}

class Shape {

public:

...

double area() const {

return 0;

}

...

};

class Triangle : public Shape {

public:

Triangle(double h, double w)

: Shape{h, w} {}

double area() const {

return height * width / 2.0;

}

};

What about the function area?

void foo(Shape const& s) {

cout << s.area() << endl;

}

int main() {

Triangle t{12, 4};

foo(t); // print out 0

}

Polymorphism

• When we in addition to inheritance use polymorphism (poly = many,
morph = shifting) we can modify or customize the behavior of the
base class. Thus we can have one class with behavior that differ
depending on which subclass it actually is.

• The exact behavior is not determined when compiling the program,
but when the program runs (at runtime).

• To enable polymorphism the base class must declare the morphing
member functions as virtual.

Polymorphism

• With the keyword virtual we can declare in the base class a member
that the subclasses can override

class Shape {

public:

...

virtual double area() const {

return 0;

}

...

};

What about the function area?

void foo(Shape const& s) {

cout << s.area() << endl;

}

int main() {

Triangle t{12, 4};

foo(t); // print out 24

}

Enabling polymorphism

• C++ doesn’t use polymorphism as a default. The programmer must
opt-in for this feature.

• Use the keyword virtual for the member function that you want to
allow polymorphism.

• You must use either a pointer to the base class or a reference to the
base class.

Enabling polymorphism

int main() {

Triangle t{12, 4};

t.area(); // 24

Shape s1{t};

s1.area(); // 0

Shape & s2{t};

s2.area() // 24

Shape * s3{&t};

s3->area(); // 24

}

Polymorphism – how does it work

• You usually talk about two different types – static types and dynamic
types.

Triangle t{12, 4};

Shape & s{t};

• The static type of s is always Shape &

• The dynamic type depends on what s is referring to, in this case
Triangle

Polymorphism – how does it work

• When calling a member function, the compiler does the following:
• If the static type isn’t of pointer type or reference type => Call the function in

the static type.

• If the function is not virtual => Call the function in the static type.

• Otherwise => Call the function in the dynamic type.

Destruction of derived classes

• When destroying an object of an derived, the outer
part (subclass) must be destroyed first.

• It is a must for the destructor of the base class to be
virtual.

Shape

Triangle

Destruction of derived classes

class Shape {

...

~Shape() {}

...

};

int main() {

Shape * s{new Triangle{4, 2}};

delete s;

}

Shape

Triangle

Only this part will be removed

Destruction of derived classes

class Shape {

...

virtual ~Shape() {}

...

};

int main() {

Shape * s{new Triangle{4, 2}};

delete s;

}

Shape

Triangle

This part will be removed first

This part will be removed second

Pure virtual & Abstract class

• This implementation makes no
sense.

• But if this function is missing we
get a compile error.

• Fix is to make this a pure virtual
function and the class an abstract
class

virtual double area() const {

return 0;

}

// change it to

virtual double area() = 0;

Pure virtual & Abstract class

• Abstract classes are used to represent general concepts (for example,
Shape), which can be used as base classes for concrete classes (for
example, Triangle).

• No objects of an abstract class can be created. Abstract types cannot
be used as parameter types, as function return types, or as the type
of an explicit conversion.

• Pointers and references to an abstract class can be declared.

Pure virtual & Abstract class

int main() {

Shape s; // Error: abstract class

Triangle t{12, 4}; // OK

Shape s2{t}; // Error abstract class.

Shape & s2{t}; // OK to reference abstract class

Shape * s3{&t}; // Ok to point to abstract class

}

class Shape {

public:

...

double area() const = 0;

...

};

Pure virtual & Abstract class

• Subclasses must implement the pure
virtual functions or they will become
abstract classes too.

int main() {

Triangle t{12, 4};

// Error: Abstract class. Missing corner function

}

class Shape {

public:

...

int corners() const = 0;

...

};

Keyword Override

class Shape {

public:

...

virtual double area() const {

return 0;

}

...

};

class Triangle: public Shape {

public:

Triangle(double radius, double w)

: Shape{h, w} {}

double ara() const {

return height * width / 2.0;

}

};

int main() {
Triangle t{12, 4};
Shape & s{t};
s.area(); // 0

}

Keyword Override

class Shape {

public:

...

virtual double area() const {

return 0;

}

...

};

class Triangle: public Shape {

public:

Triangle(double radius, double w)

: Shape{h, w} {}

double ara() const {

return height * width / 2.0;

}

};

int main() {
Triangle t{12, 4};
Shape & s{t};
s.area(); // 0

}

Typo

Keyword Override

class Shape {

public:

...

virtual double area() const {

return 0;

}

...

};

class Triangle: public Shape {

public:

Triangle(double radius, double w)

: Shape{h, w} {}

double ara() const override {

return height * width / 2.0;

}

};

Keyword Override

• In a member function declaration or definition, override ensures that
the function is virtual and is overriding a virtual function from a base
class. The program is ill-formed (a compile-time error is generated if
this is not true.

Keyword Override

class Shape {

public:

...

virtual double area() const {

return 0;

}

...

};

class Triangle: public Shape {

public:

Triangle(double radius, double w)

: Shape{h, w} {}

double ara() const override {

return height * width / 2.0;

}

};

Keyword Override

class Shape {

public:

...

double area() const {

return 0;

}

...

};

class Triangle: public Shape {

public:

Triangle(double radius, double w)

: Shape{h, w} {}

double area() const override {

return height * width / 2.0;

}

};

Using declaration

• Using-declarations can be used to introduce members into other
block scopes, or to introduce base class members into derived class
definitions.

using namespace std;

using std::cin;

Using declaration in class definition

• Using-declaration introduces a member of a base class into the
derived class definition, such as to expose a protected member of
base as public member of derived.

class Shape {

public:

Shape(double h, double w)

: height{h}, width{w} {}

double get_height() const {

return height;

}

double get_width() const {

return width;

}

protected:

double height;

double width;

};

class Rectangle : public Shape {

public:

Rectangle(double h, double w)

: Shape{h, w} {}

double area() const {

return height * width;

}

using Shape::height;

};

height is now public

class Shape {

public:

Shape(double h, double w)

: height{h}, width{w} {}

double get_height() const {

return height;

}

double get_width() const {

return width;

}

protected:

double height;

double width;

};

class Rectangle : public Shape {

public:

Rectangle(double h, double w)

: Shape{h, w} {}

double area() const {

return height * width;

}

using Shape::height;

};

class Square : public Rectangle {

...

private:

using Shape::height;

}

Using declaration for constructors

• The derived class can copy in all the constructors from the base class
with a using-declaration and use it as its own.

class Rectangle : public Shape {

public:

using Shape::Shape;

double area() const {

return height * width;

}

using Shape::height;

};

It is possible to create a Rectangle object
with height and width as input arguments.
Rectangle r{12, 3};

dynamic_cast

• dynamic_cast can only be used with pointers and references to
classes. Its purpose is to ensure that the result of the type conversion
points to a valid complete object of the destination pointer type.

• This naturally includes pointer upcast (converting from pointer-to-
derived to pointer-to-base), in the same way as allowed as an implicit
conversion.

• dynamic_cast can also downcast (convert from pointer_to_base to
pointer_to_derived) polymorphic classes (those with virtual
members).

downcasting

• Often you would like to downcast whenever you want to get a specific
specialized functionality in a derived class.

Triangle t{12, 3};

Shape * s{t};

s->area_formula(); // Error

Triangle * t_ptr{dynamic_cast<Triangle*>(s)};

t_ptr->area_formula(); // Ok

class Triangle: public Shape {

public:

Triangle(double radius, double w)

: Shape{h, w} {}

string area_formula() const {

return “height * width / 2.0”;

}

};

downcasting – wrong type

• dynamic_cast will return nullptr if it cannot downcast to that type

Triangle t{12, 3};

Shape * s{t};

s->area_formula(); // Error

Rectangle * r_ptr{dynamic_cast<Rectangle*>(s)};

if (r_ptr != nullptr) {

r_ptr->area_formula(); // Will never go here

}

Type alias

• A type alias declaration introduces a name which can be used as a
synonym for the type denoted. It does not introduce a new type and
it cannot change the meaning of an existing type name.

• The type alias will behave exactly as the type denoted.

using FirstName = string;

FirstName f1{“Sam”};

f1.size(); // returns 3

