TDDE18 & 726G7/7

Pointers, Copy, and Move



Variable

* Fundamental (also called built-in types)

 Stores a value of a fundamental type, nothing more
* Object

 Stores values tied to an derived type (struct, class)

* Operations associated to the type are provided
* More about classes later in the course

* Pointer

e Stores the address of some other variable
* More about pointers in the course



Variable

Value

Type




Pointer

Value

Value




Pointer

e A variable that stores an address

* Compiler (programmer) keep track of what type each pointer address
store in order to index and treat dereference values correct.

* Read declaration backwards
int * p; // A variable p

// That is a pointer

// To an int



Pointer operators

* Operators relevant to pointers
» Dereference (content of, “go to”): *p
» Dereference with offset (indexing): *(p + i) or p[i]
e Address of: &
* Dereference and select member: (*p).m or p->m
* Allocate (borrow) memory: p = new t, a = new t[s]
* Deallocate (return) memory: delete p, delete[] a



Pointer — Address of

Value

Value

int * int_pointer{&integer_value}; int integer_value{};



Pointer — Dereference

Value
Value

cout << *int_pointer << endl;



Pointer — Allocate

Value

new int{3};

1. Create unknown variable of type int with value 3
2. Return the pointer

Save the pointer by declaring a new variable
int * integer_pointer{new int{3}};



Pointer — Deallocate

Value

delete integer_pointer;

1. Delete the variable that the pointer points to
2. Does not remove the pointer!




Pointer — Dereference and select member

address of other box

string * hello world

string * string_pointer{new string{“hello world”}};
string_pointer->length();



Dynamic memory

 Memory for variables can be dynamically allocated and deallocated
* Dynamic: During program execution
* Normal/Static: During compile time
* Allocate: Borrow from operating system
* Deallocate: return to operating system

* Each allocation must be deallocated exactly once, as soon as possible



Class with pointer

class Array {
public:
Array(int size);

private:
Int size_;
int * data;

5



What if ...

* We pass Array variables as parameter?

* We assign (copy) Array variables?

* We want to initialize an array from another?

e Destroy an Array variable?

* Move an Array variable about to be destroyed to another array?



Shallow copy vs deep copy

Shallow copy

Pointer a

Data

Pointer b ./

Deep copy

Pointer a .—»

Data

Pointer b .———>

Data




Shallow copy vs deep copy

Shallow copy

Pointer a

Data

Pointer b ./

Example code:
int * a{new Integer{3}};

int * b{a};

Deep copy

Pointer a .—> Data

Pointer b .———’ Data

Example code:
int * a{new Integer{3}};
int * b{new Integer{*a}};



Lifecycle “hooks”

* Constructor is automatically called when a class variable is defined or
allocated

* have no return value
* any defined parameters must be specified

e Operators functions are automatically called when variable is used by
an operator

e covered later on

* Destructor is automatically called when a variable goes out of scope
or is deleted

* have neither return value nor parameters



Lifecycle “hooks”

* Constructor is automatically called when a class variable is defined or
allocated

* have no return value

* any defined parameters must be specified

Eg. Default constructor

e Operators functions are automatically called when variable is used by
an operator

+ covered later on Eg. Assignment operator

* Destructor is automatically called when a variable goes out of scope
or is deleted

* have neither return value nor parameters

Destructor



Three essential “hooks”

* Copy constructor

* Called automatically when a fresh object is created as a copy of an existing
object

Array(Array const&);

* Assignment operator

* Called automatically when an existing object is overwritten by another object
(or itself)

Array & operator=(Array const&);

* Destructor

e Called automatically when an object is destroyed
~Array();



When?

* If you have a class with pointers you need the three essential hooks to
prevent memory leaks

* The compiler generate default versions if they do not exist, but the
compiler version WILL NOT be adequate or enough

* If your class have no pointers, you do not have to care, the compiler
version will be enough



Array class

class Array {
public:
Array(int size);

private:
int size ;
int * data;

s



Shallow copy vs deep copy

Object a

Object b

Shallow copy

./

Data

/,

The heap

Object a

Object b

Deep copy

Data

Data

The heap




Shallow copy vs deep copy

Object a

Object b

Shallow copy

./

e

4

Data

Object a

Object b

The heap

Example code:

Array a{};
Array b{a};

Deep copy

4

Data

Data

The heap




Shallow copy vs deep copy

Shallow copy Deep copy
Object a . . Data Object a . ) Data
//
/] >
Object b . Object b . Data
The heap The heap

Example code:

Compiler generated Array af}; Correct implemented copy constructor
Array b{a};



Copy constructor — syntax

class Array { // cc-file
Array: :Array(Array const& other) {
Array(Array const& a); // allocate new memory
// etc

s }



Temporary variable

Array foo() {
return Array{};

}

int main() {
Array a{foo()};

}



Temporary variable

Array foo() {

return Array{}; foo()'s array . 1 Data

int main() { .
Array a{foo()}; e

}



Temporary variable

Array foo() {

return Array{}; foo()'s array

Data

Data

a’s array

int main() A .
Array a{foo()}; s

}



Temporary variable

Array foo() {

return Array{};

a’s array
int main() {

Array a{foo()}; The heap
}



Temporary variable

Array foo() {

return Array{}; foo()'s array

N « Data

a’s array

int main() A .
Array a{foo()}; s

}



Move constructor — syntax

class Array { // cc-file
Array: :Array(Array && other) {
Array(Array && a); // swap the pointers
// etc

s }



Problems that might occur with copy assighment

int main() {
Appay a{}, Array a .
Array b{};

b = a;

» Data - a

The heap



Problems that might occur with copy assighment

int main() {

Appay a{}, Array a . Data-a
Array b{};
b = d ; Array b . Data-b

The heap



Problems that might occur with copy assighment

int main() {
Array a{};

Array b{};

b = a ’ Array b l/ Data - b

} /
The heap

Still in memory — Memory leak

You must remove this manually in your
- copy assignment

- move assignment

Array a . Data- 3

Data—copy of a




Copy assignment - syntax

// h-file
class Array {

Array & operator=(Array const& other);

s

// cc-file
Array & Array::operator=(Array const& other) {
// implementation

s



Move assignment - syntax

// h-file
class Array {

Array & operator=(Array && other);

s

// cc-file
Array & Array::operator=(Array && other) {
// implementation

s



Object that is going to be removed

int main() {
Array a{};

} // a will be removed here

Array a

Data

The heap




Object that is going to be removed

int main() {
Array a{}; —
} // a will be removed here K
The heap

Compiler generated destructor
Data still on the heap



Destructor — syntax

// h-file
class Array { Ares
ray a .

- /

}
// cc-file

Array: :~Array() {
// deallocate memory

The heap

Deallocated memory before removing object

¥



Shallow copy vs deep copy

Shallow copy

Pointer a

Data

Pointer b ./

Deep copy

Pointer a .—»

Data

Pointer b .———>

Data




Constructors

* Constructor — Called when creating a new object

* Copy constructor — Called when creating a new object from an old
object

* Move constructor — Called when creating a new object from an object
that is about to be removed

* Copy assignment — Assign an existing object the same values as
another object

* Move assignment — Assign an existing object the same values as an
object that is about to be removed

* Destructor — Called when an existing object is about to be removed



Random number generator

#include <random>

random _device rand{};

uniform_int distribution<int> die(1l, 6);
int n = die(rand); // random in [1 .. 6]

Further reference:

en.cppreference.com



Test first approach

* In lab 4 we want you to write the test before implementation

* We are going to ask you during the lab which test case you are
working on

* Catch testing library https://github.com/philsquared/Catch



https://github.com/philsquared/Catch

Test Driven Development

REFACTOR

The mantra of Test-Driven Development (TDD) is “red, green, refactor”



Using the debugger — command line

* Make sure your compilation command contain the ‘-g’ flag:

g++ -g some_buggy program.cc

e Load your program in the debugger:

gdb a.out

e Start your program, add command line arguments if needed

run argl arg2 arg3

* Do whatever causes your program to crash, and then retrieve a backtrace
backtrace

* The backtrace will show where the program was executing, and how it got
there



A backtrace example

g++11 —g debug_example.cc

gdb a.out

(gdb) run 1234-56-89

Starting program: /home/klaar/Cplusplus/a.out 1234-56-89
[Thread debugging using libthread_db enabled]

[New Thread 1 (LWP 1)]

/home/klaar/Cplusplus/a.out is not a date

1234-56-89 is a date

Program received signal SIGSEGV, Segmentation fault.

[Switching to Thread 1 (LWP 1)]

0xff132d50 in strlen () from /lib/libc.so.1

(gdb) backtrace

#0 0xff132d50 in strlen () from /lib/libc.so.1

#1 0x00043554 in is_date (str=0x0) at debug_example.cc:10

#2 0x000436b0 in main (argc=2, argv=0xffbfe104) at debug_example.cc:29



Using the debugger — Visual studio code

* https://code.visualstudio.com/docs/editor/debugging

[+ Start debugging

G Pause, step over, step in/out, restart, stop

| 1
@ L ] app.ts - node-express-ts

@ yParser.json());
4 CALL STACK app (bodyParser.urlencoded({ extended:

1.

J r 1o = 1 1 s I - - Ep L
4 BREAKPOINTS e e e @ Debug Console Panel

B Al Exceptions

Uncaught Exceptions
G master 11211 SO0AD Ln 36, Col 20 Spaces:2 UTF-8 LF TypeScript @



https://code.visualstudio.com/docs/editor/debugging

