
TDDE18 & 726G77
Pointers, Copy, and Move

Variable

• Fundamental (also called built-in types)
• Stores a value of a fundamental type, nothing more

• Object
• Stores values tied to an derived type (struct, class)

• Operations associated to the type are provided

• More about classes later in the course

• Pointer
• Stores the address of some other variable

• More about pointers in the course

Variable
Value

Type

Pointer
Value

Type
Value

Type

Pointer

• A variable that stores an address

• Compiler (programmer) keep track of what type each pointer address
store in order to index and treat dereference values correct.

• Read declaration backwards

int * p; // A variable p

// That is a pointer

// To an int

Pointer operators

• Operators relevant to pointers
• Dereference (content of, “go to”): *p

• Dereference with offset (indexing): *(p + i) or p[i]

• Address of: &

• Dereference and select member: (*p).m or p->m

• Allocate (borrow) memory: p = new t, a = new t[s]

• Deallocate (return) memory: delete p, delete[] a

Pointer – Address of
Value

Type
Value

Type

int * int_pointer{&integer_value}; int integer_value{};

Pointer – Dereference
Value

Type
Value

Type

cout << *int_pointer << endl;

Pointer – Allocate

Value

Type

new int{3};

1. Create unknown variable of type int with value 3
2. Return the pointer

Save the pointer by declaring a new variable
int * integer_pointer{new int{3}};

Pointer – Deallocate

Value

1. Delete the variable that the pointer points to
2. Does not remove the pointer!

delete integer_pointer;

Pointer – Dereference and select member

address of other box

string * hello world

string

string * string_pointer{new string{“hello world”}};
string_pointer->length();

Dynamic memory

• Memory for variables can be dynamically allocated and deallocated
• Dynamic: During program execution

• Normal/Static: During compile time

• Allocate: Borrow from operating system

• Deallocate: return to operating system

• Each allocation must be deallocated exactly once, as soon as possible

Class with pointer

class Array {

public:

Array(int size);

...

private:

int size_;

int * data;

};

What if ...

• We pass Array variables as parameter?

• We assign (copy) Array variables?

• We want to initialize an array from another?

• Destroy an Array variable?

• Move an Array variable about to be destroyed to another array?

Shallow copy vs deep copy

Shallow copy

Data

Deep copy

Data

Data

Pointer a

Pointer b

Pointer a

Pointer b

Shallow copy vs deep copy

Shallow copy

Data

Deep copy

Data

Data

Pointer a

Pointer b

Pointer a

Pointer b

Example code:
int * a{new Integer{3}};
int * b{a};

Example code:
int * a{new Integer{3}};
int * b{new Integer{*a}};

Lifecycle “hooks”

• Constructor is automatically called when a class variable is defined or
allocated
• have no return value

• any defined parameters must be specified

• Operators functions are automatically called when variable is used by
an operator
• covered later on

• Destructor is automatically called when a variable goes out of scope
or is deleted
• have neither return value nor parameters

Lifecycle “hooks”

• Constructor is automatically called when a class variable is defined or
allocated
• have no return value

• any defined parameters must be specified

• Operators functions are automatically called when variable is used by
an operator
• covered later on

• Destructor is automatically called when a variable goes out of scope
or is deleted
• have neither return value nor parameters

Eg. Assignment operator

Eg. Default constructor

Destructor

Three essential “hooks”

• Copy constructor
• Called automatically when a fresh object is created as a copy of an existing

object
Array(Array const&);

• Assignment operator
• Called automatically when an existing object is overwritten by another object

(or itself)
Array & operator=(Array const&);

• Destructor
• Called automatically when an object is destroyed
~Array();

When?

• If you have a class with pointers you need the three essential hooks to
prevent memory leaks

• The compiler generate default versions if they do not exist, but the
compiler version WILL NOT be adequate or enough

• If your class have no pointers, you do not have to care, the compiler
version will be enough

Array class

class Array {

public:

Array(int size);

...

private:

int size_;

int * data;

};

Object A

Shallow copy vs deep copy

Shallow copy

Data

Deep copy

Data

Data

Object a

Object b

Object a

Object b

The heap The heap

Object A

Shallow copy vs deep copy

Shallow copy

Data

Deep copy

Data

Data

Object a

Object b

Object a

Object b

The heap The heap

Example code:
Array a{};
Array b{a};

Object A

Shallow copy vs deep copy

Shallow copy

Data

Deep copy

Data

Data

Object a

Object b

Object a

Object b

The heap The heap

Example code:
Array a{};
Array b{a};

Compiler generated Correct implemented copy constructor

Copy constructor – syntax

class Array {

...

Array(Array const& a);

...

};

// cc-file

Array::Array(Array const& other) {

// allocate new memory

// etc

}

Temporary variable

Array foo() {

return Array{};

}

int main() {
Array a{foo()};

}

Temporary variable

Array foo() {

return Array{};

}

int main() {
Array a{foo()};

}

Data

The heap

foo()’s array

Temporary variable

Array foo() {

return Array{};

}

int main() {
Array a{foo()};

}

Data

Data

The heap

foo()’s array

a’s array

Temporary variable

Array foo() {

return Array{};

}

int main() {
Array a{foo()};

}

Data

The heap

a’s array

Temporary variable

Array foo() {

return Array{};

}

int main() {
Array a{foo()};

}

Data

The heap

foo()’s array

a’s array

Move constructor – syntax

class Array {

...

Array(Array && a);

...

};

// cc-file

Array::Array(Array && other) {

// swap the pointers

// etc

}

Problems that might occur with copy assignment

int main() {
Array a{};

Array b{};

b = a;

}

Data - a

The heap

Array a

Problems that might occur with copy assignment

int main() {
Array a{};

Array b{};

b = a;

}

Data - a

The heap

Data - b

Array a

Array b

Problems that might occur with copy assignment

int main() {
Array a{};

Array b{};

b = a;

}

Data - a

The heap

Data - b

Data – copy of a

Array a

Array b

Still in memory – Memory leak
You must remove this manually in your
- copy assignment
- move assignment

Copy assignment - syntax

// h-file

class Array {

...

Array & operator=(Array const& other);

...

};

// cc-file

Array & Array::operator=(Array const& other) {

// implementation

};

Move assignment - syntax

// h-file

class Array {

...

Array & operator=(Array && other);

...

};

// cc-file

Array & Array::operator=(Array && other) {

// implementation

};

Object that is going to be removed

int main() {
Array a{};

} // a will be removed here
Data

The heap

Array a

Object that is going to be removed

int main() {
Array a{};

} // a will be removed here
Data

The heap

Compiler generated destructor
Data still on the heap

Destructor – syntax

// h-file
class Array {

...
~Array();
...

}
// cc-file
Array::~Array() {

// deallocate memory
}

The heap

Array a

Deallocated memory before removing object

Shallow copy vs deep copy

Shallow copy

Data

Deep copy

Data

Data

Pointer a

Pointer b

Pointer a

Pointer b

Constructors

• Constructor – Called when creating a new object

• Copy constructor – Called when creating a new object from an old
object

• Move constructor – Called when creating a new object from an object
that is about to be removed

• Copy assignment – Assign an existing object the same values as
another object

• Move assignment – Assign an existing object the same values as an
object that is about to be removed

• Destructor – Called when an existing object is about to be removed

Random number generator

#include <random>

random_device rand{};

uniform_int_distribution<int> die(1, 6);

int n = die(rand); // random in [1 .. 6]

Further reference:

en.cppreference.com

Test first approach

• In lab 4 we want you to write the test before implementation

• We are going to ask you during the lab which test case you are
working on

• Catch testing library https://github.com/philsquared/Catch

https://github.com/philsquared/Catch

Test Driven Development

Using the debugger – command line

• Make sure your compilation command contain the ‘-g’ flag:

g++ -g some_buggy_program.cc

• Load your program in the debugger:

gdb a.out

• Start your program, add command line arguments if needed

run arg1 arg2 arg3

• Do whatever causes your program to crash, and then retrieve a backtrace

backtrace

• The backtrace will show where the program was executing, and how it got
there

A backtrace example

g++11 –g debug_example.cc

gdb a.out

(gdb) run 1234-56-89

Starting program: /home/klaar/Cplusplus/a.out 1234-56-89

[Thread debugging using libthread_db enabled]

[New Thread 1 (LWP 1)]

/home/klaar/Cplusplus/a.out is not a date

1234-56-89 is a date

Program received signal SIGSEGV, Segmentation fault.

[Switching to Thread 1 (LWP 1)]

0xff132d50 in strlen () from /lib/libc.so.1

(gdb) backtrace

#0 0xff132d50 in strlen () from /lib/libc.so.1

#1 0x00043554 in is_date (str=0x0) at debug_example.cc:10

#2 0x000436b0 in main (argc=2, argv=0xffbfe104) at debug_example.cc:29

Using the debugger – Visual studio code

• https://code.visualstudio.com/docs/editor/debugging

https://code.visualstudio.com/docs/editor/debugging

