
TDDE18 & 726G77
Classes

Variable

• Fundamental (also called built-in types)
• Stores a value of a fundamental type, nothing more

• Object
• Stores values tied to an derived type (struct, class)

• Operations associated to the type are provided

• More about classes later in the course

• Pointer
• Stores the address of some other variable

• More about pointers in the course

Variable
Value

Type

Class

• Data members – store values

string str{“Hello World!”};

• Member functions – operations available to use

str.size();

Hello World!

String

Class – the blueprint of an object

• Data members – store values

Person p{“Sam”, “Le”, 32};

• Member functions – operations available to use

p.first_name();

Sam

String

Le

32

Class syntax – header file

// header file guard protect from multiple inclusion

#ifndef _CLASS-NAME_H_

#define _CLASS-NAME_H_

// DO NOT use namespaces here, it may not be

// wanted in programs including this file

// prefix std:: on standard types instead

// names in italic are customizable

class class-name

{

public:

class-name(); // constructor (Initiator)

// member functions (methods in Java)

return-type operation(parameter-list);

private:

// member variables

data-type property;

};

#endif

Class syntax – implementation file

#include “class-name.h”

// Constructor (Initiator)

class-name::class-name()

{

// implementation

}

// Member function

return-type

class-name::operation(parameter-list)

{

// implementation

}

Class

• Provide language support for object orientation

• Having a single purpose, responsibility

• Consist of private member variables and public interface methods

• Can only be manipulated through a well defined interface

• Constructors and interface enables the programmer to depend on
always known and correct internal state

• Operators, constructors and destructors allow for easy management

Class vs Instance

• A class only describe the layout. It does not create any
data in memory. It’s a description of a data-type with
operations ”embedded”.

class Rocket {
public:

void fly();
bool finished;

private:
int height;

};

Class vs Instance

• An instance is a variable created of a specific class,
an object. You can create many.

Rocket r{};

Rocket s{}

Class declaration

// h-file

class Robot {

public:

void fly();

bool finished;

private:

int height;

};

// cc-file

void Robot::fly() {

cout << “I’m flying” << endl;

}

Accessing members

• An object variable allow you to access member functions (operations)
and member variables of that instance. You use the dot operator

// Access member functions
Rocket r{};
r.finished = true;
r.fly();

// Class definition
class Rocket {
public:

void fly();
bool finished;

private:
int height;

};

Accessing members

• Accessing a member inside a class does not require you to tell the
compiler which instance you are referring to.

// Outside of class
int main() {

Rocket r{};
r.finished = true;

}

// Inside the class
class Rocket {
public:

void fly() {
finished = true;

};

The keyword “this”

• Member functions are called “on” an instance and automatically receive that
instance to work on, available as the special pointer this.

void Robot::fly() {

finished = true;

cout << ”I’m finished and I can fly” << endl;

}

void Robot::fly() {

this -> finished = true;

cout << ”I’m finished and I can fly” << endl;

}

Private members

• Private members are only accessible
in functions belonging to the same
class

int main() {
Rocket r{};
r.model = “M-3”; //Error

}

class Rocket {
public:

void fly() {
r.model = “M-3”; //OK

}
};

Friends

• A class can decide to have friends. Friends can access private members!
• Friends should be avoided at all cost, since it creates high coupling – it

makes the two classes highly interdependent.
class Rocket {

...
friend bool equals(Rocket r1, Rocket r2);
...

};
bool equals(Rocket r1, Rocket r2) {

return r1.model == r2.model;
}

Object lifecycle

• class definition:
• no object created yet, before birth

• variable definition:
• object born, memory allocated

• memory initiated with default values

• variable used...

• variable declaration block ends:
• memory reclaimed for other variables

Object lifecycle

• class definition:
• no object created yet, before birth

• variable definition:
• object born, memory allocated

• memory initiated with default values

• variable used...

• variable declaration block ends:
• memory reclaimed for other variables

Constructor

Destructor

Member functions
Operator functions

Lifecycle “hooks”

• Constructor is automatically called when a class variable is defined or
allocated
• have no return value

• any defined parameters must be specified

• Operators functions are automatically called when variable is used by
an operator
• covered later on

• Destructor is automatically called when a variable goes out of scope
or is deleted
• have neither return value nor parameters

The rocket constructor

// h-file

class Rocket {

public:

Rocket(); // Constructor

...

};

// cc-file

Rocket::Rocket() {

model = “Unknown model”;

}

Using the constructor

• If you define a constructor you must specify all arguments when you
create an instance!

• If you do not define a constructor a default constructor that does
nothing will be created.

• If you only have private constructors other code can not create
instances.

Default constructor

// h-file

class Rocket {

public:

Rocket(); // Default Constructor

...

};

// cc-file

Rocket::Rocket() {

}

• If you do not define a
constructor the compiler will
generate a similar default
constructor for you.

Constructor Example

// h-file
class Rocket {
public:

Rocket(string m);
...

};
// cc-file
Rocket::Rocket(string m) {

model = m;
}

Constructor Example

// h-file
class Rocket {
public:

Rocket(string m);
...

};
// cc-file
Rocket::Rocket(string m) {

model = m;
}

// Ok
Rocket r{“M-3”};

// Error no fitting constructor
Rocket s{};

Constructor Performance Issue

Rocket::Rocket(string m) {

model = m;

}

1. Create model variable inside rocket

2. Update model variable with correct value

<no value>

string

<m’s value>

string

Constructor Member Initializer List

Robot::Robot(string m) : model{m} {}

Member initializer list specifies the initializers for
data members.

<m’s value>

string

Const member variables

• Data members could also be const

• Constant member variable must be initialized in constructor
initialization list

class Robot {

public:

...

string const model;

};

Robot::Robot(string m) model{m} {}

Reference member variables

• Data members could also be a reference to another variable

• Reference member variables must be initialized in constructor
initialization list

class Robot {

...

private:

Person & creator;

};

Constructor – Multiple

• Constructor can be overloaded in a similar way as function overloading

• Overloaded constructor have the same name (name of the class) but different
number of arguments

• The compiler choose the constructor that fits best with the given input
arguments

...

Robot();

Robot(string m);

Robot(Person p);

Robot(Person p, string m);

etc.

...

Constructor delegation

• Many classes have multiple constructors that do similar things

• You could reduce the repetitive code by delegating the work to
another constructor

Robot::Robot() : Robot{“unknown”} {}

Robot::Robot(string m) : model{m} {}

Destructor

• The object calls the destructor when it is about to go out of scope

int main() {

Robot r{};

} // r will call its destructor on this line

Destructor

// h-file
class Robot {
public:

~Robot(); // no return or parameters
...

};
// cc-file
Robot::~Robot() { // not useful yet...

cout << “destructor called” << endl;
}

Example class - Money

• Class that represent money

• Have the capacity to hold units (Swedish krona)

• Have the capacity to hold hundreds (Swedish öre)

• Can validate that it have valid (non-negative values) in units and
hundreds.

Example class

class Money {

public:

Money();

Money(int unit);

Money(int unit, int hundred);

~Money();

void validate();

private:

int unit;

int hundred;

};

Money()

: Money{0} {}

Money(int unit)

: Money {0, 0} {}

Money(int unit, int hundred)

: unit{unit}, hundred{hundred}

{

validate();

}

void Money::validate() {

if (unit < 0 || hundred < 0)

...

