
TDDE18 & 726G77
Functions

Labs update

• No more one time password. We will note who have demonstrated
during the lab and register this in webreg.

• Use the terminal to send in your lab! Dont use Visual studio code!

Tooltip of the week – Preferences & Auto save

Variable
Value

Type

Variable

• Fundamental (also called built-in types)
• Stores a value of a fundamental type, nothing more

• Object
• Stores values tied to an derived type (struct, class)

• Operations associated to the type are provided

• More about classes later in the course

• Pointer
• Stores the address of some other variable

• More about pointers in the course

Struct – Compound data type

• With struct it is possible to combine variables into one derived type

Other boxes – zero or more

Type

Constants

• A variable can be declared const
• Modification of a const variable will give compilation error.

Unchangeable Value

Type

Reference

• Alias to another already existing variable

• A reference cannot refer to another variable after definition

Value

Type

Const&

• The value could be change using the original variable and not the
reference

Unchangeable Value

Type

Sequence and block

{ // Beginning of the block
statement 1;
statement 2;
statement 3;

} // End of the block

Any variable declared inside a block is only visible inside that block

Function

• A block that has been given a name

• Can be executed (called) by writing it’s name in other parts of the
program

return-type function-name(parameter-list) {
statement1;
statement2;
return expression;

}

Function types

• Global functions – Visible everywhere in you program after you
declaration

• Member functions – A function that is a part of an object variable

• Lambda functions – A function created inline, or “on the fly”

• Function objects – An object possible to call as a function

Global function

• Also called a subroutine or procedure if there are no return value.

• Visible after declaration

... // Call foo here is a compilation error

void foo();

... // Ok to call foo

Function declaration and definition

• Declaration
• Tells the compiler the function exists somewhere

void foo();

• Definition
• Places function code in program

void foo() {

}

• Give the programmer a way to separate the program

Function result

return-type function-name(parameter-list) {
statement1;
statement2;
return expression;

}

• return-type could be of any type that is declared in your program

• return expression must be of the return-type

• return statement exits the function

Function input parameters

return-type function-name(parameter-list) {
statement1;
statement2;
return expression;

}

Zero or more specified in parameter list

Beware of automatic conversion if the compiler know a way to convert

Function - Best practice

• Always use const in case fundamental types

• Always use const& in case object types.

• Remove const only if you must

Function overload

• Different functions can have the same name

• Functions with same name must have different parameters

• Arguments given determine which function is actually called (closest
match

• Compiler will select the “best match” among functions with the same
name

• Return value is not considered even if different

Overloading example

int triangle_area(int base, int height);

int triangle_area(int side1, int side2, int side3);

int triangle_area(int side1, int side2, float angle);

int triangle_area(int side, float angle1, float angle2);

triangle_area(1, 1);

triangle_area(1, 1, 1);

triangle_area(1, 1, 1.0); // which is called?

triangle_area(1, 1.0, 1.0);

triangle_area(1, 1, 1.0f);

triangle_area(1, 1.0f, 1.0f);

Default values

• Parameters can be given default values

• Specified in declaration only, since definition may be unknown to
compiler if program is in several files

• Default values can only be specified for last non-default parameter

• Can be omitted when calling the function

Default values

• Parameters can be given default values

• Specified in declaration only, since definition may be unknown to
compiler if program is in several files

• Default values can only be specified for last non-default parameter

• Can be omitted when calling the function

• Combined with function overload then the declaration must be
unambiguous!

Recursion

• A function can call itself. Helpful to solve complex problem where the
solution space is exponential

• N-factorial example

int factorial(int n) { // 5 4 3 2 1

if (n == 1)

return 1;

return n * factorial(n – 1);

}

File seperation

• Related functions can be gathered in one file to form a package.
• A package can be compiled separately, and do not need recompilation

unless you change a package source file.
• Public declarations are place in a header file .h
• Definitions are placed in a implementation file .cc/.cpp
• Header and implementation files should have the same name, except

for the extension

Header guard

• Header file must have a preprocessor guard to protect from multiple
inclusion

#ifndef _FILE_NAME_H_

#define _FILE_NAME_H_

// public declarations

#endif

Compiling multiple files

• Never compile a header file. This will give you a cached version of that
header file. This file have the file extension .gch. Remove this if you
have it!

Lesson 2

• English in T11 – C building

