
Linköping University
Department of Computer and Information Science (IDA)
The UPP group 2015-09-08

Functions and composed types

Aim

This laboration concerns first and foremost abstraction. Abstraction is about taking something that
may be complicated in its detail, and make it easy to use by only revealing what it achieve, hiding the
complexity of how.

You will create a program module, and the user of this module is another programmer that we name
Sam1. Your goal is to make an abstraction for Sam to use. In this case Sam already have an idea of
what she2 needs, and he3 has already written a program to test the intended abstraction. You’ll have
to make it work.

The most important tools a programmer (you) have to create abstractions are functions and composed
types.

With a function you put a nice clear name (right?) on the solution to one single small problem. If the
function abstraction is successful you can use your function in several places without bothering about
how it works exactly, you just need to know what is does (from the name) and trust that it works. A
bonus is that a good name will make your code easy to read and understand by others4.

Composed data types achieve a similar goal, but for data instead of algorithms. You collect all data
needed to describe some object or concept, put a clear name on it, and then you can use it as a single
entity. std::string, composed of a sequence of characters, is an example.

In C++ you would use a class with member functions to solve this laboration. You can however
also solve it with the more basic C struct and free functions. Using a struct is much more
explicit about every detail, and converting that solution to a class reveal much about how a C++
class automate and hide things. You may however not have time to do both, so pick one and stick to
it. We will cover the C++ class in a later laboration (which may tip the scale either way depending
on how you argue). We will provide the test program for both versions.

1To avoid any further confusion selecting between she or he.
2I mean it. Sam might be short for Samantha.
3It happens. Sam can be a guy.
4Actually a bad thing if your plan is to keep your job by being the only one to understand your mission critical code.

Just to mention: it’s a poor plan. It will, given some time, end with mission critical code not even understood by you.
But all blame will go on you.



Functions and composed types 2015-09-08

Reading instructions

- Functions
- Overloading functions
- Return values
- Parameter passing

- Input parameters for basic types (pass by value)
- Input parameters for composed types (pass by const reference)
- Output parameters (pass by reference)

- Composed data types (struct, class)
- Member variables
- Encapsulation (public, private)
- Member functions (methods)
- Constructors (constructor)

- Renaming existing types (using or typedef)
- Header file (declarations to be included)
- Implementation file (definitions to be compiled)

Assignment

Create a program library to handle collision detection. The objects that may collide are encapsulated
in a bounding box (rectangle) with sides parallel to x- and y-axis. This kind of rectangle is commonly
referred to as an axis aligned bounding box (AABB).

Our coordinate system have its origin at the top left corner of the screen, with x increasing to right
(as usual in math) and y increasing down (as usual on computer screens).

Your program should consist of a data type to represent one AABB, coupled with functions to perform
the operations listed below.

Although the main focus is to implement the more or less given abstraction, another problem is to
arrive at code which actually calculate correct answers (problem solving). Your solution does not have
to be efficient at all. If you get stuck, draw a figure to better illustrate your problem, and explain it
to your assistant.



Functions and composed types 2015-09-08

(construct) Should an AABB by requiring Sam to specify the coordinates for the top side, left side,
bottom side and right side. The left side in the created AABB must be to the left of the right
side, and the bottom side must be below the top side. You must however expect Sam to get
this wrong, and if so, fix it (without generating an error). For simplicity we will allow zero size
boxes.
Some examples of code Sam should be able to write:

int top{0}, left{0}, bottom{10}, right{10};
AABB my_aabb(top, left, bottom, right);
AABB my_aabb(5, 10, 43, 12); // Box (x=10,y=5) ==> (x=12,y=43)

You may also want a way to create an AABB by specifying two points (see contain below).

contain A function that operate on an AABB. Should return true if input parameter x and y is a
dot inside the AABB.

contain A function that operate on an AABB. Should return true if input parameter pt is a dot
inside the AABB. You need to create a composed type to represent the point pt. As a forced
restriction you are not allowed any comparison or calculation inside this function.

intersect A function that operates on two AABB’s. Return true if any part of one AABB is inside
the other.
Hint: Start by drawing all cases of how two rectangles may overlap on a piece of paper (at least
10 cases if we count all mirrored and rotated cases). You can solve the problem with no more
than 4 comparisons and zero if-statements (it’s okay to use more comparisons and if’s as long
as it’s clear what the code do.)

Spoiler:AssumingrectangleA’sleftsideistotheleftofrectangleB’srightside,you’ll(looking
atadrawing)seeoverlapifrectanglesA’srightsideistorightofrectangleB’sleftside.

min_bounding_box A function that operate on two AABB’s. Should return the smallest new AABB
surrounding both input boxes.

may_collide A function that determine if moving one AABB’s from one position to another may
possibly yield a collision with another AABB. Input will be the moving AABB in it’s starting
position, in it’s final position, and the AABB it may possibly collide with. Return false if a
collision is impossible. Think of this as a fast way of checking when a collision won’t happen.
Hint: To check this in a fast and simple way, we determine if the AABB surrounding the entire
movement overlap the AABB we think may be colliding. If an overlap exist a collision may exist,
and a more fine tuned collision detection must be performed to determine if, and where, the
collision occur.

collision_point A function that determine if, and where, an AABB’s moving from one position to
another will collide another AABB. If a collision occur, the function should return true and
update an output parameter with the coordinates of the top left corner at the point just before



Functions and composed types 2015-09-08

the collision. If a collision does not occur, the function should return false and leave the
output parameter untouched.
Make sure to use any abstraction you already have available!
Hint: A simple (but slow) method to arrive at an answer is to move the AABB from it’s starting
point to it’s destination in such small steps that the largest movement in x or y direction is 1
pixel, and check for overlap in each step.

Spoiler:Tofindthenumberofmovementstepsyoucalculatethemovementineachdirection
DxandDy.Thendivideeachbythelargerofthetwotogetthemovementnecessaryineach
step;dxanddy(thelargerwillthusbe1.0).Ifyouarecleverthesignsoftheresultwillbe
correctwithoutextrawork.

(getters) It’s often good to have small functions just to retrieve (read only) a certain (member) value
from a composed type. In this case it would for example be convenient to retrieve the width
and height. Think of what Sam may need and add what you feel suitable.

The final part of this assignment is to verify that your code actually works. You can do this by creating
test cases (use your drawing of all cases from before), feed those to your program, and verify you get
the result you expect.

To help you and save some time we have prepared a rudimentary test program for you with a few test
cases. You can easily add your own test cases to the provided data file.


	Aim
	Reading instructions
	Assignment

