
TDDE18 - Examination

2023-01-13

Rules
• All code sent for assessment must compile and be well tested.

• Electronic devices are not allowed. Phones must be switched off and placed in a coat or
bag.

• Outdoor clothes and bags must be placed in the designated area.

• Students may leave no earlier than one hour after the exam start.

• Fill in invigilators designated list if you need to leave the room.

• All contact between students are strictly prohibited during the exam.

• Books and notes may be reviewed by invigilators during the exam.

• Questions regarding specific assignments or regarding the exam in general are submitted
via the communication client.

• System questions can be answered by an assistant if you raise your hand.

• Assignments sent in after the end of the exam will be disregarded.

• You can correct flaws and ask for new assessment until an assignment has grade “Pass” or
“Fail”. An assignment can be assessed as “Fail” if no significant improvement took place
since last attempt.

Aiding material One C++-book
One A4-page with any notes

i



Information
Grading guidelines - TDDE18
The exam consists of five assignments. Solutions that compile and fulfill the specification as
well as follow good conventions and style are assessed “Pass”. Other solutions are assessed “Try
again” or (rarely) “Fail”. Grading is based on the number of assignments with a passing grade
you solve during the first four hours of the exam. See Table 1. For grade 3 you always have the
full exam time.

Time Solved assignments Grade
3 h 3 5
4 h 4 5
4 h 3 4
2 h 2 4
5 h 2 3

Table 1: Grading TDDE18

Grading guidelines - 726G77
The exam consists of five assignments. Solutions that compile and fulfill the specification as
well as follow good conventions and style are assessed “Pass”. Other solutions are assessed “Try
again” or (rarely) “Fail”. Grading is based on the number of assignments with a passing grade
you solve during the first four hours of the exam. See Table 2. For grade G you always have
the full exam time.

Time Solved assignments Grade
2.5 h 2 VG
3.5 h 3 VG
4.5 h 4 VG
5 h 2 G

Table 2: Grading 726G77

Log on
When instructed, log in as normal using you LiU-ID.

Desktop environment
Upon successful log in you will enter the desktop environment. The communication client should
start automatically. Note that the network is inaccessible. Networked application features may
thus malfunction.
It is important that you leave the communication client running during the entire exam. We
may send out public corrections and hints. Notify assistant if it does not start automatically
within 5 minutes after log in or after selecting the fish on the desktop.



Terminal commands
e++17 is used to compile with “all” warnings as errors.
w++17 is used to compile with “all” warnings. Recommended.
g++17 is used to compile without warnings.
valgrind --tool=memcheck is used to check for memory leaks.

C++ reference
During the exam you will have partial access to http://www.cppreference.com/, but only
through the desktop icon “Web access”. Do note that not everything on cppreference will be
available (in particular the pages under the “Language” section will be blocked). If you are
unable to access a page that should be available (it might have been blocked by mistake) then
you can send a message through the exam client. Note: The search functionality should work,
but only if you do it through cppreference. You cannot search on DuckDuckGo.

Given files
Any given files reside in the folder given_files on your desktop. This folder is write protected,
thus you don’t have to worry about accidentally changing the given files. To modify a given file,
you must first copy it to your work folder, use your desktop as a work folder. You are expected
to know how to do this, it is part of the course.

Log off
When your assignment and exam grade is satisfactory (and correct) in your communication
client it is safe to leave. If you run out of time you have to leave without knowing the result of
your last attempt, contact the examiner by email after the exam to know the result. Terminate
all open programs and log out.



TDDE18/726G77 - Exam 2023-01-13 08:00 –13:00

Assignment 1 - Complex numbers
Complex numbers are a mathmatical object that consists of two parts: a real and an imaginary
part. We represent complex numbers as such: a + bi where a is the real part and b is the
imaginary.

In the given file complex.cc there is a main program that use the Complex class. Your job is to
implement this class. It has two data members of type double that represent the real and the
imaginary part of the number respectively.

The Complex class must have an appropriate constructor and the following operator overloads:

• Output stream operator (operator<<), see the example for how it should behave.

• The binary operator operator+ that produces a new complex number by adding two
complex numbers together. Adding two complex numbers means adding each component
(real and imaginary) together. Suppose we have two complex numbers u and v then u+v
is defined as such (where Re(u) denotes the real part, and Im(u) denotes the imaginary
part):

Re(u+ v) = Re(u) + Re(v)
Im(u+ v) = Im(u) + Im(v)

• The binary operator operator* which produces a new complex number by multiplying
two complex numbers together.

This is a bit more complicated than addition, but it should follow this pattern:

Re(u · v) = Re(u) · Re(v)− Im(u) · Im(v)

Im(u · v) = Re(u) · Im(v) + Im(u) · Re(v)

Example output:

u = 1+2i
v = 3+4i
u + v = 4+6i
u * v = -5+10i



TDDE18/726G77 - Exam 2023-01-13 08:00 –13:00

Assignment 2 - Macros
In the context of programming, a macro is similar to a variable, but instead of keeping track of
a value it keeps track of a piece of text. Then, whenever a macro name is found in the code it
will replace that name with the specified macro definition.

This concept is however not exclusive for programming, it can be used in text processing to
make short-hand for common terms or phrases. For example:

Suppose we have to write Linköping University a lot in our texts, then we can define a macro,
let’s call it LiU and let its definition be Linköping University. Then we can for example write
I study at LiU Which expands to I study at Linköping University.

One problem with macros however is that their definitions might refer to other macros. For
example, suppose we have the following macros:

IDA = Department of Computer and Information Science
LiU = Linköping University
ORGANIZATION = IDA / LiU

Then the text The course TDDE18 is given at the ORGANIZATION should expand to The
course TDDE18 is given at Department of Computer and Information Science / Linköping
University

I.e. we had to recursively expand macros inside the macro. This can occur in an arbitrary
number of steps.

In this assignment you will implement macros by following these steps:

1. create a function called define_macros() which takes an std::ifstream& called ifs.

Each line in ifs has the following format: <MACRO NAME>:<DEFINITION>
See MACROS.txt for examples.

You must create an appropriate container which can associate a macro name with its
definition. It should be possible to find a macro definition by just supplying its name.

define_macros() should return the constructed container.

Hint: std::getline can be used to extract the name (look for :) and then you can extract
the definition by also using std::getline (look for \n).

2. create a function called expand() which takes a string containing a line and the macros
container returned from calling define_macros(). This function will expand all macros
within the line and return the fully expanded line as a string.

To implement this function you should go through the line word-by-word. Check if the
word is a macro by looking for it in your container. If it is a macro, then call expand() on
its definition and put the result in the output string. If a word isn’t a macro, then just
add it to the output string (followed by a space).

Hint: Use std::istringstream and operator>> to go through the line word-by-word.

Note: It is important that we call expand() on the macro definitions here rather than
in define_macros() since we don’t know all the macros until after the define_macros() is
done.

There is a main program and an example run given in macro.cc.



TDDE18/726G77 - Exam 2023-01-13 08:00 –13:00

Assignment 3 - Math with classes

+

3 *

5 2

Addition

Number

Number Number

Multiplication

Arithmetic expressions can be represented as trees consisting of nodes. Each node can have none,
or two children (represented by arrows in the diagram above). Note that there are different types
of nodes, we have numbers, addition and multiplication. Number nodes have no children, while
addition and multiplication have two. This means that the classes representing addition and
multiplication stores two references (not pointers) to other nodes. The diagram shows the tree
representation of the expression:

3 + 5 · 2

We can evaluate the expression by asking the addition node (calling a member function) to
evaluate itself. The addition node will then ask its children (in this case the number 3 and the
multiplication) to evaulate themselves. Then the addition node takes the result from its two
children and return their sum. The value node will return 3, while the multiplication asks both
of its children to evalute themselves and returns their product. In this case the multiplication
will result in 10, which means the addition becomes 10 + 3 = 13.

In the given file expression.cc there is a given program. Your assignment is to implement the
class hierarchy required to make this program work. You must implement 5 small classes.

• Node is the base class that represents an arbitrary node. It has no data members and is
pure-virtual (abstract). It has the member function int eval() which doesn’t have an
implementation.

• Number inherits from Node. It stores one int data member and implements int eval().
The overriden eval() should return the data member value.

• Binary is a pure-virtual class that inherits from Node. It has two data members of type
Node& (these represent its left- and right child).

• Addtion inherits from Binary and implements eval(). This member function evaluates the
children (by calling eval() on them) and returns their sum.

• Multiplication inherits from Binary and implements eval(). This member function eval-
uates the children (by calling eval() on them) and returns their product.



TDDE18/726G77 - Exam 2023-01-13 08:00 –13:00

Assignment 4 - Maze

In the given file maze.cc there is a start of an implementation for a linked maze (Maze). The
class have a data member entrance of type Room* which leads to the first room of the maze.
Each room have up to four neighbouring rooms.

All the memory is managed by the Maze, which includes the rooms. But the problem is that
Maze doesn’t have a destructor, so it has memory leaks. It is your job in this assignment to
implement the destructor of Maze so that it doesn’t have any memory leaks.

Note that the maze (you can see it in the diagram above) have cycles, meaning there are multiple
ways to enter the same room. Because of this you have to make sure that a room is deleted only
once (even though there are more than one way to find it), and that every room gets deleted.

Test if your solution works without memory leaks using valgrind:

valgrind --leak-check=full ./a.out

Hint: You need to keep track of which rooms have been visited somehow. A suggestion for
how to implement this is to create a helper function that you recursively call on all neighbours.
This function should only run if the specified room has not yet been visited.



TDDE18/726G77 - Exam 2023-01-13 08:00 –13:00

Assignment 5 - Measure distance

This assignment is based around the given file WAYPOINTS.txt. In the file there are four way-
points which are represented by an x- and a y-coordinate which are separated with -. Your
assignment is to create a program with appropriate STL algorithms that reads this file and
prints the total distance travelled if we visited each waypoint in order. We assume that we
travel between waypoints using straight lines. The diagram above shows the path defined by
WAYPOINTS.txt.

A

B
C

To measure the distance between two points we use Pythagoras theorem. This means that the
distance between the first pair of waypoints in the diagram are given by:

√
(4− 1)2 + (5− 1)2

where 4−1 is the difference between the x-coordinates of the points, while 5−1 is the difference
between the y-coordinates. In general the hypotenuse is given by:

C =
√
A2 +B2

So your job is to calculate the distances between each consecutive pair of points in WAYPOINTS.txt
and then sum them all together to get the total distance (should be ≈ 20.133). The output of
the program should just be the total distance.

You may not use any loops or recursion. The aim is to use appropriate STL algorithms to solve
the problem. The problem should work for any set of valid waypoints, not just the ones given.

Hint: The function std::sqrt in <cmath> calculates the square root of a number.


