
TDDE18 - Examination

2022-01-14

Rules
• All code sent for assessment must compile and be well tested.

• Electronic devices are not allowed. Phones must be switched off and placed in a coat or
bag.

• Outdoor clothes and bags must be placed in the designated area.

• Students may leave no earlier than one hour after the exam start.

• Fill in invigilators designated list if you need to leave the room.

• All contact between students are strictly prohibited during the exam.

• Books and notes may be reviewed by invigilators during the exam.

• Questions regarding specific assignments or regarding the exam in general are submitted
via the communication client.

• System questions can be answered by an assistant if you raise your hand.

• Assignments sent in after exam end will be disregarded.

• You can correct flaws and ask for new assessment until an assignment has grade “Pass” or
“Fail”. An assignment can be assessed as “Fail” if no significant improvement took place
since last attempt.

• Correctly compiling code, complete fulfillment of requirements, and use of good program-
ming conventions and style are requirements for “Pass” grade on an assignment.

Aiding material One C++-book
One A4-page with any notes

i



Information
Grading guidelines - TDDE18
The exam consists of five assignments. Solutions that fulfill specification and follow good conven-
tions are assessed “Pass”. Other solutions are assessed “Try again” or (rarely) “Fail”. Grading
is based on the number of assignments with a passing grade you solve during the first four hours
of the exam. See 1. For grade 3 you always have the full exam time.

Time Solved assignments Grade
3 h 3 5
4 h 4 5
4 h 3 4
2 h 2 4
5 h 2 3

Table 1: Grading TDDE18

Grading guidelines - 726G77
The exam consists of five assignments. Solutions that fulfill specification and follow good conven-
tions are assessed “Pass”. Other solutions are assessed “Try again” or (rarely) “Fail”. Grading
is based on the number of assignments with a passing grade you solve during the first four hours
of the exam. See 2. For grade G you always have the full exam time.

Time Solved assignments Grade
2.5 h 2 VG
3.5 h 3 VG
4.5 h 4 VG
5 h 2 G

Table 2: Grading 726G77

Log on
When instructed, log in as normal using you LiU-ID.

Desktop environment
Upon successful log in you will enter the desktop environment. The communication client
should start automatically. Note that the network is inaccessible. Network applications may
thus malfunction.
It is important that you leave the communication client running during the entire exam. We
may send out public corrections and hints. Notify assistant if it does not start automatically
within 5 minutes after log in or after selecting the fish in the start menu.



Terminal commands
e++17 is used to compile with “all” warnings as errors.
w++17 is used to compile with “all” warnings. Recommended.
g++17 is used to compile without warnings.
valgrind --tool=memcheck is used to check for memory leaks.

C++ reference pages
During the exam, you will have access to http://www.cppreference.com/ in the browser
Chromium. Note that only this site is accessible, and that some features on the site may be
blocked.

Given files
Any given files reside in the folder given_files on your desktop. This folder is write protected,
thus you don’t have to worry about accidentally changing the given files. To modify a given file,
you must first copy it to your work folder, use your desktop as a work folder. You are expected
to know how to do this, it is part of the course.

Log off
When your assignment and exam grade is satisfactory (and correct) in your communication
client it is safe to leave. If you run out of time you have to leave without knowing the result of
your last attempt, contact the examiner by email after the exam to know the result. Terminate
all open programs and log out.



TDDE18/726G77 - Exam 2022-01-14 08:00 –13:00

Assignment 1 - Date formatting
All over the world people have the need to communicate specific days. This is usually done
with the help of calendar dates, i.e. a specific year, month and date combined communicates a
unique day. But people write these dates in various different ways depending on where in the
world they are.

In this assignment you will create a class called Date that represents a calendar date. This class
contains 3 integer data members year, month and date. Write a constructor that allow these
members to be initialized. Date also contains a pure-virtual function called to_string that is
used to get a string representation of the date.

Create a subclass of Date called YMD_Date. This class represents a date that is printed on the
format yyyy-mm-dd. For example 2022-01-14. This subclass has no extra data members and
should have a similar constructor as Date. YMD_Date overrides to_string and return the date on
the specified format. Notice that date and month should always be represented by two digits.

Create another subclass of Date called MDY_Date. This class represents a date that is printed
on the format day m/d/yyyy. For example Thursday 2/19/2020. MDY_Date adds a string data
member called day, which represents which weekday it is that day. This, and the other data
members should all be set by a constructor. MDY_Date overrides to_string such that it returns a
string representation of the date on the specified format. Note that date and month are printed
as they are, no extra zeroes should be added.

There is a partial test program given in given_files/dates.cc. You must complete that
program.

Your program should not contain any memory leaks nor should it contain slicing.



TDDE18/726G77 - Exam 2022-01-14 08:00 –13:00

Assignment 2 - XML validation
XML (eXtensible Markup Language) is a common way to structure data in a both human and
machine readable format. An XML file consists of elements which are blocks of text surrounded
by tags.

A tag is an arbitrary string (consisting of only letters) that is surrounded by < and >. It can
look like this <tag>. There is also a special tag called a closing tag, which looks like this </tag>,
i.e. it is a tag that starts with </. Each tag must be closed with a closing tag. An element
looks like this:

<tag>
Some text here,
which can span multiple lines.
</tag>

An element can also contain elements themselves (look at valid.xml for a complete example).

In this assignment you will write a program that checks whether or not a given XML file is
valid. In this assignment you may assume that each tag is on its own line with nothing else but
the tag on that line. If the given XML file is invalid then an appropriate error message will be
printed.

There are detailed instructions on how to write this program in given_files/xml.cc. There
are also four test files in given_files called valid.xml, invalid1.xml, invalid2.xml and
invalid3.xml.

Example runs:
$ ./a.out valid.xml
Valid XML file!

$ ./a.out invalid1.xml
Invalid tag <123>

$ ./a.out invalid2.xml
Tag <name> not closed

$ ./a.out invalid3.xml
There are unclosed tags



TDDE18/726G77 - Exam 2022-01-14 08:00 –13:00

Assignment 3 - Schedules
Keeping a schedule of what to do at what times is a common organizational tool. Often we find
that we keep multiple schedules: one for work or studies and one for our private life. But in
order for schedules to be as efficient as possible we want to view them all at once.

In this assignment you will use STL (the standard library) to create a program that takes
two schedules and merge them into one. In given_files/schedule.cc there are two example
schedules.

Each schedule is a std::vector containing events. An event is a std::string with the format
"<start time>-<end time> <description>", where <start time> and <end time> are time-
points on the format "HH:MM" (example: "08:00"). These timepoints indicate when this event
starts and ends respectively.

<description> is a text describing this event.

There are step-by-step instructions for how this program should be implemented given in
given_files/schedule.cc. Make sure to follow these steps as closely as possible.

In this assignment you are to use standard algorithms to implement the program described
above. No hand-written loops are allowed. It is important that you choose appropriate algo-
rithms to solve the problem, std::for_each is usually not a good choice.



TDDE18/726G77 - Exam 2022-01-14 08:00 –13:00

Assignment 4 - K-Cats
In this assignment you will implement a special data structure called K-Cats. It is exactly like
a stack but with these differences:

• Instead of pushing to the top, a K-Cats will push to the bottom.

• Instead of popping from the top, K-Cats will pop from the bottom.

In given_files/kcats.h there is an incomplete definition of the class KCats. It is your job to
complete this definition and then implement all member functions in a new file called kcats.cc.

There is a testprogram given in given_files/kcats_test.cc.

Requirements
1. The K-Cats consists of node elements, just like a stack. You must implement these node

elements yourself.

2. The K-Cats must have correct memory usage.

3. The public interface may not be changed in kcats.h.

4. pop will return the removed element.

5. Correct usage of const is required.

6. Your solution should have correct header and implementation files.

7. The copy constructor and the copy assignment operator must be private and should not
do anything special (you are also allowed to delete them if you like).

8. The move constructor and the move assignment operator must be correctly implemented.

9. You are not allowed to modify the given test program at all.

10. You must send in all three files; kcats.h, kcats.cc and kcats_test.cc.

Example run:
$ ./a.out
1 5 72 35 2 99
99 2 35 72 5 1

Hint: Even though a K-Cats operates at the bottom rather than the top, its implementation
does not have to reflect this.



TDDE18/726G77 - Exam 2022-01-14 08:00 –13:00

Assignment 5 - Counter
Counters are very common in a lot of different programs. In this assignment you will implement
a class called Counter which can be printed and increased in different ways.

A Counter has a name (represented as a string) and a value (represented as an integer). When
a counter is printed it will print the name inside brackets followed by an equality sign, followed
by the value.

Example: A counter that is named "My Counter" and has the value 1 will be printed as
[My Counter] = 1

It should be possible to add integer values to the counter value with +, += and ++.

There is a test program given in given_files/counter.cc.

Requirements
1. It should be possible to print a Counter to a std::ostream with operator<<.

2. It should be possible to increase a counter with operator+= and operator++ (pre- and
postfix). All three of these operators must be member functions of Counter.

3. There should be two implementations of operator+. Both of which are ordinary functions
outside of the class.

4. operator+= and operator+ should add an int value to the counter.

5. All plus operators should have the same behaviour as if they where performed on the
value of the counter.

6. No code duplication allowed. Reuse operators as much as possible when implementing
the others.

7. You are not allowed to change the given code.

0.1 Example run:
$ ./a.out
[My Counter] = 1
[My Counter] = 2
[My Counter] = 2
[My Counter] = 6
[My Counter] = 11
[My Counter] = 11

Hint: Implement operator+= first and implement all other arithmetic operators with that.


