
TDDE18 - Examination

2020-01-15

Rules

• All code sent for assessment must compile and be well tested.

• Electronic devices are not allowed. Phones must be switched off and placed in a coat or
bag.

• Outdoor clothes and bags must be placed in the designated area.

• Students may leave no earlier than one hour after the exam start.

• Fill in invigilators designated list if you need to leave the room.

• All contact between students are strictly prohibited during the exam.

• Books and notes may be reviewed by invigilators during the exam.

• Questions regarding specific assignments or regarding the exam in general are submitted
via the communication client.

• System questions can be answered by an assistant if you raise your hand.

• Assignments sent in after exam end will be disregarded.

• You can correct flaws and ask for new assessment until an assignment has grade “Pass” or
“Fail”. An assignment can be assessed as “Fail” if no significant improvement took place
since last attempt.

• Correctly compiling code, complete fulfilment of requirements, and use of good program-
ming conventions and style are requirements for “Pass” grade on an assignment.

Aiding material One C++-book
One A4-page with any notes

i



Information

Grading guidelines - TDDE18

The exam consists of five assignments. Solutions that fulfil specification and follow good conven-
tions are assessed “Pass”. Other solutions are assessed “Try again” or (rarely) “Fail”. Grading is
based on the number of assignments with a passing grade you solve during the first four hours
of the exam. See 1. For grade 3 you always have the full exam time.

Time Solved assignments Grade
3 h 3 5
4 h 4 5
4 h 3 4
2 h 2 4
5 h 2 3

Tabell 1: Grading TDDE18

Grading guidelines - 726G77

The exam consists of five assignments. Solutions that fulfil specification and follow good conven-
tions are assessed “Pass”. Other solutions are assessed “Try again” or (rarely) “Fail”. Grading is
based on the number of assignments with a passing grade you solve during the first four hours
of the exam. See 2. For grade G you always have the full exam time.

Time Solved assignments Grade
2.5 h 2 VG
3.5 h 3 VG
4.5 h 4 VG
5 h 2 G

Tabell 2: Grading 726G77

Log on

When instructed, log in as normal using you LiU-ID.

Desktop environment

Upon successful log in you will enter the normal desktop environment (Mate-session in Linux
Mint). The communication client should start automatically. Note that the network is inacces-
sible. Network applications may thus malfunction.
It is important that you leave the communication client running during the entire exam. We
may send out public corrections and hints. Notify assistant if it does not start automatically
within 5 minutes after log in or after selecting the fish in the start menu.



Terminal commands

e++17 is used to compile with “all” warnings as errors.
w++17 is used to compile with “all” warnings. Recommended.
g++17 is used to compile without warnings.
valgrind --tool=memcheck is used to check for memory leaks.

C++ reference pages

During the exam, you will have access to http://www.cppreference.com/ in the browser
Chromium. Note that only this site is accessible, and that some features on the site may be
blocked.

Given files

Any given files reside in the folder given_files on your desktop. This folder is write protected,
thus you don’t have to worry about accidentally changing the given files. To modify a given file,
you must first copy it to your work folder, use your desktop as a work folder. You are expected
to know how to do this, it is part of the course.

Log off

When your assignment and exam grade is satisfactory (and correct) in your communication
client it is safe to leave. If you run out of time you have to leave without knowing the result of
your last attempt, contact the examiner by email after the exam to know the result. Terminate
all open programs and log out.



TDDE18/726G77 - Exam 2020-01-15 08:00 –13:00

Assignment 1 - Special cards

The board game Gloomhaven contain several special cards.
These cards have three parts: a top effect, a bottom effect
and an initiative. An example of such a card can be seen to
the right.

In assignment1.cc there is a given main program, your as-
signment is to implement all classes that are used by this pro-
gram. You must create 3 classes according to the following
descriptions.

Effect is an aggregate (a class or struct with only public
data members) with 2 data members. The data members
are name and description, both of which should be of type
std::string.

Card is a class with 3 data members. The data members top
and bottom are objects of type Effect. The data member
initiative is an integer value. Card must implement opera-
tors for comparison and for printing to an output stream. It
is enough to implement the “less than” operator for compa-
rison. Cards are compared based on initiative.

Hand is a class with one data member; a container that con-
tains an arbitrary amount of Card objects. Hand has two member functions, draw and print.
draw adds a new card to the container and print will print all the cards in the container to an
arbitrary std::ostream. print must use the output stream operator of the cards.

Example run:

$ ./a.out
Card1:
Top: Aid from the Ether
Initiative: 91
Bottom: Summon Mystic Ally

Top: Aid from the Ether
Initiative: 91
Bottom: Summon Mystic Ally

Top: Ice Lance
Initiative: 25
Bottom: Ride the Wind

card1 is less than card2: false
card2 is less than card1: true



TDDE18/726G77 - Exam 2020-01-15 08:00 –13:00

Assignment 2 - Parts of a game board

The game board of the board game Gloomhaven consists of several pieces connected together.
Such a piece is called a Tile and it consists of several hexagons. Each hexagon has an arbit-
rary amount of things stacked on top of it. In this assignment we represent a hexagon with
std::string where each char is one thing placed on that hexagon. The thing that is at the top
of the stacked things is the last character in the string.

Your job is to create the class Tile that works as demonstrated in the given main program
located in program2.cc.

The class Tile is a piece of the game board and have two data members: a string name and a
container of hexagons called hexes. hexes stores an arbitrary amount of hexagons. Each hexagon
should be associated with an x- and a y-coordinate. std::map is an appropriate starting point.
Tile must work according to these requirements:

• It should work without any changes to the main program.

• A Tile should be created with only a name.

• It should be possible to add new hexagons with a function that takes an x/y-coordinate
and a std::string with the function create_hex.

• Adding new things on top of a hexagon should be done with the function push that takes
one coordinate and one char. The passed in thing (char) should then be placed on top of
the hexagon at the passed in coordinate.

• Individual hexagons should be possible to print with the function print_hexagon. print_hexagon
prints the hexagon at the passed in coordinate.

• When printing a hexagon then only the thing at the top of the hexagon should be printed.

• The entire Tile should be printed with the function print_tile.

Example run:

Hexagon(0, 0): [X]
b1:
Hexagon(0, 0): [O]
Hexagon(0, 1): [H]



TDDE18/726G77 - Exam 2020-01-15 08:00 –13:00

Assignment 3 - Adversaries with a common base class

In Gloomhaven there are several different types of monsters. In this assignment you are going to
use polymorphism and inheritance to represent 2 different monsters, bandit archers and bandit
guards.

You must create the three classes: Adversary, BanditGuard and BanditArcher according to the
following descriptions:

Adversary has one integer data member that represents the monsters health. It has the member
functions description and to_string. description has no default behaviour. to_string returns
the monsters health as a string according to the following format: “hp: x”.

BanditGuard extends the behaviour of Adversary. It adds an integer data member for mobility.
Objects of this data type implements the member function description which returns the string
“Bandit guard”. to_string return the bandits health and mobility as a string on the following
format: “hp: x movement: y”.

BanditArcher extends the behaviour of BanditGuard. It adds an integer data member representing
how far the archer can shoot with its bow. description returns the string “Bandit archer”
and to_string return the bandits health, mobility and range on the following format: “hp: x
movement: y range: z”.

In assignment3.cc there is a main program given. You are going to have to make some changes
in this program to solve the problem of slicing and potential memory leaks.

Example run:

Adversaries:
=============
Bandit archer:
hp: 1 movement: 3 range: 2

Bandit guard:
hp: 2 movement: 4

Bandit guard:
hp: 3 movement: 3



TDDE18/726G77 - Exam 2020-01-15 08:00 –13:00

Assignment 4 - Count words

While playing Gloomhaven it can be interesting to analyze the discussion around the table. In
this assignment you are going to take a text from std::cin and print a table of each unique
word and the number of times it occured. However, there is a catch; you are not allowed to use
std::map (which probably would have been a perfect container for this assignment). Instead you
will have to solve this problem with appropriate STL algorithms and other containers.

Requirements

• You must use appropriate algorithms.

• Neither std::map nor std::for_each can be used.

• You cannot use any loops (for, while or do-while), you have to use algorithms instead.

• The user must indicate that the input text is complete by pressing ctrl+D.

Example run:

$ ./a.out
I found loot over here
I too found loot

I: 2
found: 2
here: 1
loot: 2
over: 1
too: 1



TDDE18/726G77 - Exam 2020-01-15 08:00 –13:00

Assignment 5 - Building a game board

In the given code assignment5.cc there are parts of a linked data structure implemented. This
linked structure represents a map in the game Gloomhaven. A map consists of many Tiles
that are connected before the game begins. This way we can create many different maps for
the game. In the given file there is a class GMap that represents a map, but it does not work
correctly. It is your job to complete the implementation.

GMap contains a pointer to the first tile and member functions necessary for adding new tiles
as the first tile in the linked structure. It is also possible to remove the first tile, after removal
then the second tile becomes the first tile.

Tile contains a string with the name of the tile. It also contains a pointer to the next tile.

The following problems you will have to fix:

• The class does not take responsibility to cleanup any resources it owns.

• Missing implementation and testcases for the move operations (move constructor move
assignment operator). Hint: std::move can be used to test move operations.

• GMap does not implement copying in the correct way. It should not be possible to copy a
map.

There is no example run that demonstrates the desired output since it is your job to rewrite
the main program to test the class in an appropriate way.


