
Replacing Greedy Search with
Beam Search in Syntactic Parsing
Error States and Early Updates for Beam Search Training and
Inference in a Syntactic Parser

Hannes Bengtsson & Patrik Habbe

Group 16

2024-03-13

Agenda

Project Scope and Method1

Experiment Results and Conclusions2

Project Motivation and Scientific Resources3

Agenda

Project Scope and Method1

Experiment Results and Conclusions2

Project Motivation and Scientific Resources3

We have replaced the greedy search algorithm with beam search for syntactic
parsing and found modest improvements

“In this project we have replaced the greedy search
for parsing in the baseline with a beam search and
trained the fixed-window model for global scoring
using two different methods.”

Extensions Datasets and EvaluationBaseline System

Syntactic Parsing

• Creating a formal representation of a sentence
structure (in our use case dependency trees)

• We use a simple model that consider a fixed
number of words and its corresponding POS tags
to find “good” dependency trees

Method 2: Introducing Error States

Inspired by ” Efficient Structured Inference for
Transition-Based Parsing with Neural Networks
and Error States” by Vaswani and Sagae (2016)

Accuracy

• The percentage of correctly predicted part-of-
speech (POS) tags

• 88% for EN, 93% for IT

Unlabeled Attachment Score (UAS)

• The percentage or correctly predicted head
positions using predicted POS tags from the tagger

Datasets

• Two dataset from the Universal Dependencies
treebanks

• One English (EN) and one Italian (IT)
• Both needed to be projectivized

Greedy Search vs Beam Search

• Greedy search take best local score, beam search
aim to find the best global score

Method 1: Using Early Update

Inspired by ” Globally Normalized Transition-
Based Neural Networks” by Andor et al. (2016)

Start

A

A

B

A

B

CC
B

C

A

B

A

B

CC

Time step: t = 1 t = 2 t = 3

Beam width of two,
keep top two

scoring candidates.
Greedy only

consider best at
each time step

w1 w2 w3
t1 t2 t3

Training beam search with early updates, and global normalization displayed
improvements with wider beams, compared to error state training

Idea:

2: Error states for training and inference Limitations1: Early updates and Loss function

𝐿𝑔𝑙𝑜𝑏𝑎𝑙−𝑏𝑒𝑎𝑚 𝑑1:𝑗
∗ ; 𝜃

= −

𝑖=1

𝑗

𝜌(𝑑1:𝑖−1
∗ , 𝑑𝑖

∗; 𝜃) + ln

𝑑1:𝑗
′ ∈ℬ𝑗

𝑒𝑥𝑝

𝑖=1

𝑗

𝜌(𝑑1:𝑖−1
′ , 𝑑𝑖

′; 𝜃)

Implementation:

• Revised the code in the oracle to also output
error states if some moves are valid but not
gold path.

• This allows the model to train not only on
correct actions, but also on error states.

• Makes it possible to achieve global scoring
using locally trained models.

For example, if the gold move is to shift from the
buffer to our stack, we introduce the possibility of
Left-Arc (LA) and Right-Arc (RA), if they are valid
moves, that lead to an error state (ER).

The essentials:

𝑑∗ - The gold path

ℬ𝑗 - All paths in the beam at step j, with the gold

path 𝑑∗

• If the gold beam falls out of the beam at step j,
we perform an SGD step with the loss function
above.

• If the gold beam stays until the end of
decoding, ℬ𝑗 is replaced with ℬ𝑛, the beam

without appending the gold path.

Loss function:

Introduce error states during the local training
processes to account for incorrect derivation paths,
normally not considered by locally trained models

Details:

• Limited time prevented hyperparameter
optimization

- Default hyperparameters applied

• Baseline code's model features utilized as-is

• Model complexity unmodified (e.g., default
hidden layer size)

• Beam search applied only during inference in
the tagger

We implemented beam search without adjusting
the default hyperparameters or altering the

underlying neural network's structure.

Summary of limitations:

Agenda

Project Scope and Method1

Experiment Results and Conclusions2

Project Motivation and Scientific Resources3

The early update implementation outperform both the baseline and error
states implementation when using more epochs

Beam Search Experiment Results

Ea
rl

y
U

p
d

at
es

1

UAS1 for different beam widths on the English dataset

60,00%

62,00%

64,00%

66,00%

68,00%

70,00%

72,00%

1 Epoch 2 Epochs 3 Epochs 4 Epochs

Baseline

Width 1

Width 2

Width 3

Width 4

Width 5

UAS1 for different beam widths on the English dataset

Er
ro

r
St

at
es

2

64,00%

66,00%

68,00%

70,00%

72,00%

74,00%

76,00%

78,00%

1 Epoch 2 Epochs 3 Epochs 4 Epochs

Baseline

Width 1

Width 2

Width 3

Width 4

Width 5

UAS for different beam widths on the Italian dataset

60,00%

62,00%

64,00%

66,00%

68,00%

70,00%

72,00%

74,00%

1 Epoch 2 Epochs 3 Epochs 4 Epochs

Baseline

Width 1

Width 2

Width 3

Width 4

Width 5

General findings
• Increasing epoch degrades performance (overfitting)
• Lower UAS than article (dataset, hyperparameters, etc.)
• On average 5 % of errors occurs “due to” beam search

English dataset
• No beam outperforms the baseline

Italian dataset
• Beam width 5 for 1 epoch outperforms baseline with an

UAS of 76.04%
• Best baseline, UAS of 75.94% on 3 epochs

55,00%

60,00%

65,00%

70,00%

75,00%

80,00%

1 Epoch 2 Epochs 3 Epochs 4 Epochs

Baseline

Width 1

Width 2

Width 3

Width 4

Width 5

UAS for different beam widths on the Italian dataset General findings
• Wider beam width increases. inference performance in

conjunction with an increase in the number of epochs
• Lower UAS than research paper (dataset,

hyperparameters, etc.)
• On average 10 % of errors occurs “due to” beam search

English dataset
• Width 4 & 5 outperform baseline after 4 epochs

Italian dataset
• Beam width 5 for 4 epochs outperform baseline after 4

epochs with a UAS of 74,77%.

1) Calculated UAS scores are when using gold label tags, it was more a concern about runtime than an active choice.

Our conclusions are that a more complex search algorithm may lead to limited
increase in performance if the underlying model is very simple

More epochs improved early update UAS score, but it deteriorates for error states

Project Conclusions

This make sense because one epoch in the early update contains fewer examples
than one epoch for error states

The performance of both implementations are lower than that of Andor et al.
(2016) as well as for Vaswani and Sagae (2016)

Lack of hyperparameter fine-tuning (highlighted as important in both paper),
different datasets, simpler architecture for the underlying model

Early update achieves a higher UAS score than error states
Trying to comparing the results of Andor et al. (2016) and Vaswani and Sagae
(2016) this seems to be the case as well. In the paper error states don’t improve
performance for beams larger than 4 without pre-trained embeddings

Both implementation seems to be doing what they are supposed to
Only beam search during inference and not training (or vice versa) deteriorates
UAS score, the optimization verification test indicates that beam search works

Beam search may and may not lead to improved performance for syntactic parsing
A complex search algorithm may lead to limited increase in performance if the
underlying model is too simple or the chosen hyperparameters are flawed

Key project findings Possible explanation

Agenda

Project Scope and Method1

Experiment Results and Conclusions2

Project Motivation and Scientific Resources3

We chose beam search because we are currently writing our masters’ thesis
and consider beam search as a possible approach to obtain better results

Sources of Scientific Information

• “Globally Normalized Transition-Based Neural Networks”, Andor et
al. (2016)

• “Efficient Structured Inference for Transition-Based Parsing with
Neural Networks and Error States”, Vaswani and Sagae (2016)

• “Structured Training for Neural Network Transition-Based Parsing”,
Weiss et al. (2015)

• “A Fast and Accurate Dependency Parser using Neural Networks”,
Chen and Manning (2014)

• DeepLearning.AI and Andrew Ng on Sequence-to-Sequence Models,
more specifically error analysis on beam search and “the
optimization verification test”

Why we have chosen to implement beam search

• Beam search can be used on various NLP tasks, and it is a technique
still used by e.g., OpenAI

• Implementing beam search seemed like a fair challenge (however it
was much harder than expected)

• We found the idea behind beam search, to consider alternative
“solutions”, appealing as it made sense intuitively

• We are currently writing our masters’ thesis on natural language
processing and found beam search interesting as it might be
applicable in out thesis work

	Default Section
	Slide 1: Replacing Greedy Search with Beam Search in Syntactic Parsing Error States and Early Updates for Beam Search Training and Inference in a Syntactic Parser
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10

