
This work is licensed under a
Creative Commons Attribution 4.0 International License.

The arc-standard algorithm

Marco Kuhlmann
Department of Computer and Information Science

Natural Language Processing

https://www.liu.se/
http://creativecommons.org/licenses/by/4.0/

The arc-standard algorithm

• e arc-standard algorithm is an algorithm for transition-based
dependency parsing.

• It can be viewed as a generalisation of the shi–reduce algorithm
for parsing context-free grammars.
two types of “reduce” actions

• e arc-standard algorithm can only predict projective
dependency trees.
Algorithms for non-projective trees exist, see e.g. Nivre ().

https://www.aclweb.org/anthology/P09-1040/

Projective dependency trees

sahhelfenlesenMariePietJandass

Every subtree corresponds to a contiguous sequence of words.

Non-projective dependency trees

lezenhelpenzagMariePietJanomdat

e sequence of words in a subtree may contain “gaps”.

Transition-based dependency parsing

• e parser starts in the initial configuration.
empty dependency tree

• It then calls a classifier, which predicts the transition that the
parser should make to move to a next configuration.
extend the partial dependency tree

• is process is repeated until the parser reaches a terminal
configuration.
complete dependency tree

Configurations

A configuration of an arc-standard parser has three parts:

• A buffer, which contains those words in the sentence that still
need to be processed. Initially, the buffer contains all words.

• A stack, which contains those words in the sentence that are
currently being processed. Initially, the stack is empty.

• A partial dependency tree. Initially, this tree contains all the
words of the sentence, but no dependency arcs.

Transitions

• e shi transition () removes the frontmost word from the
buffer and pushes it to the top of the stack.

• e le-arc transition () creates a dependency from the
topmost word on the stack to the second-topmost word, and
pops the second-topmost word.

• e right-arc transition () creates a dependency from the
second-topmost word on the stack to the topmost word, and
pops the topmost word.

Example run

stack buffer

I wanted to try someplace new

I wanted to try someplace new

(initial configuration)

Example run

stack buffer

I wanted to try someplace new

I wanted to try someplace new

SH

classifier

Example run

I wanted to try someplace new

stack buffer

I wanted to try someplace new

SH

classifier

Example run

I wanted to try someplace new

stack buffer

I wanted to try someplace new

LA

classifier

Example run

I wanted to try someplace new

stack buffer

wanted to try someplace new

SH

classifier

Example run

I wanted to try someplace new

stack buffer

wanted to try someplace new

SH

classifier

Example run

I wanted to try someplace new

stack buffer

wanted to try someplace new

LA

classifier

Example run

I wanted to try someplace new

stack buffer

wanted try someplace new

SH

classifier

Example run

I wanted to try someplace new

stack buffer

wanted try someplace new

SH

classifier

Example run

I wanted to try someplace new

stack buffer

wanted try someplace new

RA

classifier

Example run

I wanted to try someplace new

stack buffer

wanted try someplace

RA

classifier

Example run

I wanted to try someplace new

stack buffer

wanted try

RA

classifier

Example run

I wanted to try someplace new

stack buffer

wanted

(terminal configuration)

Valid transitions

Valid transitions

• is valid if the buffer contains at least one word.

• and are valid if the stack contains at least two words.

Valid transition sequences

are transition sequences in which all transitions are valid

Soundness and completeness

• Soundness

Every valid transition sequence that starts in the initial
configuration and ends in some terminal configuration
builds some projective dependency tree.

• Completeness

Every projective dependency tree can be built by
some valid transition sequence that starts in the initial
configuration and ends in some terminal configuration.

Non-uniqueness and runtime

• Non-uniqueness

One and the same projective dependency tree can in general be
built by several valid transition sequences.

• Runtime

e number of transitions that the arc-standard algorithm takes
to build a tree for a sentence with 𝑛 words is 2𝑛 − 1.

Features used with the arc-standard algorithm

Features for the classifier can be defined over

• the words in the buffer

• the words on the stack

• the partial dependency tree

Chen and Manning (2014)

FNN

concat

Embed

stack 1buffer 1 stack 2

Embed Embed

transition

https://www.aclweb.org/anthology/D14-1082/

Static training oracle

• Choose if this would create an arc from the gold-standard
tree, and if all arcs from the second-topmost word on the stack
have already been assigned by the parser.

• Choose if this would create an arc from the gold-standard
tree, and if all arcs from the topmost word on the stack have
already been assigned by the parser.

• Otherwise, choose .
must always be valid, unless the tree is non-projective

