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Abstract

Minimum Bayes risk (MBR) decoding outputs
the hypothesis with the highest expected util-
ity over the model distribution for some utility
function. It has been shown to improve accu-
racy over beam search in conditional language
generation problems and especially neural ma-
chine translation, in both human and automatic
evaluations. However, the standard sampling-
based algorithm for MBR is substantially more
computationally expensive than beam search,
requiring a large number of samples as well as
a quadratic number of calls to the utility func-
tion, limiting its applicability. We describe an
algorithm for MBR which gradually grows the
number of samples used to estimate the utility
while pruning hypotheses that are unlikely to
have the highest utility according to confidence
estimates obtained with bootstrap sampling.
Our method requires fewer samples and drasti-
cally reduces the number of calls to the utility
function compared to standard MBR while be-
ing statistically indistinguishable in terms of
accuracy. We demonstrate the effectiveness
of our approach in experiments on three lan-
guage pairs, using chrF++ and COMET as util-
ity/evaluation metrics.

1 Introduction

Minimum Bayes risk (MBR) decoding (Bickel and
Doksum, 1977; Goel and Byrne, 2000) has recently
gained renewed attention as a decision rule for
conditional sequence generation tasks, especially
neural machine translation (NMT). In MBR, the
sequence with the highest expected utility with re-
spect to thez model distribution is chosen as the
output, where the utility is usually some measure
of text similarity. This contrasts with the more com-
monly used maximum a posteriori (MAP) decision
rule, which returns the sequence with the highest
probability under the model. MAP is generally in-
tractable, and beam search is typically used to find
an approximation. MBR is likewise intractable,

and Eikema and Aziz (2020) propose an sampling-
based approximation algorithm.

MBR has been shown to outperform MAP beam
search in both automatic and qualitative evaluation
in a diverse range of tasks (Suzgun et al., 2023),
including NMT (Freitag et al., 2022a) and code
generation (Shi et al., 2022). MBR also generalizes
other previously proposed decoding methods and
explains their success (Bertsch et al., 2023).

The accuracy improvement from MBR comes at
a heavy cost: the number of samples used can reach
thousands (Freitag et al., 2023), and the number
of calls to the utility function required is quadratic
in the number of samples. Often, the utility func-
tion itself is a deep neural model, rendering MBR
prohibitively expensive for many use cases.

In this work, we address the computational ef-
ficiency of MBR with an iterative pruning algo-
rithm where low-performing hypotheses are re-
moved while the number of samples used to esti-
mate utilities grows. Hypotheses are pruned based
on their estimated probability of being the true best
hypothesis under the MBR objective, thus avoid-
ing making expensive fine-grained utility estimates
for hypotheses which are unlikely to be the final
prediction.

In NMT experiments on three language pairs
using chrF++ (Popović, 2015), and COMET (Rei
et al., 2020) as MBR utility and evaluation metrics,
we show that our method maintains the same level
of accuracy as standard MBR while reducing the
number of utility calls by a factor of at least 7 for
chrF++ and 15 for COMET. Our algorithm can
also use fewer samples to reach a prediction by
terminating early, unlike standard MBR.

2 Minimum Bayes risk decoding

Conditional sequence generation problems such as
neural machine translation (NMT) model the prob-
ability of the next token yt given a source sequence
x and prefix y<t with a neural network p✓. This
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Abstract

Large Language Models (LLMs) are deployed
in interactive contexts with direct user engage-
ment, such as chatbots and writing assistants.
These deployments are vulnerable to prompt
injection and jailbreaking (collectively, prompt
hacking), in which models are manipulated to
ignore their original instructions and follow
potentially malicious ones. Although widely
acknowledged as a significant security threat,
there is a dearth of large-scale resources and
quantitative studies on prompt hacking. To ad-
dress this lacuna, we launch a global prompt
hacking competition, which allows for free-
form human input attacks. We elicit 600K+
adversarial prompts against three state-of-the-
art LLMs. We describe the dataset, which em-
pirically verifies that current LLMs can indeed
be manipulated via prompt hacking. We also
present a comprehensive taxonomical ontology
of the types of adversarial prompts.

1 Introduction: Prompted LLMs are
Everywhere. . . How Secure are They?

Large language models (LLMs) such as Instruct-
GPT (Ouyang et al., 2022), BLOOM (Scao et al.,
2022), and GPT-4 (OpenAI, 2023) are widely
deployed in consumer-facing and interactive set-
tings (Bommasani et al., 2021). Companies in di-
verse sectors—from startups to well established
corporations—use LLMs for tasks ranging from
spell correction to military command and con-
trol (Maslej et al., 2023).

Many of these applications are controlled
through prompts. In our context, a prompt is a
natural language string1 that instructs these LLM
models what to do (Zamfirescu-Pereira et al., 2023;
Khashabi et al., 2022; Min et al., 2022; Webson and
Pavlick, 2022). The flexibility of this approach not

⇤ Equal contribution
⇤⇤ Competition Winner

1More broadly, a prompt may be considered to simply be
an input to a Generative AI (possibly of a non-text modality).

Figure 1: Uses of LLMs often define the task via a
prompt template (top left), which is combined with user
input (bottom left). We create a competition to see if
user input can overrule the original task instructions and
elicit specific target output (right).

only offers an accessible entry into using powerful
LLMs (Brown et al., 2020; Shin et al., 2020), but
also reveals a rapidly expanding attack surface that
can leak private information (Carlini et al., 2020),
generate offensive or biased contents (Shaikh et al.,
2023), and mass-produce harmful or misleading
messages (Perez et al., 2022). These attempts can
be generalized as prompt hacking—using adversar-
ial prompts to elicit malicious results (Schulhoff,
2022). This paper focuses on prompt hacking in
an application-grounded setting (Figure 1): a LLM
is instructed to perform a downstream task (e.g.,
story generation), but the attackers are trying to ma-
nipulate the LLM into generating a target malicious
output (e.g., a key phrase). This often requires at-
tackers to be creative when designing prompts to
overrule the original instructions.

Existing work on prompt injection (Section 2)
is limited to small-scale case studies or qualitative
analysis. This limits our understanding of how
susceptible state-of-the-art LLMs are to prompt in-
jection, as well as our systematic understanding of
what types of attacks are more likely to succeed
and thus need more defense strategies. To fill this
gap, we crowdsource adversarial prompts at a mas-
sive scale via a global prompt hacking competition,
which provides winners with valuable prizes in or-
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Abstract

In-context learning (ICL) emerges as a promis-
ing capability of large language models (LLMs)
by providing them with demonstration exam-
ples to perform diverse tasks. However, the un-
derlying mechanism of how LLMs learn from
the provided context remains under-explored.
In this paper, we investigate the working mech-
anism of ICL through an information flow lens.
Our findings reveal that label words in the
demonstration examples function as anchors:
(1) semantic information aggregates into label
word representations during the shallow compu-
tation layers’ processing; (2) the consolidated
information in label words serves as a reference
for LLMs’ final predictions. Based on these in-
sights, we introduce an anchor re-weighting
method to improve ICL performance, a demon-
stration compression technique to expedite in-
ference, and an analysis framework for diag-
nosing ICL errors in GPT2-XL. The promising
applications of our findings again validate the
uncovered ICL working mechanism and pave
the way for future studies.1

1 Introduction

In-context Learning (ICL) has emerged as a power-
ful capability alongside the development of scaled-
up large language models (LLMs) (Brown et al.,
2020). By instructing LLMs using few-shot demon-
stration examples, ICL enables them to perform a
wide range of tasks, such as text classification (Min
et al., 2022a) and mathematical reasoning (Wei
et al., 2022). Since ICL does not require updates
to millions or trillions of model parameters and
relies on human-understandable natural language
instructions (Dong et al., 2023), it has become a
promising approach for harnessing the full poten-
tiality of LLMs. Despite its significance, the inner
working mechanism of ICL remains an open ques-
tion, garnering considerable interest from research

1https://github.com/lancopku/
label-words-are-anchors

Figure 1: Visualization of the information flow in a GPT
model performing ICL. The line depth reflects the sig-
nificance of the information flow from the right word to
the left. The flows involving label words are highlighted.
Label words gather information from demonstrations in
shallow layers, which is then extracted in deep layers
for final prediction.

communities (Xie et al., 2022; Dai et al., 2022;
Akyürek et al., 2022; Li et al., 2023b).

In this paper, we find that the label words serve
as anchors that aggregate and distribute information
in ICL. We first visualize the attention interactive
pattern between tokens with a GPT model (Brown
et al., 2020) on sentiment analysis (Figure 1). Ini-
tial observations suggest that label words aggregate
information in shallow layers and distribute it in
deep layers.2 To draw a clearer picture of this phe-
nomenon, we design two metrics based on saliency

2In this paper, “shallow” or “first” layers refer to those
closer to the input, while “deep” or “last” layers are closer
to the output. Here, “deep layers” include those around the
midpoint, e.g., layers 25-48 in a 48-layer GPT2-XL.
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Search and learning

• Search module 

e search module is responsible for finding the candidate 
output 𝒚 with the highest score relative to the input 𝒙. 
requires efficient algorithms 

• Learning module 

e learning module is responsible for finding the model 
parameters 𝜽 that maximize the predictive performance. 
for example, using supervised machine learning

Eisenstein (2019), § 1.2.2



Language is special

• Unlike images or audio, text data is fundamentally discrete, with 
meaning created by combinatorial arrangement. 

• Even though text appears as a sequence, machine learning 
methods must account for its implicit hierarchical structure.  

• e distribution of linguistic elements follows a power law – 
algorithms must be robust to unobserved events.

Eisenstein (2019), § 1.1



Zipf’s law and Heaps’ law
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