Algorithmic Problem Solving AAPS18 Exercise 06

Fredrik Präntare

Dept of Computer and Information Science

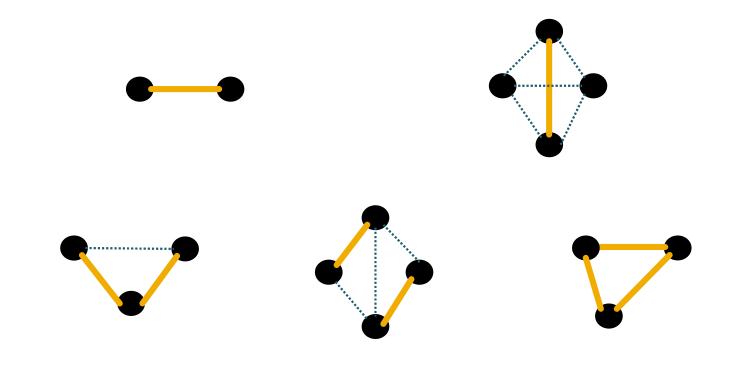
Linköping University

Outline

- This Week's Problems (Island Hopping, George, Full Tank?, Councilling)
- LiU Challenge
- Matching Problems
 - Graph Matching
 - Maximum Cardinality Matching
 - Maximum Cardinality Bipartite Matching
 - Maximum Weighted Matching
 - Maximum Weighted Bipartite Matching
 - Augmenting Paths Algorithm
 - Hopcroft-Karp's Algorithm
- Covering Problems
 - Maximum Independent Set
 - Minimum Vertex Cover
 - Euler Path (lab 2.9)

Graph Matching

• A <u>matching</u> (marriage) in a graph *G* (life) is a subset of edges (relationships) in *G* without common vertices (no affairs!).



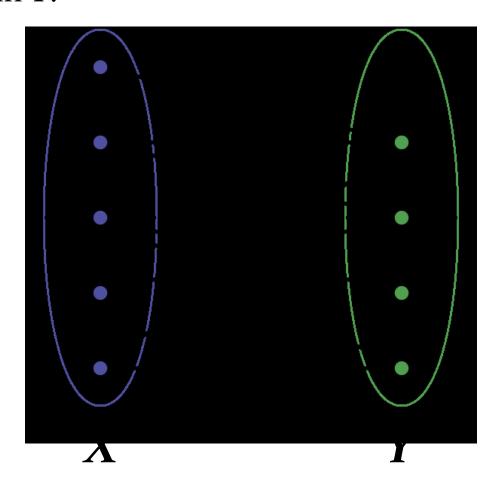
Matching?

Cardinality Matching

- Maximum cardinality matching (MCM) is the problem of finding the <u>size</u> (cardinality) of the largest possible matching in a graph.
- Not to be mixed up with <u>maximal matching</u>. A maximal matching is a matching for which we cannot add any more edges (is not necessarily MCM).

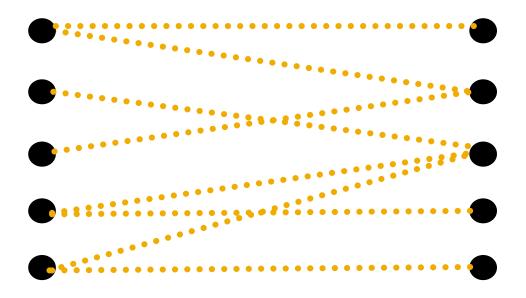
Bipartite Graph

 A <u>bipartite graph</u> is a graph whose vertices can be divided into two disjoint sets *X* and *Y* such that every edge connects a vertex in *X* to one in *Y*.



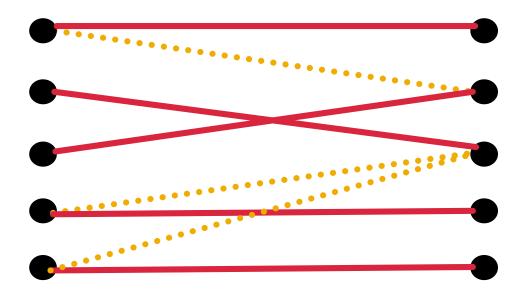
Maximum Cardinality Bipartite Matching

Maximum bipartite cardinality matching (MBCM) is the problem to find the <u>size</u> (cardinality) of the largest possible matching in a bipartite graph.



Max Cardinality Bipartite Matching (MCBM)

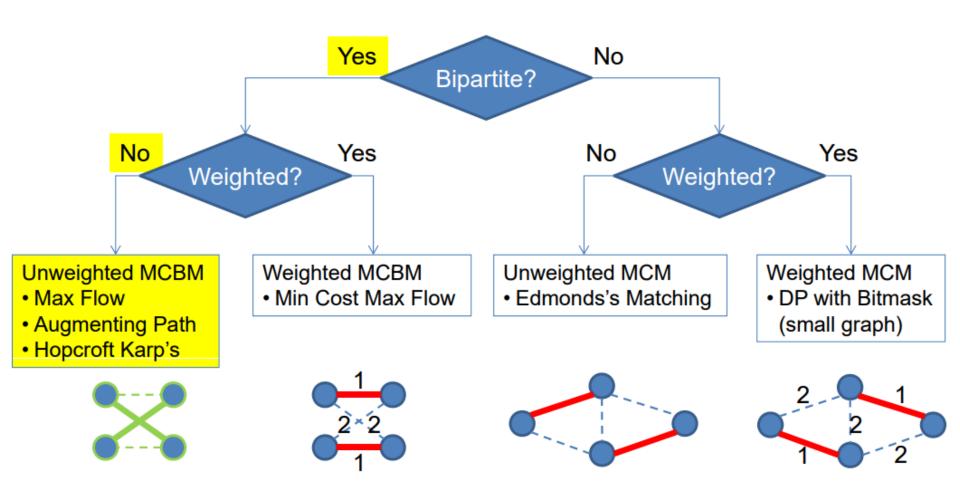
 Maximum bipartite cardinality matching (MBCM) is the problem to find the <u>size</u> (cardinality) of the largest possible matching in a bipartite graph.



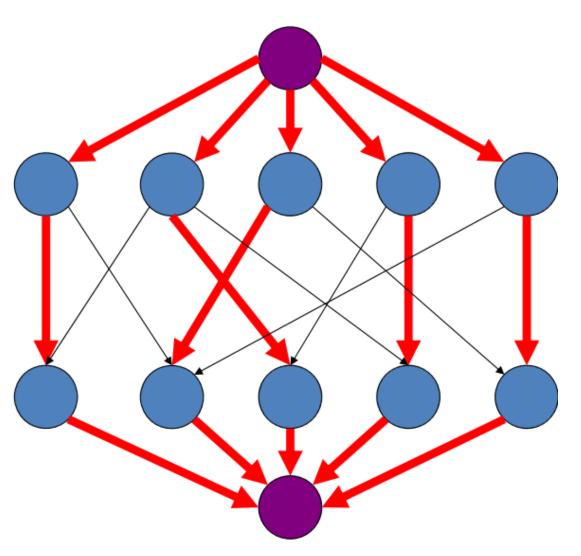
Weighted Maximum Cardinality Matching

 <u>Weighted</u> MCM involve finding the maximum/minimum MCM among all possible MCMs in a graph with weighted edges.

Graph Matching Solutions



A Max Flow Solution for MCBM



All edges have capacity = 1

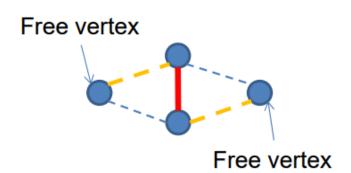
CS3233 - Competitive Programming, Steven Halim, SoC, NUS

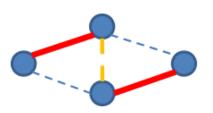
Augmenting Path

- A path $P = v_1, v_2, ..., v_k$ is <u>alternating</u> if the edges v_{i+1}, v_i and v_i, v_{i+1} alternate between M and V/M.
- P is **augmenting** if it is alternating and v_1 and v_k are unmatched.

Augmenting Path

- In this graph, the path colored orange(unmatched)red(matched)-orange is an augmenting path
- We can flip the edge status to red-orange-red and the number of edges in the matching set increases by 1





The Augmenting Path Algorithm

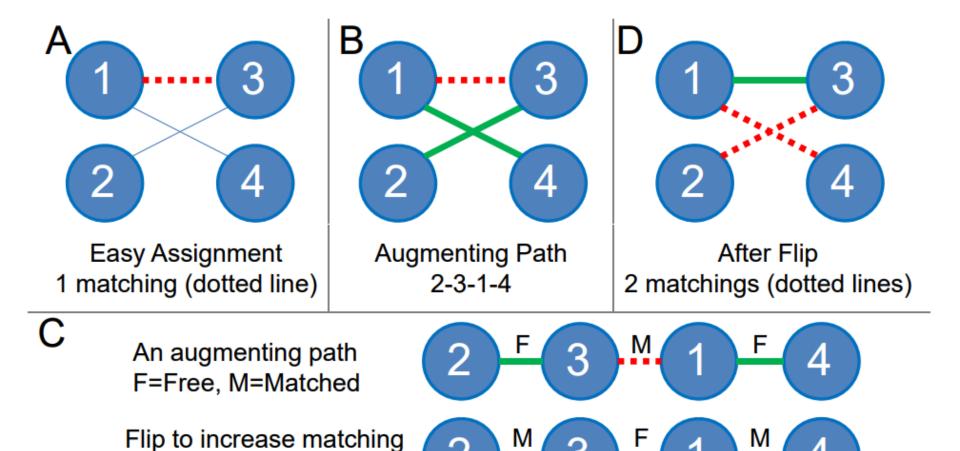
Lemma (Claude Berge 1957):

A matching M in G is maximum iff there is no more augmenting path in G

 Augmenting Path Algorithm is a simple O(V*(V+E)) = O(V² + VE) ~= O(VE) implementation of that lemma

Recall Edmond-Karp $O(VE^2)$.

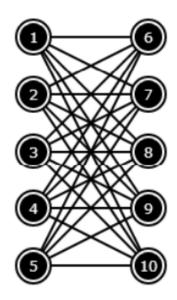
The Augmenting Path Algorithm



from 1 to 2 matchings

The Augmenting Path Algorithm

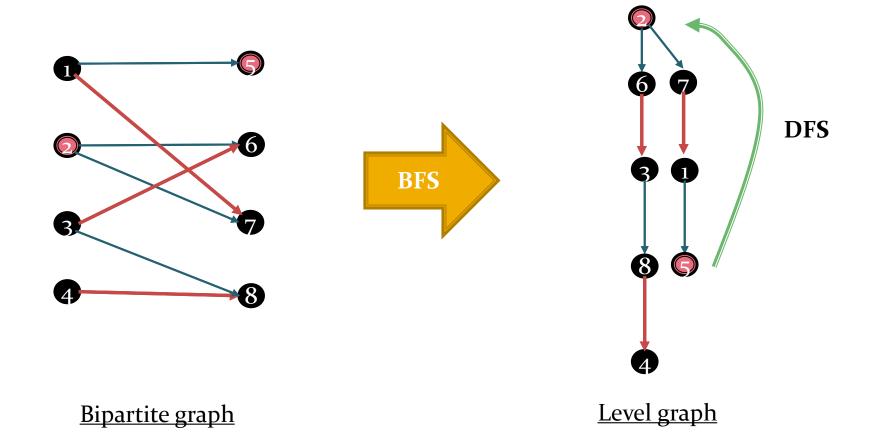
- A Complete Bipartite Graph K_{n,m}, V=n+m & E = n*m
- Augmenting Path algorithm → O((n+m)*n*m)
 - If m = n, we have an $O(n^3)$ solution, OK for n ≤ 200
- Example with n = m = 5



Hopcroft Karp's Algorithm

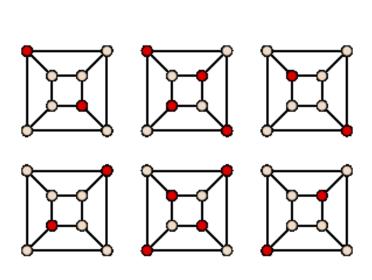
- Basic idea is to combine BFS and DFS augmenting paths.
 - Find the shortest augmenting paths from all unmatched vertices (BFS).
 - Use BFS information to build a level graph.
 - Find an augmenting path in the level graph using DFS.
 - Keep doing this until we have no more augmenting paths.
- Runs in $O(E\sqrt{V})$; proof omitted.

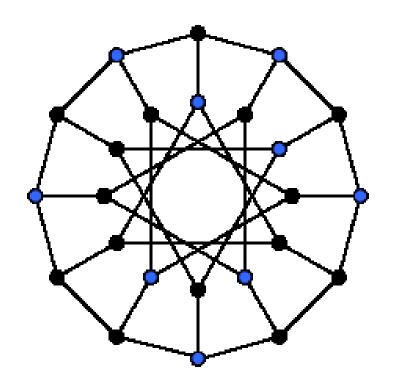
Hopcroft Karp's Algorithm



Independent Set

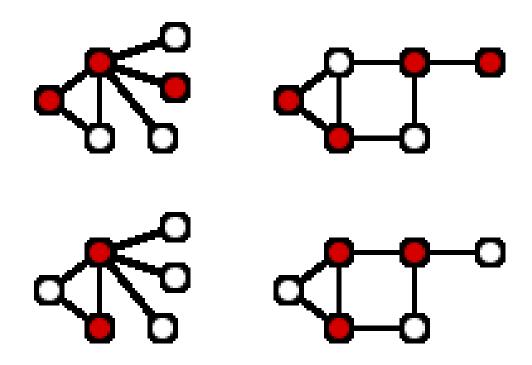
- An <u>independent set</u> (IS) is a set of vertices in a graph for which <u>no</u> two vertices are adjacent.
- A *maximal independent set* (MIS) is such a set that we cannot add additional vertices to.
- A <u>maximum independent set</u> is a maximum MIS.





Vertex Cover

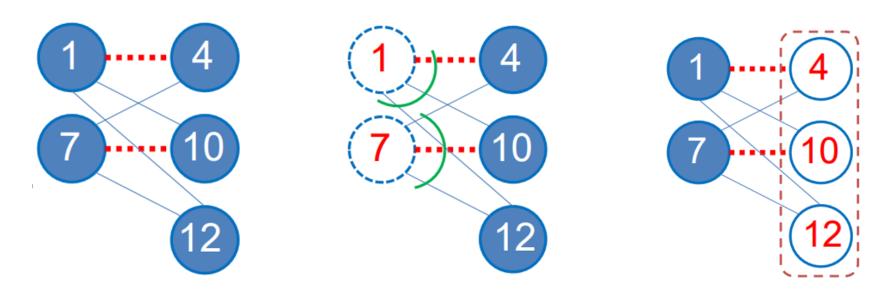
- A <u>vertex cover</u> in a graph is a set of vertices that includes at least one endpoint of every edge.
- A <u>minimum vertex cover</u> is a vertex cover of smallest possible size.



König's Theorem

- König's theorem: in any bipartite graph, the number of edges in a maximum cardinality matching is equal to the number of vertices in a minimum vertex cover.
 (can be derived from the max-flow min-cut theorem)
- In a bipartite graph, the <u>complement</u> of a maximum independent set is a minimum vertex cover.

Applications of König's Theorem

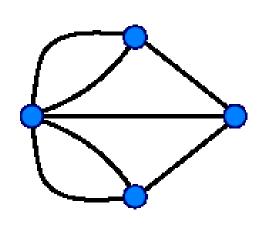


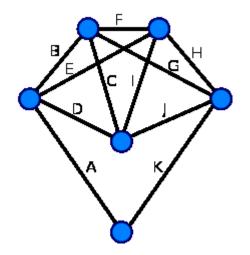
Maximum Cardinality Bipartite Matching Minimum Vertex Cover (König's Theorem)

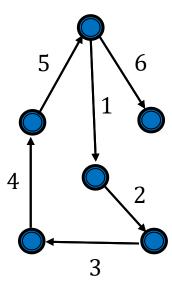
Maximum Independent Set

Eulerian Path

• A <u>Eulerian path</u> is a path in a graph that visits every edge exactly once.



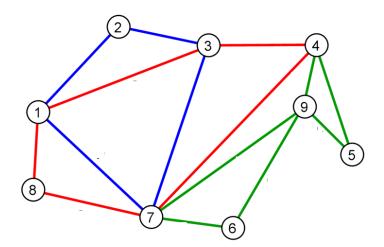




Eulerian Path

Hierholzer's algorithm

- Choose any starting vertex v, and follow a trail of edges from that vertex until returning to v. The tour formed in this way is a closed tour, but may not cover all the vertices and edges of the initial graph.
- As long as there exists a vertex v that belongs to the current tour but that
 has adjacent edges not part of the tour, start another trail from v,
 following unused edges until returning to v, and join the tour formed in
 this way to the previous tour.
- Time complexity O(E).



Summary

- This Week's Problems
 (Island Hopping, George, Full Tank?, Councilling)
- LiU Challenge
- Matching Problems
 - Graph Matching
 - Maximum Cardinality Matching
 - Maximum Cardinality Bipartite Matching
 - Maximum Weighted Matching
 - Maximum Weighted Bipartite Matching
 - Augmenting Paths Algorithm
 - Hopcroft-Karp's Algorithm
- Covering Problems
 - Maximum Independent Set
 - Minimum Vertex Cover
 - Euler Path (lab 2.9)