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2Outline

 Network flow
 Max Flow (lab 2.6)
 Min Cut (lab 2.7)
 Min Cost Max Flow (lab 2.8)



3Network Flow

 A network is a directed graph G=(V,E) with a source vertex s V
and a sink vertex t V. Each edge e=(v,w) from v to w has a 
defined capacity, denoted by u(e) or u(v,w). It is useful to also 
define capacity for any pair of vertices (v,w) E with u(v,w)=0.

 In a network flow problem, we assign a flow to each edge.
 Raw flow is a function r(v,w) that satisfies the following properties:

▪ Conservation: The total flow entering v must equal the total flow leaving v 
for all vertices except s and t, ∑w V r(v,w)=0, for all v V {s,t}.

▪ Capacity constraint: The flow along any edge must be positive and less than 
the capacity of that edge, r(v,w)≤u(v,w) for all v,w V.

 Net flow is a function f(v,w) that also satisfies the following conditions:
▪ Skew symmetry: f(v,w)=−f(w,v).

 With a raw flow, we can have flows going both from v to w and flow going 
from w to v. In a net flow formulation we only keep track of the difference 
between these two flows f(v,w)=r(v,w)−r(w,v).

 The value of flow f from source s is defined as |f|=∑v V f(s,v).



4Network Flow – Example Network

Network Raw flow

Residual graph and augmenting path



5The Ford Fulkerson’s Method



6Network Flow – Example Maximum Flow



7Network Flow – Example Maximum Flow



8The Ford Fulkerson’s Method



9The Ford-Fulkerson Algorithm



10The Edmond-Karp Algorithm



11The Edmond-Karp Algorithm



12The Edmond-Karp Algorithm



13Network Flow – Scaling
 We can improve the running time of the Ford-Fulkerson algorithm by using 

a scaling algorithm. The idea is to reduce our max flow problem to the 
simple case where all edge capacities are either 0 or 1 (Gabow in 1985 and 
Dinic in 1973):
 Scale the problem down somehow by rounding off lower order bits.
 Solve the rounded problem.
 Scale the problem back up, add back the bits we rounded off, and fix any errors in our 

solution.

 In the specific case of the maximum flow problem, the algorithm is:
 Start with all capacities in the graph at 0.
 Shift in the higher-order bit of each capacity. Each capacity is then either 0 or 1.
 Solve this maximum flow problem.
 Repeat this process until we have processed all remaining bits.

 To scale back up:
 Start with the maximum flow for the scaled-down problem. Shift the bit of each 

capacity by 1, doubling all the capacities. If we then double all our flow values, we still 
have a maximum flow.

 Increment some of the capacities. This restores the lower order bits that we truncated. 
Find augmenting paths in the residual network to re-maximize the flow.



14Maximum Flow Algorithms

 Ford-Fulkerson with DFS O(|f| E)
 Edmond-Karp (Ford-Fulkerson with BFS) O(VE2)
 Dinic's O(V2E)
 Push-relabel O(V3)
 Binary blocking flow algorithm O(min(V2/3, E1/2) E log(V2/E) 

log(|f|))



15Minimum Cut

 An s-t cut of network G is a partition of the vertices V into 2 
groups: S and S¯=V S such that s S and t S¯.
 The net flow along cut (S,S¯) is defined as f(S)=∑v S ∑w S¯ f(v,w).
 The value (or capacity) of a cut is defined as u(S)=∑v S ∑w S¯ u(v,w).

 For a flow network, we define a minimum cut to be a cut of the 
graph with minimum capacity.

 To find the minimum cut, compute the maximum flow and 
find the set of vertices reachable from s with positive edges in 
the residual graph, this is the set S.



16Minimum Cut Example



17Max-Flow Min-Cut Theorem

 In a f low network G, the following conditions are equivalent:
 A flow f is a maximum flow.
 The residual network Gf has no augmenting paths.
 |f|=u(S) for some cut S.

 These conditions imply that the value of the maximum flow is 
equal to the value of the minimum s-t cut: maxf |f|=minS u(S), 
where f is a flow and S is an s-t cut.



18Minimum Cost Maximum Flow
 Extend the definition of a network flow with a cost per unit of flow 

on each edge: c(v,w) R, where (v,w) E.
 The cost of a flow f is defined as: c(f)=∑e E f(e) c(e)
 A minimum cost maximum flow of a network G=(V,E) is a maximum 

flow with the smallest possible cost.
 Note that costs can be negative. 
 Note that edges in the residual graph of a network need to have their costs 

determined carefully. Consider an edge (v,w) with capacity u(v,w), cost per 
unit flow c(v,w). Let f(v,w) be the flow of the edge. Then the residual graph 
has two edges corresponding to (v,w). The first edge is (v,w) with capacity 
u(v,w)−f(v,w) and cost c(v,w), and second edge is (w,v) with capacity f(v,w) 
and cost −c(v,w).

 It's clear that minimum cost maximum flow generalizes maximum flow by 
assigning a cost of 0 to every edge.

 It also generalizes shortest path, if we set each cost equal to its corresponding 
edge length while assigning the same capacity to every edge.

 A flow is optimal (min-cost) iff there are no negative cost cycles in 
the residual network.



19Network Flow Variants

 Multi-source, multi-sink max flow
 Create a super-source/sink with infinite capacity edges to the 

sources/sinks

 Vertex capacities
 Split each vertex into two vertices and add a bi-directional edge with the 

vertex capacity between them. Remember to change the edges to the 
vertex.

 Min-Cost Circulation
 Equivalent to min-cost max-flow (simply disconnect the source and sink)

 Maximum Independent and Edge-Disjoint Paths



20Summary

 Network flow
 Max Flow (lab 2.6)
 Min Cut (lab 2.7)
 Min Cost Max Flow (lab 2.8)


