
Algorithmic
Problem Solving

Le 6 – Graphs part II

Fredrik Heintz
Dept of Computer and Information Science

Linköping University

2Outline

 Network flow
 Max Flow (lab 2.6)
 Min Cut (lab 2.7)
 Min Cost Max Flow (lab 2.8)

3Network Flow

 A network is a directed graph G=(V,E) with a source vertex s V
and a sink vertex t V. Each edge e=(v,w) from v to w has a
defined capacity, denoted by u(e) or u(v,w). It is useful to also
define capacity for any pair of vertices (v,w) E with u(v,w)=0.

 In a network flow problem, we assign a flow to each edge.
 Raw flow is a function r(v,w) that satisfies the following properties:

▪ Conservation: The total flow entering v must equal the total flow leaving v
for all vertices except s and t, ∑w V r(v,w)=0, for all v V {s,t}.

▪ Capacity constraint: The flow along any edge must be positive and less than
the capacity of that edge, r(v,w)≤u(v,w) for all v,w V.

 Net flow is a function f(v,w) that also satisfies the following conditions:
▪ Skew symmetry: f(v,w)=−f(w,v).

 With a raw flow, we can have flows going both from v to w and flow going
from w to v. In a net flow formulation we only keep track of the difference
between these two flows f(v,w)=r(v,w)−r(w,v).

 The value of flow f from source s is defined as |f|=∑v V f(s,v).

4Network Flow – Example Network

Network Raw flow

Residual graph and augmenting path

5The Ford Fulkerson’s Method

6Network Flow – Example Maximum Flow

7Network Flow – Example Maximum Flow

8The Ford Fulkerson’s Method

9The Ford-Fulkerson Algorithm

10The Edmond-Karp Algorithm

11The Edmond-Karp Algorithm

12The Edmond-Karp Algorithm

13Network Flow – Scaling
 We can improve the running time of the Ford-Fulkerson algorithm by using

a scaling algorithm. The idea is to reduce our max flow problem to the
simple case where all edge capacities are either 0 or 1 (Gabow in 1985 and
Dinic in 1973):
 Scale the problem down somehow by rounding off lower order bits.
 Solve the rounded problem.
 Scale the problem back up, add back the bits we rounded off, and fix any errors in our

solution.

 In the specific case of the maximum flow problem, the algorithm is:
 Start with all capacities in the graph at 0.
 Shift in the higher-order bit of each capacity. Each capacity is then either 0 or 1.
 Solve this maximum flow problem.
 Repeat this process until we have processed all remaining bits.

 To scale back up:
 Start with the maximum flow for the scaled-down problem. Shift the bit of each

capacity by 1, doubling all the capacities. If we then double all our flow values, we still
have a maximum flow.

 Increment some of the capacities. This restores the lower order bits that we truncated.
Find augmenting paths in the residual network to re-maximize the flow.

14Maximum Flow Algorithms

 Ford-Fulkerson with DFS O(|f| E)
 Edmond-Karp (Ford-Fulkerson with BFS) O(VE2)
 Dinic's O(V2E)
 Push-relabel O(V3)
 Binary blocking flow algorithm O(min(V2/3, E1/2) E log(V2/E)

log(|f|))

15Minimum Cut

 An s-t cut of network G is a partition of the vertices V into 2
groups: S and S¯=V S such that s S and t S¯.
 The net flow along cut (S,S¯) is defined as f(S)=∑v S ∑w S¯ f(v,w).
 The value (or capacity) of a cut is defined as u(S)=∑v S ∑w S¯ u(v,w).

 For a flow network, we define a minimum cut to be a cut of the
graph with minimum capacity.

 To find the minimum cut, compute the maximum flow and
find the set of vertices reachable from s with positive edges in
the residual graph, this is the set S.

16Minimum Cut Example

17Max-Flow Min-Cut Theorem

 In a f low network G, the following conditions are equivalent:
 A flow f is a maximum flow.
 The residual network Gf has no augmenting paths.
 |f|=u(S) for some cut S.

 These conditions imply that the value of the maximum flow is
equal to the value of the minimum s-t cut: maxf |f|=minS u(S),
where f is a flow and S is an s-t cut.

18Minimum Cost Maximum Flow
 Extend the definition of a network flow with a cost per unit of flow

on each edge: c(v,w) R, where (v,w) E.
 The cost of a flow f is defined as: c(f)=∑e E f(e) c(e)
 A minimum cost maximum flow of a network G=(V,E) is a maximum

flow with the smallest possible cost.
 Note that costs can be negative.
 Note that edges in the residual graph of a network need to have their costs

determined carefully. Consider an edge (v,w) with capacity u(v,w), cost per
unit flow c(v,w). Let f(v,w) be the flow of the edge. Then the residual graph
has two edges corresponding to (v,w). The first edge is (v,w) with capacity
u(v,w)−f(v,w) and cost c(v,w), and second edge is (w,v) with capacity f(v,w)
and cost −c(v,w).

 It's clear that minimum cost maximum flow generalizes maximum flow by
assigning a cost of 0 to every edge.

 It also generalizes shortest path, if we set each cost equal to its corresponding
edge length while assigning the same capacity to every edge.

 A flow is optimal (min-cost) iff there are no negative cost cycles in
the residual network.

19Network Flow Variants

 Multi-source, multi-sink max flow
 Create a super-source/sink with infinite capacity edges to the

sources/sinks

 Vertex capacities
 Split each vertex into two vertices and add a bi-directional edge with the

vertex capacity between them. Remember to change the edges to the
vertex.

 Min-Cost Circulation
 Equivalent to min-cost max-flow (simply disconnect the source and sink)

 Maximum Independent and Edge-Disjoint Paths

20Summary

 Network flow
 Max Flow (lab 2.6)
 Min Cut (lab 2.7)
 Min Cost Max Flow (lab 2.8)

