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Network flow
Max Flow (lab 2.6)
Min Cut (lab 2.7)
Min Cost Max Flow (lab 2.8)



Network Flow

A network is a directed graph G=(V,E) with a source vertex seV
and a sink vertex t€V. Each edge e=(v,w) from vtow hasa
defined capacity, denoted by u(e) or u(v,w). It is useful to also
define capacity for any pair of vertices (v,w)&E with u(v,w)=o.

In a network flow problem, we assign a flow to each edge.

Raw flow is a function r(v,w) that satisfies the following properties:

Conservation: The total flow entering v must equal the total flow leaving v
for all vertices except s and t, YwW€V r(v,w)=o0, for all veV\{s,t}.

Capacity constraint: The flow along any edge must be positive and less than
the capacity of that edge, r(v,w)<u(v,w) for all v,w€eV.

Net flow is a function f(v,w) that also satisfies the following conditions:
Skew symmetry: f(v,w)=—f(w,v).

With a raw flow, we can have flows going both from v to w and flow going
from w to v. In a net flow formulation we only keep track of the difference
between these two flows f(v,w)=r(v,w)-r(w,v).

The value of flow f from source s is defined as |f|=).vEV {(s,v).



Residual grth and augmenting path



The Ford Fulkerson’s Method

* One Solution: Ford Fulkerson’s Method

— A surprisingly simple iterative algorithm

Send a flow fthrough path p whenever there exists
an augmenting path p from sto ¢



Network Flow — Example Maximum Flow ({5




Network Flow — Example Maximum Flow
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The Ford-Fulkerson Algorithm

* DFS implementation of Ford Fulkerson’s method runs
in O(|f*|E) and can be very slow on graph like this:

— Notice the presence of backward edges
(only drawn for edge a=2b or b=2>a this time)
* Q: What if we do not use backward edges?
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The Edmond-Karp Algorithm

BFS Implementation

* BFS implementation of Ford Fulkerson’s method
(called Edmonds Karp’s algorithm) runs in O(VE?)

After just 2
iterations




The Edmond-Karp Algorithm
Edmonds Karp’s (using STL) (1)

int res[MAX V] [MAX V], m&, £, s, €;

vi p; // note that vi is our shortcut for vector<int>

void augment (int v, int minEdge) {
reat e source e T inEdage i lobal ariabl

if (v == s) { £ = minEdge; return; }

else if (p[v] != -1) { augment(p[v], min (minEdge, res[p[v]]1I[Vv])):

by @alter Fpegsidial capadilbtles

res[p[v]]([v] -= £; res[v][pl[Vv]] += £; }



vi dist (MAX V, INF); dist[s]
queue<int> g; g.push(s);
p.assign(MAX VvV, -1

while (!g.empty())

int u = g.front();

if (u ==

Fay Erht

g.pop ()

erating neighbors wi

&& dist[Vv] g.push (v

if (res[u] [V]

augment (t,
1.E (E == @)

mf += £;

printf ("%d\n", mf);



Network Flow — Scaling

We can improve the running time of the Ford-Fulkerson algorithm by using
a scaling algorithm. The idea is to reduce our max flow problem to the
simple case where all edge capacities are either o or 1 (Gabow in 1985 and
Dinic in 1973):

Scale the problem down somehow by rounding off lower order bits.

Solve the rounded problem.

Scale the problem back up, add back the bits we rounded off, and fix any errors in our

solution.
In the specific case of the maximum flow problem, the algorithm is:

Start with all capacities in the graph at o.

Shift in the higher-order bit of each capacity. Each capacity is then either o or 1.

Solve this maximum flow problem.

Repeat this process until we have processed all remaining bits.

To scale back up:

Start with the maximum flow for the scaled-down problem. Shift the bit of each
capacity by 1, doubling all the capacities. If we then double all our flow values, we still
have a maximum flow.

Increment some of the capacities. This restores the lower order bits that we truncated.
Find augmenting paths in the residual network to re-maximize the flow.



Maximum Flow Algorithms

Ford-Fulkerson with DFS O(|f] E)

Edmond-Karp (Ford-Fulkerson with BFS) O(VE?)

Dinic's O(V2E)

Push-relabel O(V3)

Binary blocking flow algorithm O(min(V?/3, E'?) E log(V?/E)
log(|f1))



Minimum Cut

An s-t cut of network G is a partition of the vertices V into 2
groups: S and S"=V\S such that s€S and teS".

The net flow along cut (S,S7) is defined as f(S)=)YveS YweS™ f(v,w).

The value (or capacity) of a cut is defined as u(S)=)Y.veS YweS™ u(v,w).
For a flow network, we define a minimum cut to be a cut of the
graph with minimum capacity.

To find the minimum cut, compute the maximum flow and
find the set of vertices reachable from s with positive edges in
the residual graph, this is the set S.




Minimum Cut Example
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Max-Flow Min-Cut Theorem

In a flow network G, the following conditions are equivalent:
A flow f is a maximum flow.
The residual network G, has no augmenting paths.
|f]|=u(S) for some cut S.

These conditions imply that the value of the maximum flow is
equal to the value of the minimum s-t cut: max, |f|=ming u(S),
where f is a flow and S is an s-t cut.



Minimum Cost Maximum Flow

Extend the definition of a network flow with a cost per unit of flow
on each edge: c(v,w)€ER, where (v,w)€E.

The cost of a flow f is defined as: c¢(f)=) e€E f(e)-c(e)

A minimum cost maximum flow of a network G=(V,E) is a maximum
flow with the smallest possible cost.

Note that costs can be negative.

Note that edges in the residual graph of a network need to have their costs
determined carefully. Consider an edge (v,w) with capacity u(v,w), cost per
unit flow c(v,w). Let f(v,w) be the flow of the edge. Then the residual graph
has two edges corresponding to (v,w). The first edge is (v,w) with capacity
u(v,w)-f(v,w) and cost c(v,w), and second edge is (w,v) with capacity f(v,w)
and cost —c(v,w).

It's clear that minimum cost maximum flow generalizes maximum flow by
assigning a cost of o to every edge.

It also generalizes shortest path, if we set each cost equal to its corresponding
edge length while assigning the same capacity to every edge.
A flow is optimal (min-cost) iff there are no negative cost cycles in
the residual network.



Network Flow Variants

Multi-source, multi-sink max flow

Create a super-source/sink with infinite capacity edges to the
sources/sinks

Vertex capacities

Split each vertex into two vertices and add a bi-directional edge with the
vertex capacity between them. Remember to change the edges to the
vertex.

Min-Cost Circulation

Equivalent to min-cost max-flow (simply disconnect the source and sink)

Maximum Independent and Edge-Disjoint Paths



Summary

Network flow
Max Flow (lab 2.6)
Min Cut (lab 2.7)
Min Cost Max Flow (lab 2.8)



