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 Graph Representations (adjacency matrix, adjacency list, edge 
list)

 Graph Traversal (BFS, DFS, Best First Search)
 Finding Strongly Connected Components
 Minimum Spanning Tree (Prim, Kruskal; lab 2.5)
 Single-Source Shortest Path (Dijkstra, Bellman-Ford; lab 2.1-

2.3)
 All-Pairs Shortest Path (Floyd-Warshall, lab 2.4)



3Graph Representations



4Graph Representations

 Adjacency Matrix (O(V2) space, O(V) to enumerate neighbors)
 A 2D matrix of weights: int AdjMat[V][V]

 Good for small or dense graphs
 Cannot represent multi-graphs

 Adjacency List (O(V+E) space, O(k) to enumerate neighbors)
 A vector of lists of node and weight pairs: 

typedef vector< vector< pair<int, int> > > AdJList

 Good for large and sparse graphs
 Can represent multi-graphs

 Edge List (O(E) space, O(E) to enumerate neighbors)
 A vector of triples from node, to node, weight:

typedef vector< pair<int, pair<int, int> > > EdgeList

 The list of edges is usually sorted
 Useful for some algorithms, like Kruskal’s algorithm for finding MSTs
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 Depth-First Search (O(V+E) for adjacency lists and O(V2) for 

adjacency matrices)
 Keep a stack of unvisited nodes, initialize it with the start node.
 Visit the first node in the stack. If it has been visited before then there is a 

cycle, otherwise add all its children to the stack.
 Breadth-First Search (O(V+E) for adjacency lists and O(V2) for 

adjacency matrices)
 Keep a queue of unvisited nodes, initialize it with the start node.
 Visit the first node in the queue. If it has been visited before then there is a 

cycle, otherwise add all its children to the queue.
 Visits the nodes of a graph in the order of the distance to the start node.

 Best-First Search
 Keep a priority queue of unvisited nodes, initialize it with the start node.
 Visit the first node in the queue (the best next node). If it has been visited 

before then there is a cycle, otherwise add all its children to the queue.
 Visits the nodes of a graph in the shortest weighted distance from the start 

node.
 A* Search

 Like Best-First Search but with a heuristic that underestimates the distance 
from the current node to the goal node.
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 Finding Connected Components – undirected graph
 Repeatedly select an unvisited node u and run DFS(u) (or BFS(u)) to find 

all reachable nodes from u. The number of repetitions is the number of 
components.

 Flood Fill
 Adaptation of DFS to count the number of cells in a 2D grid with a 

particular color/property. Usually on implicit graphs, i.e. 2D grids.

 Topological Sorting of Directed Acyclic Graphs
 Creates a linear ordering of the nodes in a graph such that a node u

comes before the node v if there is an edge uv.
 Tarjan’s algorithm is based on DFS

▪ After visiting all children, add the current node to the topological list of nodes.

 Kahn’s algorithm is based on BFS
▪ When visiting a node, remove it and all its outgoing edges. Add every node v

that now have 0 incoming edges.
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 Bipartite Graph Check
 Graph Edge Property Check via DFS Spanning Tree

 Tree edge
 Back edge
 Forward/cross edge

 Finding Articulation Points and Bridges in Undirected Graphs
 An articulation point in a graph G is a node whose removal disconnects 

G.
 A graph without articulation points is called biconnected.
 A bridge is an edge in a graph G whose removal disconnects G.

 Finding Strongly Connected Components in Directed Graphs
 Tarjan’s algorithm
 2-SAT



8Minimum Spanning Tree
 Given a connected, undirected and weighted graph G, select a subset 

of edges E’  G such that the graph G is connected and the total 
weight of the selected edges E’ is minimal.

 This corresponds to finding a minimal spanning tree of G, i.e. a tree 
which connects all the nodes in the graph G and whose total edge 
weight is minimal.

 Kruskal’s Algorithm (O(E log V))
 Sort the edges based on non-decreasing weight (use an EdgeList).
 Greedily add the next edge unless if forms a cycle (use UnionFind)

 Prim’s Algorithm (O(E log V))
 When visiting a node, add all next nodes sorted by the weight of the edge in 

a priority queue.
 Repeatedly take the minimum weight node, which hasn’t been visited before 

(keep track of taken nodes in an array).
 Variants

 Maximum Spanning Tree
 “Minimum” Spanning Subgraph
 Minimum Spanning Forest (with K trees)
 Minimax and Maximin path between nodes i and j
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 Given a weighted graph G and a starting source node s, what 
are the shortest paths from s to every other node of G?

 SSSP on Unweighted Graphs (or all edges have equal weight)
 Use BFS (O(V+E))
 To reconstruct the shortest path keep a vector<int> p with the parent 

node of each node and generate the path starting from the destination.

 SSSP on Weighted Graphs
 Dijkstra (O((V+E) log V))
 Maintain a priority queue with reachable nodes sorted on their total 

distance from the source (increasing). 
 Greedily select the node u with shortest distance d from the source and 

update the shortest distance to u according to dist[u]=min(dist[u], d).
 If dist[u] is decreased add all neighboring nodes to the priority queue.



10Single Source Shortest Path

 SSSP on Weighted Graphs with Negative Cycles
 The Dijkstra version described above works even with negative weights, 

but not with negative cycles.
 Bellman-Ford (O(VE) for adjacency lists)
 Idea: Relax all E edges V-1 times.
 Basically do a DP over every edge (u,v) V-1 times and update as follows:

▪ dist[v] = min(dist[v], dist[u] + w[u][v])

 It is possible to determine if there are negative cycles since if there are no 
negative cycles then after V-1 iterations no relaxations should be possible. 
This means that if on the Vth iteration relaxations are possible, there is a 
negative cycle.
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 Given a weighted graph G, find the shortest path between every 
pair of nodes u and v.

 Floyd-Warshall (O(V3))
 For every triple k, i, j compute 

AdjMat[i][j] = min(AdjMat[i][j], AdjMat[i][k] + AdjMat[k][j])

 Applications of APSP
 Solving the SSSP on small weighted graphs
 Transitive closure
 Minimax and maximin

AdjMat[i][j] = min(AdjMat[i][j], max(AdjMat[i][k], AdjMat[k][j]))

 Finding the cheapest/negative cycle
 Finding the diameter of a graph
 Finding the strongly connected components of a graph



12Summary SSSP/APSP
Graph Criteria BFS

O(V+E)
Dijkstra
O((V+E) log V)

Bellman-Ford
O(VE)

Floyd Warshall
O(V3)

Max size V, E <= 10M V, E <= 300K VE <= 10M V <= 400

Unweighted Best Ok Bad Bad in general

Weighted WA Best Ok Bad in general

Negative weight WA Our variant ok Ok Bad in general

Negative cycle Cannot detect Cannot detect Can detect Can detect

Small graph WA if 
weighted

Overkill Overkill Best
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 Graph Representations (adjacency matrix, adjacency list, edge 
list)

 Graph Traversal (BFS, DFS, Best First Search)
 Finding Strongly Connected Components
 Minimum Spanning Tree (Prim, Kruskal; lab 2.5)
 Single-Source Shortest Path (Dijkstra, Bellman-Ford; lab 2.1-

2.3)
 All-Pairs Shortest Path (Floyd-Warshall, lab 2.4)


