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Overview

Arithmetic

Integer multiplication — Karatsuba’s algorithm
Multiplication of polynomials — Fast Fourier Transform

Systems of linear equations — Naive Gaussian Elimination



Arithmetic

Range of default integer data types (C++)
unsigned int = unsigned long: 23 (9-10 digits)
unsigned long long: 2%4 (19-20 digits)

How to represent 777!

Operations on Big Integer

Basic: add, subtract, multiply, divide, etc
Use “high school method”

1 €& carry 218
218 45

45 -—= K
1 1090 (218%*5)
€3 872 (218%4)*10



Arithmetic

Greatest Common Divisor (Euclidean Algorithm)
GCD(a, 0) =a
GCD(a, b) = GCD(b, a mod b)
int gcd(int a, int b) { return (b==0 ?a: gcd(b,a % b)); }
Least Common Multiplier
LCM(a, b) =a*b / GCD(a, b)
int Iem(int a, int b) { return (a / gcd(a, b) * b); }
/] Q: why we write the lcm code this way?
GCD/LCM of more than 2 numbers:
GCD(a, b, ¢) = GCD(a, GCD(b, ¢))
Find d, x, y such that d = ax + by and d = GCD(a,b) (Extended
Euclidean Algorithm)
EGCD(a,0) = (a,1,0)
EGCD(a,b)
(d’x}y’) = EGCD(b, a mod b)
(d,xy) = (d}y’x" - a/b*y’)



Arithmetic

Representing rational numbers.
Pairs of integers a,b where GCD(a,b)=1.

Representing rational numbers modulo m.
The only difficult operation is inverse, ax = 1 (mod m), where an inverse
exists if and only if a and m are co-prime (gcd(a,m)=1).
Can be found using the Extended Euclidean Algorithm
ax=1(mod m) =>ax-1=qm=>ax-qm =1
(d, x,y) = EGCD(a,m) => x is the solution iff d = 1.



Karatsuba’s algorithm

Using the classical pen and paper algorithm two n
digit integers can be multiplied in O(n?) operations.
Karatsuba came up with a faster algorithm.
Let A and B be two integers with

A=A10k+A,, A, <10¥

B = B1ok + B, B, < 10K

C=A*B=(Ap0"+ A, )(Biok+B,)

= AB1o**+ (AB,+ A, B )10k+ A B,

Instead this can be computed with 3 multiplications

T =AB,

T, = (A, + A,)(B, +B,)

T,=AB,

C=T10%+ (T, -T, -T,)iok+ T,




Complexity of Karatsuba’s Algorithm

Let T(n) be the time to compute the product of two n-digit
numbers using Karatsuba’s algorithm.
Assume n = 2k, T(n) = ©(n's®)), 1g(3) ~ 1.58

T(n) <3T(n/2) + cn
<3(3T(n/4) + c(n/2)) + cn = 32T(n/2?) + cn(3/2 + 1)
<32(3T(n/23) + c(n/4)) + cn(3/2 +1)
=33T(n/23) + cn(3?/2% + 3/2 +1)

< 3'T(n/2!) + en(37/2 + ... + 3/2 +1)

<c3k+ en[((3/2)%-1)/(3/2-1)] --- Assuming T(1) < ¢
< 3K+ 2¢(3k - 2K) < 3c3'8M) = 3¢cnlsB)



Fast Fourier Transform

See separate presentation



Systems of Linear Equations

A system of linear equations can be presented

In different forms

2X +4Xy —3%X3 =3
2.5%X) — X9 +3X3 =9
X1 —06X3 =7
Standard form

2
2.5
1

4 3| X
-1 3 || X
0 —6|[X3
Matrix form




Solutions of Linear Equations |

= , IS a solution to the following equations :

X, +X, =3
X, +2X,=95



Solutions of Linear Equations

A set of equations is inconsistent if there exists no
solution to the system of equations:

X +2Xy =3
2X1 +4Xy =5
These equations are inconsistent



Solutions of Linear Equations

Some systems of equations may have infinite number of
solutions

Xg +2Xy =3
2% +4X, =6
have Infinite number of solutions

X4 a _ .
— IS asolution for alla
X, | 10.5(3-a)




Graphical Solution of Systems of Linear Equations |

: Solution

/ X =1, X,=2




Cramer’s Rule is Not Practical

Cramer's Rule can be used to solve the system

3 1 1 3
5 2 1 5
T Th XeTpgTe

Cramer's Rule is not practical for large systems.
Tosolve N by N system requires (N +1)(N - 1)N! multiplications.

To solve a 30 by 30 system, 2.38 x 10%° multiplications are needed.
It can be used If the determinants are computed in efficient way




Nalve Gaussian Elimination

The method consists of two steps:

Forward Elimination: the system is reduced to upper triangular
form. A sequence of elementary operations is used.

Backward Substitution: Solve the system starting from the last
variable.

Ay &, || X b, d; 4d;, a3 ||X b,
Ay Ay Ay || Xy | = bz = | 0 a,, ' Ay | X, | = bz |
| Ay, Ay Qg || X3 | _b3_ i 0 0 dss I_ | X3 | _b3 '_




Elementary Row Operations

Adding a multiple of one row to another

Multiply any row by a non-zero constant




Example: Forward Elimination

6 -2 2 4 ||Xx 16
12 -8 6 10 |[x,| | 26
3 13 9 3 ||x| |-19
-6 4 1 -18||x,| |-34

Part1l: Forward Elimination
Stepl: Eliminate x, fromequations 2, 3, 4

6 -2 2 4 |[x] [ 16 ]
0 -4 2 2 ||X -6
0 -12 8 1 ||x| |-27
0 2 3 -14|x,| |-18




Example: Forward Elimination

Step2 : Eliminate x, fromequations 3, 4

6 -2 2 4 |[x] [16
0 -4 2 2 ||X -6
0 0 2 -5|[x| |-9
0 0 4 -13||x,| |-21

Step3: Eliminate x, fromequation 4

6 -2 2 4|[x] |16
0 -4 2 2 ||X -6
0 0 2 -5||x| |-9
0 0 0 -3||x| |-3




Summary of the Forward Elimination :

w

Example: Forward Elimination

—2 2
—4 2

X

N

w

X X X

~



Example: Backward Substitution

6 -2 2 4 |[x| [16]
0 -4 2 2 ||%x,| |-6
0 0 2 —5||x,| |-9
0 0 0 -3|[x,| |-3
Solve for x,, then solve for Xx,,...solve for x,
-3 -9+5
X, =—=1 X, = =2
t-3 .
-6-2(-2)-2(1) 16+2(1) —2(-2) -4(1)
X2: 4 :1, X]_: 6 o

3




Forward Elimination

To eliminate x4

To eliminate x,

J




Forward Elimination

Continue until x,,_; Is eliminated.

a.
aij <— aij _(alkjakj (k
To eliminate x; &
bi < bi — (alkjbk
Akk

Kk +1<1<n

J




Backward Substitution

by
X =
an,n
. bn—l o an—l,nxn
Xn—l —
an—l,n—l
bn—2 o an—2,an _ an—z,n—lxn—l
Xn—2 -
an—2,n—2
n
bi = D34 jX;
_ j=1+1
X; =
d; i




Determinant

The elementary operations do not affect the determinant

Example:
1 2 3] 1 2 3]
A: 2 3 2 Elementary operations N A|: O _1 _ 4
31 2 0 0 13

det(A) = det (A) = —13



How Many Solutions Does a

System of Equations AX=B Have?

Unique

det(A) =0
reduced matrix
has no zero rows

No solution
det(A) =0
reduced matrix
has one or more
Zero rows
corresponding B
elements = 0

Infinite
det(A)=0
reduced matrix
has one or more
Zero rows
corresponding B
elements =0



Examples

Unique

5

\

o o

solution:

% {0(.)5}

|
|

No solution

1 2 2
X =

2 4 3
J

1 2 2
X —

o o

No solution

0 =-1 impossible!

Infinte # of solutions

HHiSH

"

o oo

Infinite# solutions

e



Pseudo-Code: Forward Elimination |

do k=1to n1
doi=k+1ton
factor = a; / ay
doj=k+1ton
3;; = a;; — factor * a
end do
b, = b, - factor * b,
end do
end do



Pseudo-Code: Back Substitution

X, = bn / an,n
do i = n-1downto 1
sum = b,
doj=i+1ton
sum = sum - a;; * X;
end do
X; = sum / a;;

end do



Problems with Naive Gaussian Elimination

The Naive Gaussian Elimination may fail for very simple cases.
(The pivoting element is zero).

0 1]|x | |1
1 1% 2

Very small pivoting element may result in serious computation
errors

i
1 1] %] [2




How Do We Know If a Solution is Good or Not |

Given AX=B

X is a solution if AX-B=o0
Compute the residual vector R= AX-B

Due to rounding error, R may not be zero

The solution is acceptable if max || < ¢
|



How Good iIs the Solution?

1 -1 2 1||x 1 Xy —1.8673
3 2 1 4| 1 _ Xo —0.3469
= solution —

5 -8 6 3||X 1 X3 0.3980
4 2 5 3||x]| [-1 X4 | | 1.7245
0.005]

. 0.002
Residues: R =

0.003

10.001




Summary

Arithmetic

Integer multiplication — Karatsuba’s algorithm
Multiplication of polynomials — Fast Fourier Transform

Systems of linear equations — Naive Gaussian Elimination



